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Abstract

Motivated by the recent and growing interest in smart grid technology, we study the operation of DC/AC inverters in an
inductive microgrid. We show that a network of loads and DC/AC inverters equipped with power-frequency droop controllers
can be cast as a Kuramoto model of phase-coupled oscillators. This novel description, together with results from the theory
of coupled oscillators, allows us to characterize the behavior of the network of inverters and loads. Specifically, we provide a
necessary and sufficient condition for the existence of a synchronized solution that is unique and locally exponentially stable.
We present a selection of controller gains leading to a desirable sharing of power among the inverters, and specify the set
of loads which can be serviced without violating given actuation constraints. Moreover, we propose a distributed integral
controller based on averaging algorithms, which dynamically regulates the system frequency in the presence of a time-varying
load. Remarkably, this distributed-averaging integral controller has the additional property that it preserves the power sharing
properties of the primary droop controller. Our results hold for any acyclic network topology, and hold without assumptions
on identical line admittances or voltage magnitudes.

Key words: inverters; power-system control, smart power applications, synchronization, coupled oscillators, Kuramoto
model, distributed control.

1 Introduction

A microgrid is a low-voltage electrical network, hetero-
geneously composed of distributed generation, storage,
load, and managed autonomously from the larger pri-
mary network. Microgrids are able to connect to the
wide area electric power system (WAEPS) through a
Point of Common Coupling (PCC), but are also able to
“island” themselves and operate independently. Energy
generation within a microgrid can be highly heteroge-
neous, and many typical sources generate either vari-
able frequency AC power (wind) or DC power (solar).
To interface with a synchronous AC micro grid, these
sources are connected via power electronic devices called
DC/AC (or AC/AC) power converters, or simply invert-
ers. In islanded operation, inverters are operated as volt-
age sourced inverters (VSIs), which act much like ideal
voltage sources. It is through these VSIs that control ac-
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Fig. 1. Schematic of inverters operating in parallel.

tions must be taken to ensure synchronization, security,
power balance and load sharing in the network.

Literature Review: A key topic of interest within the
microgrid community is that of accurately sharing both
active and reactive power among a bank of inverters op-
erated in parallel. Such a network is depicted in Figure
1, in which each inverter transmits power directly to
a common load. Although several control architectures
have been proposed to solve this problem, the so-called
“droop” controllers have attracted the most attention,
as they are ostensibly decentralized. The original refer-
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Fig. 2. Mechanical analog of a Kuramoto oscillator network.
The particles have no inertia and do not collide with another.

ence for this methodology is [6], where Chandorkar et. al.
introduce what we will refer to as the conventional droop
controller. For inductive lines, the conventional droop
controller attempts to emulate the behavior of a classical
synchronous generator by imposing an inverse relation at
each inverter between frequency and active power injec-
tion [18]. Under other network conditions, the controller
takes different forms [16,32,34]. Some representative ref-
erences for the basic methodology are [29,2,21,22,20] and
[17]. Small-signal stability analyses for two inverters op-
erating in parallel are presented under various assump-
tions in [10,11,23,25] and the references therein. The re-
cent work [33] highlights some drawbacks of the con-
ventional droop controller. Distributed controllers based
on tools from synchronous generator theory and multi-
agent systems have also been proposed for synchroniza-
tion and power sharing. See [26,27] for a broad overview,
and [34,?,4,31] for various works.

Another set of literature relevant to our investigation
is that pertaining to synchronization of phase-coupled
oscillators, in particular the classic and celebrated Ku-
ramoto model. A generalization of this model considers
n ≥ 2 coupled oscillators, each represented by a phase
θi ∈ S1 (the unit circle) and a natural frequency Ωi ∈ R.
The system of coupled oscillators obeys the dynamics

Diθ̇i = Ωi−
∑n

j=1
aij sin(θi−θj) , i ∈ {1, . . . , n} , (1)

where aij ≥ 0 is the coupling strength between the os-
cillators i and j and Di is the time constant of the ith

oscillator. Figure 2 shows a mechanical analog of (1),
in which the oscillators can be visualized as a group of
n kinematic particles, constrained to rotate around the
unit circle. The particles rotate with preferred directions
and speeds specified by the natural frequencies Ωi, and
are connected together by elastic springs of stiffness aij .
The rich dynamic behavior of the system (1) arises from
the competition between the tendency of each oscilla-
tor to align with its natural frequency Ωi, and the syn-
chronization enforcing coupling aij sin(θi − θj) with its
neighbors. We refer to the recent surveys [1,28,12] for
applications and theoretic results.

The Frequency-Droop Controller: The frequency-
droop controller constitutes one half of the conventional
droop control strategy, with the other half concerning
the interplay between reactive power and voltage mag-
nitudes (see Sections 6-7). For inductive lines, the con-
troller balances the active power demand in the network
by instantaneously changing the frequency ωi of the volt-
age signal at the ith inverter according to

ωi = ω∗ − ni(Pe,i − P ∗i ) , (2)

where ω∗ is a rated frequency, Pe,i is the active electrical
power injection at inverter i, and P ∗i is the inverters
nominal active power injection. The controller gain ni >
0 is referred to as the droop coefficient.

Limitations of the Literature: Despite forming the
foundation for the operation of parallel VSIs, the
frequency-droop control law (2) has never been subject
to a nonlinear analysis [33]. No conditions have been
presented under which the controller (2) leads the net-
work to a synchronous steady state, nor have any state-
ments been made about the convergence rate to such a
steady state should one exist. Stability results that are
presented rely on linearization for the special case of
two inverters, and sometimes come packaged with extra-
neous assumptions [22,17]. No guarantees are given in
terms of performance. Schemes for power sharing based
on ideas from multi-agent systems often deal directly
with coordinating the real and reactive power injections
of the distributed generators, and assume implicitly that
a low level controller is bridging the gap between the
true network physics and the desired power injections.
Moreover, conventional schemes for frequency restora-
tion typically rely on a combination of local integral ac-
tion and separation of time scales, and are generally un-
able to maintain an appropriate sharing of power among
the inverters (see Sections 4–5).

