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Abstract: Motivated by the recent interest in smart grid technology and by the push towards
distributed and renewable energy, we study the parallel operation of DC/AC inverters in a
lossless microgrid. We show that the parallel interconnection of DC/AC inverters equipped with
conventional droop controllers is precisely described by the Kuramoto model of coupled phase
oscillators. This novel description, together with results from the theory of coupled oscillators,
allows us to characterize the behavior of the network of inverters. Specifically, we provide a
necessary and sufficient condition for the existence of a synchronized solution that is unique
and exponentially stable. Remarkably, we find that the existence of such a synchronized solution
does not depend on the selection of droop coefficients. We prove that the inverters share the
network power demand in proportion to their power ratings if and only if the droop coefficients
are selected proportionally, and we characterize the set of feasible loads which can be serviced.
These results hold without assumptions on identical line characteristics or voltage magnitudes.
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1. INTRODUCTION

Microgrids appear to be the most natural extension of
classical energy generation to a renewable and distributed
setting. A microgrid is a low-voltage electrical network,
heterogeneously composed of distributed generation, stor-
age, load, and managed autonomously from the larger
primary network. Microgrids are able to connect to the
wide area electric power system (WAEPS) through a Point
of Common Coupling (PCC), but are also able to “island”
themselves and operate independently. Energy generation
within a microgrid can be highly heterogeneous, combining
photovoltaic farms, wind turbines, thermo-solar power,
biomass, geothermal, and gas micro-turbines. Many of
these devices generate either variable frequency AC power
or DC power, and are therefore interfaced with a syn-
chronous AC microgrid via power electronic devices called
DC/AC power converters, or simply inverters. In islanded
operation, inverters are operated as voltage sourced invert-
ers (VSIs), which act much like ideal voltage sources. It is
through these VSIs that actions must be taken to ensure
synchronization, security, power balance and load sharing
in the network.

Literature Review: A primary topic of interest within the
microgrid community is the problem of accurately sharing
both active and reactive power among a bank of inverters
operated in parallel. Such a network is depicted in Figure
1, in which each inverter transmits power directly to the
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Fig. 1. Schematic of inverters operating in parallel in a
microgrid. The horizontal line is a single electrical
node. The inverters convert the externally supplied
DC power to AC power in order to satisfy the power
demand at the load.

load. As detailed in a recent review (Mohd et al., 2010),
power sharing techniques generally fall into three cate-
gories, namely master/slave, current sharing, and “droop”
methods. The first two methods unfortunately require
some form of on-line global communication among the
units, and introduce a common failure point for the entire
system. This lack of redundancy and need for commu-
nication makes these techniques undesirable in a truly
distributed “plug and play” setting.

The droop controllers however do not require explicit
communication between inverter units during operation.
The original reference for this methodology appears to
be (Chandorkar et al., 1993), where Chandorkar et. al.
introduce what we will refer to as the conventional droop
controller. The conventional droop controller is a heuristic



based on physical intuition gleaned from the study of high-
voltage WAEPS, and at its core relies on the decoupling
of active and reactive power for small power angles and
non-mixed line conditions.

It is well known that for lossless lines and small power
angles, active power flows are controlled by the voltage
power angles. In this case, the droop method attempts to
emulate the behavior of a classical synchronous generator
by imposing an inverse relation at each inverter between
frequency and active power injection (Kundur, 1994). Un-
der other network conditions, the method takes different
forms (Yao et al., 2011). Some representative references for
the basic methodology are Tuladhar et al. (1997); Lopes
et al. (2006); Li and Kao (2009) and Guerrero et al. (2009).
Small-signal stability analyses are presented under various
assumptions in Marwali et al. (2007); Mohamed and El-
Saadany (2008); Majumder et al. (2009) and the references
therein. The recent work by Zhong highlights many of
the drawbacks of the conventional droop method (Zhong,
2013).

