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Abstract— Motivated by the growing interest in energy tech-
nology and smart grid architectures, we consider the problem
of voltage stability and reactive power balancing in low-voltage
electrical networks equipped with DC/AC inverters (“micro-
grids”). It is generally believed that high-voltage equilibria of
such networks are stable, but the locations of these equilibria
are unknown, as is the critical network load where stability
is lost. Inspired by the “control by interconnection” paradigm
developed for port-Hamiltonian systems, we propose a novel
droop-like inverter controller which is quadratic in the local
voltage magnitude. Remarkably, under this controller the
closed-loop network is again a well-posed electrical circuit.
We find that the equilibria of the quadratic droop-controlled
network are in exact correspondence with the solutions of a
reduced power flow equation. For general network topologies,
we study some simple yet insightful solutions of this equation,
and for the frequently-encountered case of a parallel microgrid,
we present a concise and closed-form condition for the existence
of an exponentially stable high-voltage network equilibrium.
Our condition establishes the existence of a critical inductive
load for the network, which depends only on the network
topology, admittances, and controller gains. We compare and
contrast our design with the conventional droop controller,
investigate the relationship between the two, and validate the
robustness of our design through simulation.

I . I N T R O D U C T I O N

Due to environmental and social factors, and the rapidly
expanding integration of low voltage small-scale renewable
energy sources, the present centralized wide-area electric
power transmission paradigm is evolving towards a more
distributed future. As a bridge between high-voltage trans-
mission and low-voltage distributed generation, the concept
of a microgrid has recently gained significant traction [1].
Microgrids are low-voltage electrical distribution networks,
heterogeneously composed of distributed generation, storage,
load, and managed autonomously from the larger primary
network. Microgrids are able to connect to the wide area
electric power system through a “Point of Common Cou-
pling”, but are also able to “island” themselves and operate
independently [2], [3]. Energy generation within a microgrid
can be highly heterogeneous, including photovoltaic, wind,
geothermal, micro-turbines, etc. Many of these sources gener-
ate either variable frequency AC power or DC power, and are
interfaced with a synchronous AC grid via power electronic
DC/AC inverters. In islanded operation, it is through these
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Fig. 1. (a) Schematic of a “parallel” microgrid, in which several inverters
supply power to a distribution bus (effectively a single load) (b) A simple
non-parallel microgrid consisting of five loads and three inverters .

inverters that actions must be taken to ensure synchronization,
voltage stability, power balance and load sharing in the
network [1].

A. Literature Review

The so-called droop controllers (and their derivatives) have
been used with some success to achieve these tasks, see
[1]–[8]. Despite forming the foundation for the networked
operation of inverters (Figure 1), droop-controlled networks
of inverters and loads have only recently been subject to a
rigorous analysis. In [9], we provided an exact nonlinear
analysis of the “ω-P ” droop control law, which is used
for frequency synchronization and active power balancing
(see Section II-B). While the emphasis in the literature
has been placed on the analysis of synchronization and
active power, the lower voltage levels and uncompensated
loads in microgrids can cause voltage magnitudes to fall
to dangerously low levels, leading to voltage instability and
collapse [10]. At the transmission level, these phenomena
have received increasing attention after recent voltage insta-
bility induced blackouts in Scandinavia (2003), Canada/USA
(2003), and Greece (2004) [11]. Indeed, the U.S. Department
of Energy has recently invested significant resources studying
strategies for reactive power support and the shaping of
network voltage profiles [12]. This leads immediately to the
problem complementary to synchronization and active power
balancing, namely voltage stabilization and reactive power
balancing. Over the 20 years since its introduction in [13], the
“E-Q” voltage-droop controller (Section II-B) has become the
key tool used for these tasks.