Contributions: The contributions of this paper are
four-fold. First, we begin with our key observation
that the equations governing a microgrid under the
frequency-droop controller can be equivalently cast as a
generalized Kuramoto model of the form (1). We present
a necessary and sufficient condition for the existence of
a locally exponentially stable and unique synchronized
solution of the closed-loop, and provide a lower bound
on the exponential convergence rate to the unique syn-
chronized solution. We also state a robustified version of
our stability condition which relaxes the assumption of
fixed voltage magnitudes and admittances. Second, we
show rigorously — and without assumptions on large
output impedances or identical voltage magnitudes —
that if the droop coefficients are selected proportionally,
then power is shared among the units proportionally. We
provide explicit bounds on the set of serviceable loads.
Third, we propose a distributed “secondary” integral
controller for frequency stabilization. Through the use
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of a distributed-averaging algorithm, the proposed con-
troller dynamically regulates the network frequency to a
nominal value, while preserving the proportional power
sharing properties of the frequency-droop controller. We
show that this controller is locally stabilizing, without
relying on the classic assumption of a time-scale sepa-
ration between the primary (droop) and secondary (in-
tegral) control loops. Fourth and finally, all results pre-
sented extend past the classic case of a parallel topology
of inverters and hold for generic acyclic interconnections
of inverters and loads.

Paper Organization: The remainder of this section
introduces some notation and reviews some fundamen-
tal material from algebraic graph theory, power systems
and coupled oscillator theory. In Section 2 we motivate
the mathematical models used throughout the rest of
the work. In Section 3 we perform a nonlinear stability
analysis of the frequency-droop controller. Section 4 de-
tails results on power sharing and steady state bounds
on power injections. In Section 5 we present and ana-
lyze our distributed-averaging integral controller, while
Section 6 presents simulations illustrating our results.
Finally, Section 7 concludes the paper and presents di-
rections for future work.

Preliminaries and Notation:
Sets, vectors and functions: Given a finite set V, let
|V| denote its cardinality. Given an index set I and
a real valued 1D-array {x1, . . . , x|I|}, diag({xi}i∈I) ∈
R|I|×|I| is the associated diagonal matrix. We denote
the n × n identity matrix by In. Let 1n and 0n be
the n-dimensional vectors of all ones and all zeros. For
z ∈ Rn, define z⊥ , {x ∈ Rn | zTx = 0} and

sin(z) , (sin(z1), . . . , sin(zn))T ∈ Rn.

Algebraic graph theory: We denote by G(V, E , A) an
undirected and weighted graph, where V is the set of
nodes, E ⊆ V ×V is the set of edges, and A ∈ R|V|×|V| is
the adjacency matrix. If a number ` ∈ {1, . . . , |E|} and
an arbitrary direction is assigned to each edge {i, j} ∈ E ,
the node-edge incidence matrix B ∈ R|V|×|E| is defined
component-wise as Bk` = 1 if node k is the sink node of
edge ` and as Bk` = −1 if node k is the source node of
edge `, with all other elements being zero. For x ∈ R|V|,
BTx ∈ R|E| is the vector with components xi− xj , with

{i, j} ∈ E . If diag({aij}{i,j}∈E) ∈ R|E|×|E| is the diagonal
matrix of edge weights, then the Laplacian matrix is
given by L = Bdiag({aij}{i,j}∈E)BT . If the graph is

connected, then ker(BT ) = ker(L) = span(1|V|), and
ker(B) = ∅ for acyclic graphs. In this case, for every x ∈
1⊥|V|, that is,

∑
i∈V xi = 0, there exists a unique ξ ∈ R|E|

satisfying Kirchoff’s Current Law (KCL) x = Bξ [3,9].
The vector x is interpreted as nodal injections, with ξ
being the associated edge flows. The Laplacian matrix
L is positive semidefinite with eigenvalues 0 = λ1(L) <
λ2(L) ≤ · · · ≤ λ|V|(L). We denote the Moore-Penrose

inverse of L by L†, and we recall from [13] the identity
LL† = L†L = I|V| − 1

|V|1|V|1
T
|V|.

Geometry on the n-torus: The set S1 denotes the unit
circle, an angle is a point θ ∈ S1, and an arc is a con-
nected subset of S1. With a slight abuse of notation,
let |θ1 − θ2| denote the geodesic distance between two
angles θ1, θ2 ∈ S1. The n-torus Tn = S1 × · · · × S1 is
the Cartesian product of n unit circles. For γ ∈ [0, π/2[
and a given graph G(V, E , ·), let ∆G(γ) = {θ ∈ T|V| :
max{i,j}∈E |θi − θj | ≤ γ} be the closed set of angle ar-
rays θ = (θ1, . . . , θn) with neighboring angles θi and θj ,
{i, j} ∈ E no further than γ apart.

Synchronization: Consider the first order phase-coupled
oscillator model (1) defined on a graph G(V, E , ·). A so-
lution θ : R≥0 → T|V| of (1) is said to be synchronized if
(a) there exists a constant ωsync ∈ R such that for each

t ≥ 0, θ̇(t) = ωsync1|V| and (b) there exists a γ ∈ [0, π/2[
such that θ(t) ∈ ∆G(γ) for each t ≥ 0.