Another set of literature relevant to our investigation is
that pertaining to synchronization of coupled oscillators,
in particular the classic Kuramoto model introduced in
(Kuramoto, 1975). A generalization of this model considers
n ≥ 2 coupled oscillators, each represented by a phase
θi ∈ S1 (the unit circle) and a natural frequency ωi ∈ R.
The system of coupled oscillators obeys the dynamics

θ̇i = ωi −
n∑

j=1

aij sin(θi − θj) , i ∈ {1, . . . , n}, (1)

where aij ≥ 0 is the coupling strength between the oscilla-
tors i and j. The model can be visualized as n kinematic
particles, each rotating on the unit circle at frequency ωi,
and connected together by linear springs. The literature on
Kuramoto oscillators is vast, and the model has attracted
tremendous interest from the physics, control, dynamical
systems, and neuroscience communities. See the recent
work (Dörfler and Bullo, 2011) and references therein.

Review of Frequency-Droop Method: The frequency-droop
method is the foundational technique for inverter control
to ensure that the active power demand at the load is
shared among a bank of parallel VSIs, in proportion to
their power ratings. In case of inductive output impedance,
the controller specifies an instantaneous change in the
frequency ωi of the voltage signal at the ith inverter
according to

ωi = ω∗ − ni(Pe,i − P ∗i ), i ∈ {1, . . . , n}, (2)

where ω∗ is a rated frequency, Pe,i is the active electrical
power injection at bus i, and P ∗i is the nominal active
power injection when operated at the rated frequency. The
parameter ni > 0 is referred to as the droop coefficient.
It is clear from (2) that for Pe,i 6= P ∗i , the operating
frequency of the ith inverter deviates from its nominal
rated frequency.

Limitations of the Literature: Despite forming the founda-
tion for the operation of parallel VSIs, the droop control
law (2) has never been subject to a full nonlinear analysis
(Zhong, 2013). To the authors’ knowledge, no conditions
have ever been presented under which the closed-loop
system (2) possess a synchronous steady state, nor have

any statements been made about the convergence rate
to such a steady state should one exist. Stability results
that are presented rely on analysis of a linearized model,
and sometimes come packaged with assumptions involving
certain admittances in the system being small compared
to others. Stability and power sharing results are typically
presented for the case of two inverters, with the corre-
sponding generalized calculation to larger networks left
implicit or unclear. No analytic guarantees are given in
terms of performance.

Contributions: The contributions of this paper are as fol-
lows. We begin with our key observation that the nonlinear
differential equations governing the closed-loop system of
a microgrid under the frequency-droop controller can be
equivalently rewritten as a non-uniform multi-rate Ku-
ramoto model of first-order phase-coupled oscillators. This
insight allows us to give several interesting interpretations
of the resulting feedback interconnection. We present a
necessary and sufficient condition for the existence of a
locally exponentially stable and synchronized solution of
the closed-loop, and provide an explicit bound on the
exponential convergence rate. In particular, we show that
the method is stabilizing independent of the droop coeffi-
cient values, and that the steady state solution is unique
and locally exponentially stable. In comparison to the
existing literature, we show that if the droop coefficients
are selected in proportion to the rated power values, the
inverters share power proportionally without assumptions
on large output impedances or identical voltage magni-
tudes.

Paper Organization: The remainder of this section in-
troduces some notation and reviews some fundamental
material from algebraic graph theory, power systems and
coupled oscillator theory. In Section 2 we motivate the
mathematical models used throughout the rest of the
work, discussing both inverter and network modeling. In
Section 3 we perform a full nonlinear stability analysis of
the conventional frequency-droop method, and present the
results described in the contributions section above.

Sets, vectors and functions: Given a finite set V, let
|V| denote its cardinality. Given an n-tuple (x1, . . . , xn),
let x ∈ Rn be the associated vector. For a real valued
1D-array {xi}ni=1, we let diag({xi}ni=1) be the associated
diagonal matrix. We denote the n × n identity matrix
by In. Let 1n and 0n be the n-dimensional vectors of
all ones and all zeros. For a vector x ∈ Rn, we define
sin(x) , (sin(x1), . . . , sin(xn))T ∈ Rn.

Algebraic graph theory: A weighted graph G without self-
loops is a triple G = (V, E , L) where V is a set of nodes,
E ⊆ V × V is a set of edges, and L ∈ C|V|×|V| is the
Laplacian matrix of the graph. If a number ` ∈ {1, . . . , |E|}
and an arbitrary direction is assigned to each edge (i, j) ∈
E , the oriented node-edge incidence matrix B ∈ R|V|×|E|
is defined component-wise as Bk` = 1 if node k is the
sink node of edge ` and as Bk` = −1 if node k is the
source node of edge `, with all other elements being zero.
For x ∈ Rn, BTx is the vector with components xi − xj ,
with (i, j) ∈ E . If diag({aij}(i,j)∈E) is the diagonal matrix

of edge weights, then L = Bdiag({aij}(i,j)∈E)BT . If the

graph is connected, then ker(BT ) = ker(L) = span(1n).