The widespread deployment and practical utility of the
E-Q controller has led to several attempts at analysis [14],
[15]. However, these attempts have met with remarkably
little success. To our knowledge, the only provably correct
conditions for stability were presented in [15]. Unfortunately,



the conditions in [15] are extremely conservative, and hold
only for the all-to-all networks of inverters which appear
in network-reduced models. Analyses which begin from
network-reduced models — models in which the load nodes
are eliminated from the network — are inherently unable to
address the heart of the problem; the voltage levels seen at the
load terminals of the true physical network. Said differently,
the literature offers no guidance on the foundational issue
of operating point feasibility. That is, the existence and
locations of equilibria for the network. This large gap of
knowledge regarding E-Q controlled networks means that
precise reactive loading limits and security margins are
inherently unknown, making system monitoring and non-
conservative operation difficult.

B. High-Voltage Stability & Critical Inductive Loading

Classic intuition developed in power systems is that induc-
tive loading distorts the spatial voltage profile in a network
by dragging down the voltage magnitudes at inductively
loaded nodes. Moreover, it is generally accepted that high-
voltage (low loss) equilibria of such networks are stable, while
low-voltage (high loss) equilibria are unstable [11]. Taken
together, these rules of thumb suggest the existence of a
critical inductive load which depends on the network under
consideration. If the total load is less inductive than this
critical value, the network voltage profile will be sufficiently
homogeneous and a stable high-voltage equilibrium will exist.
The classic works [16], [17] give some conservative estimates
of this critical load in transmission networks. A fundamental
outstanding problem regarding the voltage stability of droop-
controlled microgrids is therefore to relate the existence of
stable high-voltage equilibria to the network topology, line
admittances, loads, and controller gains, and to determine the
exact locations of the equilibria should any exist.

C. Contributions

There are four main contributions of this paper. First, in
Section III we present a novel alternative to the conventional
voltage-droop controller, which we refer to as the quadratic
droop controller. In contrast with the conventional controller
— the design of which is motivated by the local, linear behav-
ior of power flow near a steady-state operating point — our
proposed design is inspired by the “control by interconnection”
approach from port-Hamiltonian systems [18]. We find that
the analysis of the network is greatly simplified by designing
a controller which preserves the quadratic structure of the
AC power flow equations in closed-loop. In particular, we
show that the equilibria of the network when controlled by
our quadratic droop controller are in exact correspondence
with the solutions of a reduced power flow equation (RPFE).
For general network topologies, we solve our RPFE for two
insightful load profiles: the case of no loading, and the case
of ZI loads; see Section II-A for background on load models).

Second, in Section IV we consider in detail the common
and practically relevant case of a parallel microgrid (Figure
1(a)). By explicitly solving our RPFE we provide a necessary
and sufficient condition on the network load for the existence

of a locally exponentially stable high-voltage equilibrium
point. Confirming classic intuition, our condition establishes
the existence of a critical inductive load for the network,
which depends only on the network topology, admittances,
inverter set point voltages, and controller gains. The condition
succinctly states that the network load must be less inductive
than this critical value. In addition, we study the (in)stability
properties of the complementary low-voltage equilibrium
point, and in doing so provide a quite complete picture of
the network state space.

As a third contribution, in Section V we use the results
we derive for the quadratic droop controller to draw a
correspondence between the equilibria of the quadratic droop-
controlled network and the equilibria of the same network
when controlled by the conventional droop controller. While
not a bidirectional correspondence, in doing so we provide
the first characterization of the network equilibrium points
(and their stability properties) under the conventional voltage-
droop controller.

Fourth and finally, in Section VI we demonstrate the
robustness of our design by exploring through simulation
a scenario beyond the scope of our theoretical results. In
particular, we examine the performance of the controller in
a modified version of the mixed resisitve/inductive IEEE 37
bus distribution network. Proofs of all results are deferred to
a journal publication to follow.