AC Power Flow: Consider a synchronous AC electrical
network with n nodes, purely inductive admittance ma-
trix Y ∈ jRn×n, nodal voltage magnitudes Ei > 0, and
nodal voltage phase angles θi ∈ S1. The active electri-
cal power Pe,i ∈ R injected into the network at node
i ∈ {1, . . . , n} is given by [18]

Pe,i =
∑n

j=1
EiEj |Yij | sin(θi − θj) . (3)

2 Problem Setup for Microgrid Analysis

Inverter Modeling: The standard approximation in the
microgrid literature—and the one we adopt hereafter—
is to model an inverter as a controlled voltage source
behind a reactance. This model is widely adopted among
experimentalists in the microgrid field. Further modeling
explanation can be found in [15,34,30] and the references
therein.

Islanded Microgrid Modeling: Figure 3 depicts an is-
landed microgrid containing both inverters and loads.
Such an interconnection could arise by design, or spon-
taneously in a distribution network after an islanding
event. An appropriate model for the microgrid is that
of a weighted graph G(V, E , A) with |V| = n nodes.
We consider the case of inductive lines, and denote by
Y ∈ jRn×n the bus admittance matrix of the network. ∗

We partition the set of nodes as V = {VL,VI}, corre-
sponding to loads and inverters. For {i, j} ∈ E , Yij is the

∗ In some applications the inverter output impedance can
be controlled to be highly inductive and dominate over any
resistive effects in the network [16]. In others, the control
law (2) is inappropriate; see [16,32,34] and Section 7.
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Fig. 3. Schematic illustration of a microgrid, with four in-
verters (nodes VI) supplying six loads (nodes VL) through
an acyclic interconnection. The dotted lines between invert-
ers represent communication links, which will be used exclu-
sively in Section 5.

admittance of the branch between nodes i and j. The
output impedance of the inverter can be controlled to be
purely susceptive, and we absorb its value into the line
susceptances −Im(Yij) < 0, {i, j} ∈ E . To each node
i ∈ {1, . . . , n} we assign a harmonic voltage signal of the
form Ei(t) = Ei cos(ω∗t+ θi), where ω∗ > 0 is the nom-
inal angular frequency, Ei > 0 is the voltage amplitude,
and θi ∈ S1 is the voltage phase angle. We assume each
inverter has precise measurements of its rolling time-
averaged active power injection Pe,i(t) and of its fre-
quency ωi(t), see [15,34] for details regarding this esti-
mation. The active power injection of each inverter into
the network is restricted to the interval [0, P i] where P i
is the rating of inverter i ∈ VI . For the special case of a
parallel interconnection of inverters, as in Figure 1, we
will label the nodes as VL = {0} and VI = {1, . . . , n−1}.

3 Analysis of Frequency-Droop Control

We now connect the frequency-droop controller (2) to
a network of first-order phase-coupled oscillators of the
form (1). We restrict our attention to active power flows,
and for the moment assume that the voltage magnitudes
Ei are fixed at every bus. To begin, note that by defining
Di , n−1i and by writing ωi = ω∗ + θ̇i, we can equiva-
lently write the frequency-droop controller (2) as

Diθ̇i = P ∗i − Pe,i , i ∈ VI , (4)

where P ∗i ∈ [0, P i] is a selected nominal value. † Note

that θ̇i is the deviation of the frequency at inverter i
from the nominal frequency ω∗. Using the active load
flow equations (3), the droop controller (4) becomes

Diθ̇i = P ∗i −
∑n

j=1
EiEj |Yij | sin(θi−θj) , i ∈ VI . (5)

† We make no assumptions regarding the selection of droop
coefficients. See Section 4 for more on choice of coefficients.

For a constant power loads {P ∗i }i∈VL we must also satisfy
the |VL| power balance equations

0 = P ∗i −
∑n

j=1
EiEj |Yij | sin(θi − θj) , i ∈ VL . (6)

If due to failure or energy shortage an inverter i ∈ VI is
unable to supply power support to the network, we for-
mally set Di = P ∗i = 0, which reduces (5) to a load as in
(6). If the droop-controlled system (5)–(6) achieves syn-
chronization, then we can — without loss of generality
— transform our coordinates to a rotating frame of ref-
erence, where the synchronization frequency is zero and
the study of synchronization reduces to the study of equi-
libria. In this case, it is known that the equilibrium point
of interest for the differential-algebraic system (5)–(6)
shares the same stability properties as the same equilib-
rium of the corresponding singularly perturbed system
[7, Theorem 13.1], where the constant power loads P ∗i
are replaced by frequency-dependent loads P ∗i − Diθ̇i,
for i ∈ VL and for some sufficiently small Di > 0. We
can now identify a singularly perturbed droop-controlled
system of the form (5)–(6) with a network of generalized
Kuramoto oscillators described by (1) and arrive at the
following insightful relation.

Lemma 1 (Equivalence of Perturbed Droop-
Controlled System and Kuramoto Model). The
following two models are equivalent:

(i) The singularly perturbed droop-controlled network

(5)–(6), with frequency-dependent loads P ∗i −Diθ̇i
with Di > 0 instead of constant power loads P ∗i ∈ R
(i ∈ VL), droop coefficients ni = 1/Di > 0, nominal
power injections P ∗i ∈ R (i ∈ VI), nodal voltage
phases θi ∈ S1, nodal voltages magnitudes Ei > 0,
and bus admittance matrix Y ∈ jRn×n;

(ii) The generalized Kuramoto model (1), with time con-
stants Di > 0, natural frequencies Ωi ∈ R, phase
angles θi ∈ S1 and coupling weights aij > 0.

Moreover, the parametric quantities of the two models
are related via P ∗i = Ωi and EiEj |Yij | = aij.