Moreover, L is positive semidefinite, with eigenvalues
λj(L), j ∈ {1, . . . , |V|}, which can be ordered as 0 =
λ1(L) < λ2(L) ≤ · · · ≤ λ|V|(L). We will briefly make use of

the Moore-Penrose inverse L† of the Laplacian matrixL.

Geometry on the n-torus: An angle is a point θ ∈ S1, and
an arc is a connected subset of S1. With a slight abuse of
notation, let |θ1−θ2| denote the geodesic distance between
two angles θ1, θ2 ∈ S1. The n-torus Tn = S1 × · · · × S1 is
the Cartesian product of n unit circles. For γ ∈ [0, π/2)
and a given graph G = (V, E , ·), let ∆G(γ) = {θ ∈
T|V| : max{i,j}∈E |θi − θj | ≤ γ} be the closed set of angle
arrays θ = (θ1, . . . , θn) with neighboring angles θi and θj ,
{i, j} ∈ E no further than γ apart.

Power flow equation: Consider a lossless, synchronous
AC electrical network with n nodes, purely inductive
admittance matrix Y ∈ Cn×n, nodal voltage magnitudes
Ei > 0, and nodal voltage phase angles θi ∈ S1. The active
electrical power Pe,i ∈ R injected into the network at node
i is given by (Kundur, 1994)

Pe,i =
∑n

j=1
EiEj |Yij | sin(θi − θj), i ∈ {1, . . . , n}. (3)

Synchronization: Consider the first order phase-coupled
oscillator model (1) defined on a graph G = (V, E , L). A
solution θ : R≥0 → T|V| of (1) is said to be synchronized if
(a) there exists a constant ωsync ∈ R such that for each

t ≥ 0, θ̇(t) = ωsync1|V| and (b) there exists a γ ∈ [0, π/2)

such that θ(t) ∈ ∆G(γ) for each t ≥ 0. That is, every
oscillator rotates at the constant speed ωsync, with all pair-
wise geodesic distances along edges less than or equal to γ.

2. PROBLEM SETUP FOR MICROGRID ANALYSIS

Inverter Modeling: DC/AC inverters are power elec-
tronic devices with complex nonlinear characteristics. A
DC source is connected to the input of a bridge circuit
consisting of insulated gate bipolar transistors (IGBTs)
arranged as switches, with an externally applied pulse-
width modulation (PWM) signal being used to control
the voltage level at the output of the inverter bridge. If
the PWM switching frequency is chosen much faster than
the frequency of the desired output signal, the switched
signal averages locally to the desired reference signal.
The end result is that an inverter can be modeled to a
good approximation as a controlled voltage source behind
a reactance, an approximation which is standard in the
microgrid literature. Further modeling explanation can be
found in (Furtado et al., 2008; Weiss et al., 2004; ?) and
the references therein.

Islanded Microgrid Modeling: A mathematical model of
a parallel microgrid is that of a weighted graph G =
(V, E , Y ), where V = {v0, . . . , vn} is the set of nodes,
E is the set of edges, and Y ∈ C(n+1)×(n+1) is the bus
admittance matrix of the network. We let nodes 1, . . . , n
correspond to the inverter connection points, and let the
0th node be the load point. With this, the node-edge
incidence matrix of G has the simple form

B = [−1n In]
T
. (4)

For i ∈ {1, . . . , n},
√
−1 · bi0 is the admittance of the

edge between the inverter i and the load. The output
impedance of the inverter can be controlled to be purely

Fig. 2. Feedback loop for the frequency-droop controller.

imaginary, and we absorb its value into the line suscep-
tance bi0 < 0. The network admittance matrix Y is then
given by Y =

√
−1·Bdiag({bi0}ni=1)BT . To the ith node we

assign a voltage signal of the form Ei(t) = Ei cos(ω0t+θi),
where ω0 > 0 is the nominal angular frequency, Ei > 0 is
the RMS voltage, and θi ∈ S1 is the voltage phase angle.
From the load flow equations (3), the ith inverter therefore
injects a time-averaged real power Pe,i = EiE0|Yi0| sin(θi−
θ0). We will assume this value is restricted to the inter-
val [0, P i] where P i < EiE0|Yi0| is the rating of inverter i.