D. Preliminaries and Notation

Sets, vectors and functions: Given a finite set V , let |V|
denote its cardinality. The set S is the unit circle. We let R
(resp. R>0) denote the set of real (resp. strictly positive real)
numbers. Similarly, given D ⊂ Rn, let D>0 , D ∩ Rn>0 be
the restriction of D to the positive orthant. Given an index
set I and a real valued 1D-array {x1, . . . , x|I|}, {xi}i∈I , or
simply x ∈ R|I| is the associated vector, with [x] ∈ R|I|×|I|
being the associated diagonal matrix. Given x, y ∈ Rn, we
write x >> y if xi > yi for each i ∈ {1, . . . , n}. Throughout,
1n and 0n are the n-dimensional vectors of unit and zero
entries, with 0 being a matrix of all zeros of appropriate
dimensions. A matrix W ∈ Rn×m is row-stochastic if its
elements are nonnegative and W1m=1n.

Algebraic graph theory: Given an undirected, connected,
and weighted graph G(V, E , A) induced by the symmetric,
nonnegative and irreducible adjacency matrix A ∈ Rn×n, we
define the nodal degree by degi =

∑n
j=1 aij . The Laplacian

matrix L ∈ Rn×n is defined by L = diag({degi}ni=1)−A.
Differential-algebraic systems: Consider the differential-

algebraic system

ẋ = f(x, y) , 0m = g(x, y) , (1)

where x ∈ Rn, y ∈ Rm, and f : Rn+m → Rn, g :
Rn+m → Rm are sufficiently smooth. Let M = {(x, y) ∈
Rn+m | 0m = g(x, y)} be the constraint set of (1), and define
the singular set S of g(x, y) by

S ,
{
(x, y) ∈M

∣∣∣ det
∂g

∂y
= 0

}
. (2)



The singular set S decomposes M into open sets Mi where
det ∂g∂y is sign-definite and such that M = S ∪ (∪iMi).
Components Mi with det ∂g∂y < 0 (resp. det ∂g∂y > 0) are
called stable (resp. unstable) [19].

I I . P R O B L E M S E T U P

We briefly review the classic theory of AC power flow and
recall the definitions for the conventional droop controllers.

A. Review of Microgrids and AC Circuits
Throughout this work we adopt the standard model of

a microgrid as synchronous linear circuit with admittance
matrix Y ∈ Cn×n. The associated connected, undirected,
and complex-weighted graph is G(V, E , A) with node set (or
buses) V = {1, . . . , n}, edge set (or branches) E ⊂ V × V ,
and symmetric edge weights (or admittances) aij = −Yij =
−Yji ∈ C for every branch {i, j} ∈ E . We partition the set
of buses as V = VL ∪ VI , corresponding to the loads and
inverters. To each bus i ∈ V , we associate an electrical power
injection Se,i = Pe,i +

√
−1Qe,i ∈ C and a phasor voltage

variable Vi = Eie
√
−1θi corresponding to the magnitude

Ei > 0 and the phase shift θi ∈ S of a harmonic solution
to the AC power flow equations. The linear current-balance
equations are I = Y V , where I ∈ Cn and V ∈ Cn the
vectors of nodal current injections and voltages. The complex
vector of nodal electrical power injections is then given by
Se = [V ](Y V )∗. For inductive lines, the admittance matrix
Y ∈ Cn×n is purely imaginary, and the active/reactive nodal
electrical power injections are given by

Pe,i =
∑n

j=1
Im(Yij)EiEj sin(θi − θj) , i ∈ V , (3a)

Qe,i = −
∑n

j=1
Im(Yij)EiEj cos(θi − θj) , i ∈ V. (3b)

Strictly for simplicity of both presentation and mathemati-
cal development, we will work under the standard decoupling
approximation, where θi−θj ≈ 0 and hence cos(θi−θj) ≈ 1
for each {i, j} ∈ E ; see [8], [20]. This assumption can be
relaxed to nonzero power angles θi − θj 6= 0 at the cost of
a more complicated and less elegant formulation, but doing
so adds little in terms of the presentation herein. Under this
decoupling assumption, the reactive power flow (3b) can be
written in compact vector notation as