In light of Lemma 1 and for notational simplicity, we
define the matrix of time constants (inverse droop coef-

ficients) D , diag(0|VL|, {Di}i∈VI ), the vector of loads

and nominal power injections P ∗ , (P ∗1 , . . . , P
∗
n)T , and

for {i, j} ∈ E we write aij , EiEj |Yij |. The drop-
controlled system (5)–(6) then reads in vector nota-
tion as

Dθ̇ = P ∗ −Bdiag({aij}{i,j}∈E)sin(BT θ) , (7)

where θ , (θ1, . . . , θn)T andB ∈ Rn×|E| is the node-edge
incidence matrix of the underlying graph G(V, E , A).
A natural question now arises: under what conditions
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on the power injections, network topology, admittances,
and droop coefficients does the differential-algebraic
closed-loop system (5)–(6) possess a stable, synchronous
solution?

Theorem 2 (Existence and Stability of Sync’d So-
lution). Consider the frequency-droop controlled system
(5)–(6) defined on an acyclic network with node-edge in-
cidence matrixB. Define the scaled power imbalance ωavg

by ωavg , (
∑n
i=1 P

∗
i )/(

∑
i∈VI Di) ∈ R, and let ξ ∈ R|E|

be the unique vector of edge power flows satisfying KCL,
given implicitly by P ∗ − ωavgD1n = Bξ. The following
two statements are equivalent:

(i) Synchronization: There exists an arc length γ ∈
[0, π/2[ such that the closed-loop system (5)–(6) pos-
sess a locally exponentially stable and unique syn-
chronized solution t 7→ θ∗(t) ∈ ∆G(γ) for all t ≥ 0;

(ii) Flow Feasibility: The power flow is feasible, i.e.,

Γ , ‖diag({aij}{i,j}∈E)−1ξ‖∞ < 1 . (8)

If the equivalent statements (i) and (ii) hold true, then the
quantities Γ ∈ [0, 1[ and γ ∈ [0, π/2[ are related uniquely
via Γ = sin(γ), and the following statements hold:

a) Explicit Synchronized Solution: The synchro-
nized solution satisfies θ∗(t) = θ0 + (ωsynct1n)
(mod 2π) for some θ0 ∈ ∆G(γ), where ωsync =
ωavg, and the synchronized angular differences sat-
isfy sin(BT θ∗) = diag({aij}{i,j}∈E)−1ξ;

b) Explicit Synchronization Rate: The local ex-
ponential synchronization rate is no worse than

λ ,
λ2(L)

maxi∈VI Di

√
1− Γ2 , (9)

where L = Bdiag({aij}{i,j}∈E)BT is the Laplacian
matrix of the network with weights {aij}{i,j}∈E .

Remark 3 (Physical Interpretation) From the
droop controller (4), it holds that P ∗−ωsyncD1n ∈ 1⊥n is
the vector of steady state power injections. The power in-
jections therefore satisfy the Kirchoff Current Law, and
ξ ∈ R|E| is the associated vector of power flows along
edges [9]. Physically, the parametric condition (8) there-
fore states that the active power flow along each edge
be feasible, i.e., less than the physical maximum aij =
EiEj |Yij |. While the necessity of this condition seems
plausible, its sufficiency is perhaps surprising. Theorem
2 shows that equilibrium power flows are invariant under
constant scaling of all droop coefficients, as overall scal-
ing of D appears inversely in ωavg. Although grid stress
varies with specific application and loading, the condition
(8) is typically satisfied with a large margin of safety – a
practical upper bound for γ would be 10◦.

PROOF. To begin, note that if a solution t 7→ θ(t)
to the system (7) is frequency synchronized, then by

definition there exists an ωsync ∈ R such that θ̇(t) =
ωsync1n for all t ≥ 0. Summing over all equations (5)–
(6) gives ωsync = ωavg. Without loss of generality, we
can consider the auxiliary system associated with (7)
defined by

Dθ̇ = P̃ −Bdiag({aij}{i,j}∈E)sin(BT θ) , (10)

where P̃i = P ∗i for i ∈ VL and P̃i = P ∗i − ωavgDi for

i ∈ VI . Since P̃ ∈ 1⊥n , system (10) has the property that
ω̃avg = 0 and represents the dynamics (7) in a reference
frame rotating at an angular frequency ωavg. Thus, fre-
quency synchronized solutions of (7) correspond one-to-
one with equilibrium points of the system (10). Given
the Laplacian matrix L = Bdiag({aij}{i,j}∈E)BT , (10)
can be equivalently rewritten in the insightful form

Dθ̇ = Bdiag({aij}{i,j}∈E)·
(
BTL†P̃−sin(BT θ)

)
. (11)

Here, we have made use of the facts that

LL† = L†L = In − 1
n1n1Tn and P̃ ∈ 1⊥n .

Since ker(B) = ∅, equilibria of (11) must satisfy

BTL†P̃ = BTL†Bξ = sin(BT θ). We claim that
BTL†B = diag({aij}{i,j}∈E)−1. To see this, define

X , BTL†B and notice that Xdiag({aij}{i,j}∈E)BT =

BTL†(Bdiag({aij}{i,j}∈E)BT ) = BTL†L = BT .
Since ker(B) = ∅, it therefore holds that
Xdiag({aij}{i,j}∈E) = I|E| and the result follows.
Hence, equilibria of (11) satisfy

diag({aij}{i,j}∈E)−1ξ = sin(BT θ) . (12)