3. NONLINEAR ANALYSIS OF FREQUENCY
DROOP CONTROL

We now connect the frequency-droop method (2) to a
network of first-order phase-coupled oscillators akin to
(1). In what follows we restrict our attention to the
analysis of active power flows, and assume the voltage
magnitudes at each bus to be fixed, but not necessarily
identical. We consider the problem of stable operation
and proportional active power sharing among n paralleled
inverters in a lossless, islanded microgrid. We assume
that each inverter has precise measurements of its time-
averaged active power injection Pe,i.

An equivalent reformulation of the droop controller (2) at
inverter i ∈ {1, . . . , n} is given by

Diθ̇i = P ∗i − Pe,i. (5)

The controller (5) is a rewriting of the droop controller

(2), with ωi = ω0 + θ̇i, ni = D−1i , and ω∗ = ω0. Using the
active load flow equations (3), we obtain

Diθ̇i = P ∗i − EiE0|Yi0| sin(θi − θ0), i ∈ {1, . . . , n}. (6)

For a constant power load P ∗0 < 0 we must also satisfy the
(lossless) power balance equation

0 = P ∗0 +

n∑
i=1

Pe,i = P ∗0 +

n∑
i=1

EiE0|Yi0| sin(θi − θ0). (7)

The proposed feedback scheme is illustrated in Figure
2. Augmenting the power balance (7) with an additional

frequency-dependent loadD0θ̇0, the closed-loop frequency-
droop controlled system (6)–(7) is seen to be in exact
correspondence with a network of multi-rate Kuramoto
oscillators similar to those described in (1). The prefix
“multi-rate” refers to the heterogeneous time constants
Di which regulate the individual speeds of the oscillators.
One can interpret the constant power load case of (7) with
D0 = 0 as the limit of the phase oscillator at the load
becoming extremely fast as D0 → 0+ (Sastry and Varaiya,



1980). We summarize the above discussion in Theorem 1,
the proof of which is immediate. From now on we will for
simplicity write ai0 , EiE0|Yi0|.
Theorem 1. (Droop-controlled inverters are Ku-
ramoto oscillators) Consider the parallel microgrid de-
picted in Figure 1. The following two statements are equiv-
alent:

(i) each inverter is controlled according to the frequency-
droop method (5) and the electrical network obeys
the active power flow equations (3);

(ii) the closed-loop system is a network of multi-rate
Kuramoto oscillators described by (6)–(7), with rate
constants Di, natural frequencies P ∗i and coupling
weights ai0.

Remark 2. (Interpretation of frequency-droop con-
troller) There are two insightful ways to interpret the
action of the control law.

(i) Figure 2 suggests the following interpretation; the
controller modifies the phase angle at each inverter
according to whether the nominal power value P ∗i
balances the active power demand Pe,i or not. The
hope is then that the state θ ∈ Tn+1 evolves towards
a stable root of the power flow equations (3). The
method therefore specifies a continuous version of the
Newton-Raphson iteration (c.f. dynamic optimiza-
tion).

(ii) A rearrangement of the droop controller (5) shows
that the controller specifies the total power injection
at each inverter as the sum of a constant power injec-
tion P ∗i and a frequency dependent power injection

−Diθ̇i. It is this frequency-dependent term which
specifies the difference in power between the nom-
inal and necessary power injections. The controller
is therefore a structure preserving controller, in the
sense of Bergen and Hill (1981).

A natural question now arises: under what conditions
on the power injections, network admittances, and droop
coefficients does the closed-loop system (6)–(7) possess a
stable, synchronous solution? The following result provides
a definitive answer and characterizes some important prop-
erties of the solution.

Theorem 3. (Existence and Stability of Sync’d So-
lution) Consider the frequency-droop controlled system
(6)–(7), and define the scaled power imbalance ωavg by

ωavg , (
∑n

i=0 P
∗
i )/(

∑n
i=1Di) ∈ R. The following two

statements are equivalent:

(i) Synchronization: There exists a γ ∈ [0, π/2)
such that the closed-loop system (6)–(7) possess a
locally exponentially stable and unique synchronized
solution t 7→ θ∗(t) ∈ ∆G(γ) for all t ≥ 0;

(ii) Parametric condition:

Γ , max
i∈{1,...,n}

|(P ∗i − ωavgDi)/ai0| < 1. (8)

If the equivalent statements (i) and (ii) hold true, then
the quantities Γ and γ ∈ [0, π/2) are related uniquely via
Γ = sin(γ), and following statements hold:

a) Explicit synchronized solution and frequency:
The synchronized solution satisfies θ∗(t) =

(θ0 + ωsynct1n+1) (mod 2π) for some θ0 ∈ ∆G(γ),
where ωsync = ωavg, and the synchronized angular
differences satisfy sin(θ∗i − θ∗0) = (P ∗i − ωsyncDi)/ai0,
i ∈ {1, . . . , n};

b) Explicit synchronization rate: The local expo-
nential synchronization rate is no worse than

λ ,
λ2(L)

max{D1, . . . , Dn}
√

1− Γ2, (9)

where L is the Laplacian matrix with weights {ai0}ni=1
and node-edge incidence matrix B given by (4).

Remark 4. (Physical interpretation and comments)
Physically, the parametric condition (8) states that the
active power injection at each inverter be feasible. In this
sense, the stability of the overall system decouples into
the stability of individual inverters. In the proof we show
that without loss of generality, we can place ourselves in an
appropriate rotating frame in which the necessary and suf-

ficient condition (ii) reads that maxi∈{1,...,n} |P̃i/ai0| < 1,

for some appropriately defined values P̃i. The existence of
an exponentially stable synchronized solution is therefore
completely independent of the selected droop coefficient
values. Namely, if a synchronized solution exists for one
selection of droop coefficients, a synchronized solution
(albeit different) will exist for any other selection.

Proof. To begin, note that if a solution t 7→ θ(t) to
the system (6)–(7) is frequency synchronized, then by

definition there exists an ωsync ∈ R such that θ̇i(t) = ωsync

for each i ∈ {0, . . . , n} and for all t ≥ 0. Summing
over all equations (6)–(7) then gives that ωsync = ωavg.It
will be convenient for us to rewrite the dynamics (6)–

(7) in vector notation. Letting D , diag(0, D1, . . . , Dn),

P ∗ , (P ∗0 , P
∗
1 , . . . , P

∗
n)T , for i ∈ {1, . . . , n} writing ai0 ,

EiE0|Yi0|, and finally using (4) we obtain in vector form

Dθ̇ = P ∗ −Bdiag({ai0}ni=1)sin(BT θ). (10)

We now present a definition to facilitate the statement of
our stability results. The auxiliary system associated to
the closed-loop frequency-droop system (10) is defined by

Dθ̇ = P̃ −Bdiag({ai0}ni=1)sin(BT θ), (11)

where P̃i = P ∗i − ωsyncDi, i ∈ {1, . . . , n} and P̃0 =
P ∗0 . The auxiliary system has the property that ω̃sync =∑n

i=0 P̃i/
∑n

i=1Di = 0, and represents the dynamics (10)
in a rotating frame of angular frequency ωsync. Thus,
frequency synchronized solutions of (10) correspond to
equilibrium points of the system (11) and vice versa.

Given the Laplacian matrix L = Bdiag({ai0}ni=1)BT of
the network, (11) can be equivalently rewritten in the
insightful form

Dθ̇ = Bdiag({ai0}ni=1) ·
(
BTL†P̃ − sin(BT θ)

)
. (12)

Here we have made use of the facts that L · L† = L† ·
L = In+1− 1

n+11n+11
T
n+1 (follows from the singular value

decomposition (Dörfler and Bullo, 2013)) and 1T
n+1P̃ = 0

(due to power balancing
∑n

i=0 P̃i = 0 in the rotating
frame). For an acyclic graph, it is known (?, Theorem 3.5,
(G1)) that for any γ ∈ [0, π/2), the right-hand side of (12)
admits a unique and locally exponentially stable equilib-



rium θ∗ ∈ ∆G(γ) if and only if ‖BTL†P̃‖∞ ≤ sin(γ) ∗∗ .
For the given (acyclic) star topology, direct calculation

shows that the ith element of the vector BTL†P̃ ∈ Rn

is exactly P̃i/ai0, i.e., the ratio of the power injection at
the ith inverter to the maximum power transfer between
the ith inverter and the load. We therefore have that for
any γ ∈ [0, π/2), the necessary and sufficient condition