Equation (12) is uniquely solvable for θ∗ ∈ ∆(γ), γ ∈
[0, π/2[, if and only if Γ , max{i,j}∈E(ξij/aij) ≤ sin(γ).
Since the right-hand side of the condition Γ ≤ sin(γ)
is a concave and monotonically increasing function of
γ ∈ [0, π/2[, there exists an equilibrium θ∗ ∈ ∆G(γ) for
some γ ∈ [0, π/2[ if and only if the condition Γ ≤ sin(γ)
is true with the strict inequality sign for γ = π/2. This
leads immediately to the claimed condition Γ < 1. In
this case, the explicit equilibrium angles are then ob-
tained from the n decoupled equations (12). See [14, The-
orems 1, 2(G1)] for additional information. Local expo-
nential stability of the equilibrium θ∗ ∈ ∆(γ) is estab-
lished by recalling the equivalence between the index-
1 differential-algebraic system (11) and an associated
reduced set of pure differential equations (see also the
proof of (b)). In summary, the above discussion shows
the equivalence of (i) and (ii) and statement (a).
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To show statement (b), consider the linearization of the
dynamics (10) about the equilibrium θ∗ ∈ ∆(γ) given by

d

dt

[
0|VL|

∆θI

]
= −

[
I|VL| 0

0 D−1I

][
LLL LLI

LIL LII

][
∆θL

∆θI

]
,

where we have partitioned the matrix L(θ∗) =
Bdiag({aij cos(θ∗i − θ∗j )}{i,j}∈E)BT according to load

nodes VL and inverter nodes VI , and defined DI ,
diag({Di}i∈VI ). Since θ∗ ∈ ∆G(γ), the matrix L(θ∗) is
a Laplacian and thus positive semidefinite with a sim-
ple eigenvalue at zero corresponding to rotational invari-
ance of the dynamics under a uniform shift of all an-
gles. It can be easily verified that the upper left block
LLL of L(θ∗) is nonsingular [13], or equivalently that
θ∗ is a regular equilibrium point. Solving the set of |VL|
algebraic equations and substituting into the dynam-
ics for ∆θI , we obtain d(∆θI)/dt = −D−1I Lred(θ∗)∆θI ,

where Lred , LII −LILL−1LLLLI . The matrix Lred(θ∗) ∈
R|VI |×|VI | is also a Laplacian matrix, and therefore
shares the same properties as L(θ∗) [13]. Thus, it is
the second smallest eigenvalue of D−1I Lred(θ∗) which
bounds the convergence rate of the linearization, and
hence the local convergence rate of the dynamics (10).
A simple bound on λ2(D−1I Lred(θ∗)) can be obtained

via the Courant-Fischer Theorem [24]. For x ∈ 1⊥|VI |,

let y = D
1/2
I x, and note that xTLred(θ∗)x/(xTDIx) =

yTD
−1/2
I Lred(θ∗)D

−1/2
I y/(yTy). Thus, y ∈ (D

−1/2
I 1|VI |)

⊥

is an eigenvector of D
−1/2
I Lred(θ∗)D

−1/2
I with eigen-

value µ ∈ R if and only if x = D
−1/2
I y is an eigenvector of

D−1I Lred(θ∗) with eigenvalue µ. For y 6= 0|VI |, we obtain

λ2(D−1I Lred(θ∗)) = min
y∈(D−1/2

I
1|VI |)

⊥

yTD
− 1

2

I Lred(θ∗)D
− 1

2

I y

yT y

= min
x∈1⊥|VI |

xTLred(θ∗)x

xTDIx
≥ 1

maxi∈VI Di
min

x∈1⊥|VI |

xTLred(θ∗)x

xTx

≥ λ2(Lred(θ∗))

maxi∈VI Di
≥ λ2(L(θ∗))

maxi∈VI Di
,

where we have made use of the spectral interlacing
property of Schur complements [13] in the final in-
equality. Since θ∗ ∈ ∆G(γ), the eigenvalue λ2(L(θ∗))
can be further bounded as λ2(L(θ∗)) ≥ λ2(L) cos(γ),
where L = Bdiag({aij}{i,j}∈E)BT is the Laplacian
with weights {aij}{i,j}∈E . This fact and the identity

cos(γ) = cos(sin−1(Γ)) =
√

1− Γ2 complete the proof.
�

An analogous stability result for inverters operating in
parallel now follows as a corollary.

Corollary 4 (Existence and Stability of Sync’d
Solution for Parallel Inverters). Consider a parallel
interconnection of inverters, as depicted in Figure 1. The
following two statements are equivalent:

(i) Synchronization: There exists an arc length γ ∈
[0, π/2[ such that the closed-loop system (7) possess
a locally exponentially stable and unique synchro-
nized solution t 7→ θ∗(t) ∈ ∆G(γ) for all t ≥ 0;

(ii) Power Injection Feasibility:

Γ , max
i∈VI
|(P ∗i − ωavgDi)/ai0| < 1 . (13)

PROOF. For the parallel topology of Figure 1 there
is one load fed by n − 1 inverters, and the incidence
matrix of the graph G(V, E , A) takes the form B =

[−1n−1 In−1]
T

. Letting P̃ be as in the previous proof,

we note that ξ is given uniquely as ξ = (BTB)−1BT P̃ .
In this case, a set of straightforward but tedious matrix
calculations reduce condition (8) to condition (13). �

Our analysis so far has been based on the assumption
that each term aij , EiEj |Yij | is a constant and known
parameter for all {i, j} ∈ E . In a realistic power system,
both effective line admittance magnitudes and voltage
magnitudes are dynamically adjusted by additional con-
trollers. The following result states that as long as these
controllers can regulate the effective admittances and
nodal voltages above prespecified lower bounds |Yij | and

Ej , the stability results of Theorem 2 go through with

little modification.

Corollary 5 (Robustified Stability Condition).
Consider the frequency-droop controlled system (5)–(6).
Assume that the nodal voltage magnitudes satisfy Ei ≥
Ei > 0 for all i ∈ {1, . . . , n}, and that the line sus-
ceptance magnitudes satisfy |Yij | ≥ |Yij | > 0 for all

{i, j} ∈ E. For {i, j} ∈ E, define aij , EiEj |Yij |. The

following two statements are equivalent:

(i) Robust Synchronization: For all possible volt-
age magnitudes Ei ≥ Ei and line susceptance mag-
nitudes |Yij | ≥ |Yij |, there exists an arc length

γ ∈ [0, π/2[ such that the closed-loop system (5)–
(6) possess a locally exponentially stable and unique
synchronized solution t 7→ θ∗(t) ∈ ∆G(γ) for all
t ≥ 0;

(ii) Worst Case Flow Feasibility: The active power
flow is feasible for the worst case voltage and line
admittance magnitudes, that is,

‖diag({aij}{i,j}∈E)−1ξ‖∞ < 1 . (14)
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PROOF. The result follows by noting that aij (resp.
aij) appears exclusively in the denominator of (8) (resp.