‖BTL†P̃‖∞ ≤ sin(γ) becomes Γ , maxi∈{1,...,n} P̃i/ai0 ≤
sin(γ). Since the right-hand side of the condition Γ ≤
sin(γ) is a concave and monotonically increasing function
of γ ∈ [0, π/2), there exists an equilibrium θ∗ ∈ ∆G(γ) for
some γ ∈ [0, π/2) if and only if the condition Γ ≤ sin(γ)
is true with the strict inequality sign for γ = π/2. This
leads immediately to the condition that that Γ < 1, as
claimed. Additionally, if Γ = sin(γ) for some γ ∈ [0, π/2),
then the explicit equilibrium angles are obtained from the

n decoupled equations BTL†P̃ = sin(BT θ∗). In summary,
the above discussion shows (in the original non-rotating co-
ordinates) the equivalence of (i) and (ii) and statement (a).

To show statement (b), we consider the Jacobian matrix of
the dynamics (11) at the exponentially stable fixed point

J(θ∗) = −D−1Bdiag({ai0 cos(θ∗i − θ∗0)}ni=1)BT

= −D−1L(θ∗).

Since θ∗ ∈ ∆G(γ), the matrix L(θ∗) is positive semidef-
inite, with a simple eigenvalue at zero corresponding to
rotational invariance of the dynamics under a uniform shift
of all angles. We will now bound from below the second
smallest eigenvalue of D−1L(θ∗), and thus give a worst
case estimate of the local convergence rate of (11) to the
stable equilibrium θ∗ ∈ ∆G(γ). A simple bound can be
obtained via the Courant-Fischer Theorem, which states
for any real symmetric matrix M ∈ Rn×n that

λmin(M) = min
x∈Rn, x 6=0

xTMx/xTx.

To begin, for x ∈ Rn let y = D
1
2x, and note that

yTD−
1
2L(θ∗)D−

1
2 y/yT y = xTL(θ∗)x/xTDx.

Note that y ∈ Rn is an eigenvector of D−
1
2L(θ∗)D−

1
2 with

eigenvalue µ ∈ R if and only if x = D−
1
2 y is an eigenvector

of D−1L(θ∗) with the same eigenvalue. Letting y ∈ Rn be
an arbitrary nonzero vector in the subspace orthogonal to
1n+1, we have that

λ2(D−1L(θ∗)) = min
y∈Rn

yTD−
1
2L(θ∗)D−

1
2 y/(yT y)

= min
x∈Rn

xTL(θ∗)x

xTDx
≥ min

x∈Rn

xTL(θ∗)x

xTx

1

max{D1, . . . , Dn}
≥ λ2(L(θ∗))/max{D1, . . . , Dn}.

Since θ∗ ∈ ∆G(γ), the eigenvalue λ2(L(θ∗)) can be
further bounded as λ2(L(θ∗)) ≥ λ2(L) cos(γ), where
L = Bdiag({ai0}ni=1)BT is the Laplacian matrix with
weights {ai0}ni=1. Combining this fact with the identity

cos(sin−1(z)) =
√

1− z2 for z ∈ R suffices to show the
result. �
∗∗The stability property proved in ?) applies, strictly speaking, only
to pure ODEs. However, it is well known that a locally exponentially
stable equilibrium θ∗ ∈ ∆G(π/2) of the DAE system (12) with
D0 = 0 has the same local stability properties as the identical
equilibrium θ∗ of the corresponding system of pure ODEs with
D0 > 0, see Sastry and Varaiya (1980).

3.1 Proportional Droop Coefficients and Load Sharing

Theorem 3 gives us a necessary and sufficient condition
for the existence of a synchronized solution to the closed-
loop system (10). However, the result offers no immediate
guidance on how to properly select the droop coefficients.
Indeed, we will see that an improper selection of droop
coefficients can lead to behaviour which, for any choice of
P ∗i ∈ [0, P i], violates the actuation constraint Pe,i ∈ [0, P i]
of Section 2. We now present a definition which charac-
terizes the “proper” way to select the droop coefficients.
We then show that if one selects the droop coefficients in
this manner, the resulting behaviour of the steady-state
power flow satisfies the actuation constraints. The result
also gives a bound on the magnitude of the allowable load
that can be serviced without violating the power injection
constraints.

Definition 5. (Proportional Droop Coefficients) The
droop coefficients are said to be selected proportionally if
for each i, j ∈ {1, . . . , n},

P ∗i /Di = P ∗j /Dj . (13)

Lemma 6. (Power Flow Constraints & Sharing) Con-
sider a synchronized solution the frequency-droop con-
trolled system (6)–(7), and let the droop coefficients be
selected proportionally. The following two statements are
equivalent:

(i) Power flow constraints:

0 ≤ Pe,i ≤ P i, i ∈ {1, . . . , n};
(ii) Load constraints:

−
(

min
i∈{1,...,n}

P i/P
∗
i

)
·
∑n

j=1
P ∗j ≤ P ∗0 ≤ 0 .

Moreover, the inverters share the load P ∗0 proportionally
according to their power ratings (i.e., Pe,i/P i = Pe,j/P j ,

i, j ∈ {1, . . . , n}) if and only if P ∗i = P i for each inverter.

Proof. In synchronous steady state, we have that θ̇i =
ωsync = (P ∗0 +

∑n
i=1 P

∗
i )/(

∑n
i=1Di) for each i ∈ {0, . . . , n}.

Substituting this equality into the closed-loop (6), we
see that the steady-state active power injection at each
inverter is given by Pe,i = ai0 sin(θ∗i − θ∗0) = P ∗i −
ωsyncDi. By imposing for each i ∈ {1, . . . , n} that Pe,i ≥
0, substituting the expression for ωsync, and rearranging
terms, we calculate for each i ∈ {1, . . . , n} that

Pe,i = P ∗i −

(
P ∗0 +

∑n
j=1 P

∗
i∑n

j=1Dj

)
Di ≥ 0

⇐⇒ P ∗0 ≤ −
∑n

j=1

(
P ∗j − P ∗i Dj/Di

)
= 0,

where in the final equality we have made use of the
proportional selection of droop coefficients given by (13).
This suffices to show that 0 ≤ Pe,i for each i ∈ {1, . . . , n}
if and only if P ∗0 ≤ 0. If we now impose that Pe,i ≤ P i

and again use the expression for ωsync along with (13), a
similar calculation to that above gives that

Pe,i ≤ P i ⇐⇒ P ∗0 ≥ −
P i

P ∗i

∑n

j=1
P ∗j , i ∈ {1, . . . , n},

⇐⇒ P ∗0 ≥ −
(

min
i∈{1,...,n}

P i

P ∗i

)∑n

j=1
P ∗j ,



which shows that Pe,i ≤ P i for i ∈ {1, . . . , n} if and only
if P ∗0 satisfies the above inequality. In summary, we have
demonstrated two if and only if inequalities, which when
taken together show the equivalence of (i) and (ii). To
show the final statement, we select each P ∗i to be equal to
P i and note that the fraction of the rated power capacity
consumed by the ith inverter is given by

Pe,i

P i

=
P i − ωsyncDi

P i

=
P j − ωsyncDj

P j

=
Pe,j

P j

,

for each j ∈ {1, . . . , n}, where we have again used (13).
This completes the proof. �

The final statement of Lemma 6 is the frequently cited
coefficient matching condition of the microgrid/droop con-
trol literature. Note in particular that the coefficients
Di must be selected with global knowledge. The droop
method therefore requires a centralized design for power
sharing despite its distributed implementation, and does
not allow for plug-and-play power sharing functional-
ity without the global recomputation of all coefficients.
Lemma 6 holds independent of the voltage magnitudes at
each inverter, and independent of the network susceptance
values.

4. CONCLUSIONS

Leveraging recent results from the theory of coupled os-
cillators and from classical power systems, we have pre-
sented the first nonlinear analysis of the frequency-droop
controller. Works to follow will extend this analysis to
reactive power sharing and to networks with non-zero
transfer conductances.
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