(14)), and that the vector ξ ∈ R|E| defined in Theorem 2
does not depend on the voltages or line admittances. �

Finally, regarding the assumption of purely inductive
lines, we note that since the eigenvalues of a matrix are
continuous functions of its entries, the exponential sta-
bility property established in Theorem 2 is robust, and
the stable synchronous solution persists in the presence
of sufficiently small line conductances [8]. This robust-
ness towards lossy lines is also illustrated in the simula-
tion study of Section 6.

4 Power Sharing and Actuation Constraints

While Theorem 2 gives the necessary and sufficient con-
dition for the existence of a synchronized solution to the
closed-loop system (5)–(6), it offers no immediate guid-
ance on how to select the control parameters P ∗i and Di

to satisfy the actuation constraint Pe,i ∈ [0, P i]. The fol-
lowing definition gives the proper criteria for selection.

Definition 6 (Proportional Droop Coefficients).
The droop coefficients are selected proportionally if
P ∗i /Di = P ∗j /Dj and P ∗i /P i = P ∗j /P j for all i, j ∈ VI .

Theorem 7 (Power Flow Constraints and Power
Sharing). Consider a synchronized solution of the
frequency-droop controlled system (5)–(6), and let the
droop coefficients be selected proportionally. Define the
total load PL ,

∑
i∈VL P

∗
i . The following two statements

are equivalent:

(i) Injection Constraints: 0 ≤ Pe,i ≤ P i, ∀i ∈ VI ;

(ii) Load Constraint: −
∑
j∈VI P j ≤ PL ≤ 0 .

Moreover, the inverters share the total load PL pro-
portionally according to their power ratings, that is,
Pe,i/P i = Pe,j/P j, for each i, j ∈ VI .

PROOF. From (4), the steady state active power in-
jection at each inverter is given by Pe,i = P ∗i − ωsyncDi.
By imposing Pe,i ≥ 0 for each i ∈ VI , substituting the
expression for ωsync from Theorem 2, and rearranging
terms, we obtain, for each i ∈ VI ,

Pe,i = P ∗i −

(
PL +

∑
j∈VI P

∗
j∑

j∈VI Dj

)
Di ≥ 0

⇐⇒ PL ≤ −
∑
j∈VI

(
P ∗j −

P ∗i
Di

Dj

)
= 0 ,

where in the final equality we have used Definition 6.
Along with the observation that Pe,i ≥ 0 if and only if
Pe,j ≥ 0 (i, j ∈ VI), this suffices to show that 0 ≤ Pe,i for
each i ∈ VI if and only if PL ≤ 0. If we now impose for
i ∈ VI that Pe,i ≤ P i and again use the expression for
ωsync along with Definition 6, a similar calculation yields

Pe,i ≤ P i ⇐⇒ PL ≥ −
P i
P ∗i

∑
j∈VI

P ∗j = −
∑

j∈VI
P j .

Along with the observation that Pe,i ≤ P i if and only if

Pe,j ≤ P j (i, j ∈ VI), this shows that Pe,i ≤ P i for each
i ∈ VI if and only if the total load PL satisfies the above
inequality. In summary, we have demonstrated two if
and only if inequalities, which when taken together show
the equivalence of (i) and (ii). To show the final state-
ment, note that the fraction of the rated power capacity
injected by the ith inverter is given by

Pe,i

P i
=
P ∗i − ωsyncDi

P i
=
P ∗j − ωsyncDj

P j
=
Pe,j

P j
,

for each j ∈ VI . This completes the proof. �

Power sharing results for parallel inverters supplying
a single load follow as a corollary of Theorem 7, with
PL = P ∗0 . Note that the coefficients Di must be selected
with global knowledge. The frequency-droop controller
therefore requires a centralized design for power shar-
ing despite its decentralized implementation. We remark
that Theorem 7 holds independently of the network volt-
age magnitudes and line admittances.

5 Distributed PI Control in Microgrids

As is evident from the expression for ωsync in Theorem 2,
the frequency-droop controller typically leads to a devi-
ation of the steady state operating frequency ω∗+ωsync

from the nominal value ω∗. Again in light of Theorem 2,
it is clear that modifying the nominal active power in-
jection P ∗i via the transformation P ∗i −→ P ∗i − ωsyncDi

(for i ∈ VI) in the controller (5) will yield zero steady
state frequency deviation (c.f. the auxiliary system (10)
with ω̃sync = 0). Unfortunately, the information to cal-
culate ωsync is not available locally at each inverter. As
originally proposed in [6], after the frequency of each
inverter has converged to ωsync, a slower, “secondary”
control loop can be used locally at each inverter. Each
local secondary controller slowly modifies the nominal
power injection P ∗i until the network frequency devia-
tion is zero. This procedure implicitly assumes that the
measured frequency value θ̇i(t) is a good approximation
of ωsync, and relies on a separation of time-scales be-
tween the fast, synchronization-enforcing primary droop
controller and the slower secondary integral controller.
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Fig. 4. Feedback diagram for the DAPI controller. Taken by
itself, the upper control loop is the droop controller (4).

This methodology is employed in [6,19,17]. For large
droop coefficients Di, this approach can be particularly
slow (Theorem 2 (b)), with this slow response leading
to an inability of the controller to dynamically regulate
the network frequency in the presence of a time-varying
load. Moreover, these decentralized integral controllers
destroy the power sharing properties established by the
primary droop controller.

In what follows, we pursue an alternative scheme for
frequency restoration which does not implicitly rely on
a separation of time-scales as in [6,19,17]. Assuming
the existence of a communication network among the
inverters, we expand on the conventional frequency-
droop design (2) and propose the distributed-averaging
proportional-integral (DAPI) controller

Diθ̇i = P ∗i − pi − Pe,i , i ∈ VI , (15)

kiṗi = Diθ̇i −
∑
j∈VI

Lc,ij

(
pi
Di
− pj
Dj

)
, i ∈ VI , (16)

where pi ∈ R is an auxiliary power variable and
ki > 0 is a gain, for each i ∈ VI . ‡ The matrix
Lc ∈ R|VI |×|VI | is the Laplacian matrix corresponding
to a weighted, undirected and connected communication
graph Gc(VI , Ec, Ac) between the inverters, see Figure 3.
The DAPI controller (15)–(16) is depicted in Figure 4,
and will be shown to have the following two key proper-
ties. First of all, the controller is able to quickly regulate
the network frequency under large and rapid variations
in load. Secondly, the controller accomplishes this regu-
lation while preserving the power sharing properties of
the primary frequency-droop controller (4).

The closed-loop dynamics resulting from the DAPI con-

‡ The presented results extend to discrete time and asyn-
chronous communication, see [5].

troller (15)–(16) are given by

0 = P ∗i −
∑n

j=1
aij sin(θi − θj) , i ∈ VL , (17)

Diθ̇i = P ∗i − pi −
∑n

j=1
aij sin(θi − θj) , i ∈ VI , (18)

kiṗi = P ∗i − pi −
∑n

j=1
aij sin(θi − θj)

−
∑

j∈VI
Lc,ij

(
pi
Di
− pj
Dj

)
, i ∈ VI . (19)

The following result (see Appendix A for the proof)
establishes local stability of the desired equilibrium of
(17)–(19) as well as the power sharing properties of the
DAPI controller.

Theorem 8 (Stability of DAPI-Controlled Net-
work). Consider an acyclic network of droop-controlled
inverters and loads in which the inverters can commu-
nicate through the weighted graph Gc, as described by
the closed-loop system (17)–(19) with parameters P ∗i ∈
[0, P i], Di > 0 and ki > 0 for i ∈ VI , and connected com-
munication Laplacian Lc ∈ R|VI |×|VI |. The following two
statements are equivalent:

(i) Stability of Droop Controller: The droop con-
trol stability condition (8) holds;

(ii) Stability of DAPI Controller: There exists an
arc length γ ∈ [0, π/2[ such that the system (18)–
(19) possess a locally exponentially stable and unique
equilibrium

(
θ∗, p∗

)
∈ ∆G(γ)× R|VI |.

If the equivalent statements (i) and (ii) hold true, then
the unique equilibrium is given as in Theorem 2 (ii),
along with p∗i = Diωavg for i ∈ VI . Moreover, if the
droop coefficients are selected proportionally, then the
DAPI controller preserves the proportional power sharing
property of the primary droop controller.

Note that Theorem 8 asserts the exponential stability of
an equilibrium of the closed-loop (17)–(19), and hence,
a synchronization frequency ωsync of zero. The network
therefore synchronizes to the nominal frequency ω∗.

6 Simulation Study

We now illustrate the performance of our proposed DAPI
controller (15)–(16) and its robustness to unmodeled
voltage dynamics (see Corollary 5) and lossy lines in a
simulation scenario. We consider two inverters operat-
ing in parallel and supplying a variable load. The voltage
magnitude at each inverter is controlled via the voltage-
droop controller [34]

Ei = E∗i −mi (Qe,i −Q∗i ) , i ∈ {1, 2} , (20)
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Fig. 5. DAPI controlled closed-loop (17)–(19) for two invert-
ers supplying a load which changes at t ∈ {2s, 4s}.

Table 1
Parameter values for simulation in Figure 5. The choice of re-
sistances corresponds to a resistance/reactance ratio of 1/2.

Parameter Symbol Value

Nom. Frequency ω∗/2π 60 Hz
Nom. Voltages E∗i [120, 122] V
Output/Line Induc. Li [0.7, 0.5] mH
Output/Line Resist. Ri [0.14, 0.1] Ω
Inv. Ratings (P ) P ∗i = P i [2, 3] kW
Inv. Ratings (Q) Q∗i [1, 1] kvar
Load (P ) P ∗0 (t) P ∗0 ∈ {−2.5,−5} kW
Load (Q) Q∗0(t) Q∗0 ∈ {−1,−2} kvar
ω–Droop Coeff. Di [4, 6] ×103 W · s
E–Droop Coef. mi [1, 1] ×10−3 V

var

Sec. Droop Coeff. ki 10−6 s
Comm. Graph Gcomm Two nodes, one edge

Comm. Laplacian Lc (1000 Ws) ·
[

1 −1
−1 1

]

where E∗i > 0 (resp. Q∗i ∈ R) is the nominal voltage
magnitude (resp. nominal reactive power injection) at in-
verter i ∈ {1, 2}, mi > 0 is the voltage-droop coefficient,
and Qe,i ∈ R is the reactive power injection (see [18]
for details on reactive power). The simulation parame-
ters are reported in Table 1. Note the effectiveness of the
proposed DAPI controller (15)–(16) in quickly regulat-
ing the system frequency. The spikes in local frequency
displayed in Figure 5 (c) are due to the rapid change in
load, and can be further suppressed by increasing the
gains ki. This additional degree of freedom allows for a
selection of primary droop coefficients Di much smaller
than is typical in the literature (103W·s, compared to
roughly 105W·s), allowing the power injections (Figure
5 (b)) to respond quickly during transients.

7 Conclusions

We have examined the problems of synchronization,
power sharing, and secondary control among droop-

controlled inverters by leveraging tools from the theory
of coupled oscillators, along with ideas from classical
power systems and multi-agent systems. An issue not
addressed in this work is a nonlinear analysis of reac-
tive power sharing, as an analysis of the voltage-droop
controller (20) which yields simple and physically mean-
ingful algebraic conditions for the existence of a solution
is difficult to perform. Moreover, in the case of strongly
mixed line conditions Im(Yij) ' Re(Yij), neither of the
control laws (2) nor (20) are appropriate. A provably
functional control strategy for general interconnections
and line conditions is an open and exciting problem.
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A Proof of Theorem 8

Consider the closed-loop (17)–(19) arising from the
DAPI controller (15)–(16). We formulate our problem in

the error coordinates p̃i(t) , pi(t) −Diωavg, and write
(17)–(19) in vector notation as

D

[
0|VL|

θ̇I

]
= P̃ − Pe −

[
0|VL|

p̃

]
, (A.1)

K ˙̃p = P̃I − Pe,I − (I|VI | + LcD
−1
I )p̃ , (A.2)

where we have defined A , diag({aij}{i,j}∈E), Pe ,
BAsin(BT θ) = (Pe,L, Pe,I), D , blkdiag(I|VL|, DI),

K , diag({ki}i∈VI ) and partitioned the vector of power

injections by load and inverter nodes as P̃ = (P̃L, P̃I)
T .

Equilibria of (A.1)–(A.2) satisfy

0 =


I|VL| 0 0

0 D−1I I|VI |

0 I|VI | DI + Lc


︸ ︷︷ ︸

Q1


I|VL| 0 0

0 I|VI | 0

0 0 D−1I


︸ ︷︷ ︸

Q2

[
P̃ − Pe

−p̃

]
︸ ︷︷ ︸

x

.

(A.3)
The positive semidefinite matrixQ1 has one dimensional
kernel spanned by (0|VL|, DI1|VI |,−1|VI |), while Q2 is

positive definite. Note however that since P̃ − Pe ∈ 1⊥n ,

and Q2x = (P̃ − Pe,−D−1I p̃), it holds that Q2x /∈
ker(Q1). Thus, (A.3) holds if and only if x = 0n+|VI |;

that is, p̃ = p̃∗ = 0|VI | and P̃ − Pe = 0n. Equivalently,
from Theorem 2, the latter equation is solvable for a
unique (modulo rotational symmetry) value θ∗ ∈ ∆G(γ)
if and only if the parametric condition (8) holds.
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To establish the local exponential stability of the equi-
librium (θ∗, p̃∗), we linearize the DAE (A.1)–(A.2) about
the regular fixed point (θ∗, p̃∗) and eliminate the re-
sulting algebraic equations, as in the proof of Theo-
rem 2. The Jacobian J(θ∗, p̃∗) of the reduced system of
ordinary differential equations can then be factored as
J(θ∗, p̃∗) = −Z−1X, where Z = blkdiag(I|VI |,K) and

X =

[
D−1I I|VI |

I|VI | Lc +DI

]
︸ ︷︷ ︸

=X1=XT
1

[
Lred(θ∗) 0

0 D−1I

]
︸ ︷︷ ︸

=X2=XT
2

.

Thus, the problem of local exponential stability of
(θ∗, p̃∗) reduces to the generalized eigenvalue problem
−X1X2v = λZv, where λ ∈ R is an eigenvalue and
v ∈ R2|VI | is the associated eigenvector. We will pro-
ceed via a continuity-type argument. Consider momen-
tarily a perturbed version of X1, denoted by Xε

1, ob-
tained by adding the matrix εI|VI | to the lower-right
block of X1, where ε ≥ 0. Then for every ε > 0, Xε

1

is positive definite. Defining y , Zv, we can write
the generalized eigenvalue problem Xε

1X2v = −λZv as
X2Z

−1y = −λ(Xε
1)−1y. The matrices on both left and

right of this generalized eigenvalue problem are now sym-
metric, with X2Z

−1 = blkdiag(Lred, D
−1
I K−1) having

a simple eigenvalue at zero corresponding to rotational
symmetry. By applying the Courant-Fischer Theorem
to this transformed problem, we conclude (for ε > 0 and
modulo rotational symmetry) that all eigenvalues are
real and negative.

Now, consider again the unperturbed case with ε =
0. Notice that the matrix X2 is positive semidefinite
with kernel spanned by (1|VI |,0|VI |) corresponding to
rotational symmetry, while X1 is positive semidefi-
nite with kernel spanned by (−DI1|VI |,1|VI |). Since

image(Lred(θ∗)) = 1⊥|VI |, image(X2) ∩ ker(X1) =

{02|VI |}, that is, X2v is never in the kernel of X1. Thus
we conclude that ker(X1X2) = ker(X2). Now we return
to the original eigenvalue problem in the form X1X2v =
−λZv. Since the eigenvalues of a matrix are continu-
ous functions of the matrix entries, and ker(X1X2) =
ker(X2), we conclude that the number of negative eigen-
values does not change as ε → 0+, and the eigenvalues
therefore remain real and negative. Hence, the equilib-
rium (θ∗, p̃∗) of the DAE (A.1)–(A.2) is (again, modulo
rotational symmetry) locally exponentially stable.

To show the final statement, note from the modified pri-
mary controller (15) that the steady state power injec-
tion at inverter i ∈ VI is given by Pe,i = P ∗i − pi(t =
∞) = P ∗i − ωavgDi, which is exactly the steady state
power injection when only the primary droop controller
(4) is used. The result then follows from Theorem (7).
This completes the proof of Theorem 8. �
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