Qe = [E]LE , (4)

where E = {Ei}i∈V , and the (negative) susceptance matrix
L , −Im(Y ) ∈ Rn×n is a Laplacian matrix. If the
network is primarily resistive instead of inductive, Q can
be replaced by P and all stability results presented herein
go through [14]. For load modeling, throughout the paper
we consider subsets of standard ZIP loads, which take the
form Qi(Ei) = ai1E

2
i + ai2Ei + ai3 [20], [21]. Here, the

real coefficients ai1, ai2, and ai3 correspond to the constant-
impedance, constant-current, and constant-power portions of
the load. As is standard in the microgrid literature, we model
an inverter as a controllable voltage source behind a reactance.
This model is widely adopted among experimentalists in the
microgrid field. Further modeling explanation can be found
in [3], [22], [23] and the references therein.

B. Review of Conventional Droop Control

The conventional droop controllers are the foundational
techniques for primary control (synchronization, voltage sta-
bility and power balancing) in islanded microgrids. The
controllers are heuristics based on the classic active/reactive
decoupling assumption for small power angles and non-mixed
line conditions, see [1], [2], [4], [6], [7], [13], [14], [24]–
[27]. For the case of inductive lines, the droop controllers
specify both the inverter frequencies ωi and output voltage
magnitudes Ei by [3, Chapter 19]

ωi = ω∗ −miPe,i , i ∈ VI , (5a)

Ei = E∗i − niQe,i , i ∈ VI , (5b)

where ω∗ > 0 is the nominal network frequency, E∗i > 0
is the nominal voltage for the ith inverter, and Pe,i (resp.
Qe,i) is the measured active (resp. reactive) power injection∗.
The controller gains mi, ni > 0 are referred to as droop
coefficients. See [9] for a detailed analysis of the control law
(5a). From (5b), it is clear that if an inverter injects a non-
zero amount of reactive power Qe,i, its voltage will deviate
from E∗i . For easy comparison with our design, it will be
convenient to add an integral channel to the controller (5b)
yielding the first-order conventional droop controller

τiĖi = −C̃i(Ei − E∗i )−Qe,i , (6)

where τi > 0 and C̃i , n−1i . Note that solutions of (5b)
correspond to steady states of (6).

I I I . Q U A D R AT I C D R O O P C O N T R O L F O R V O LTA G E
S TA B I L I Z AT I O N

While the droop controller (6) is simple and intuitive, it
is based on the linear behavior of AC power flow around
a stable equilibrium, and cannot account for the quadratic
and asymmetric nature of reactive power flow in inductive
networks. In this section we propose a physically motivated
modification of the conventional voltage-droop controller (6).
In place of (6), consider instead the quadratic droop controller

τiĖi = −CiEi(Ei − E∗i )−Qe,i , i ∈ VI , (7)

where τi, Ci, E∗i > 0 are control parameters. Note that the
gain on the local feedback term is no longer constant but
scales with the local inverter voltage Ei. For loads {Qi}i∈VL ,
we must also satisfy the |VL| reactive power balance equations

0 = Qi −Qe,i , i ∈ VL . (8)

Combining (7), (8), and (4), the closed-loop differential-
algebraic dynamics are given in vector notation by(

0|VL|
τIĖI

)
=

(
QL

CI [EI ](E
∗
I − EI)

)
− [E]LE , (9)

where τI = [{τi}i∈VI ], CI = [{Ci}i∈VI ], EI = {Ei}i∈VI ,
E∗I = {E∗i }i∈VI and QL = {Qi}i∈VL . The closed-loop dy-
namics (9) highlight the competition in the network between

∗See [3], [22] for details regarding estimation of active/reactive powers.



Fig. 2. Diagram showing network augmentation and reduction. First, each inverter node of the network in Figure 1(b) is interconnected with a two-node
controller circuit, consisting of an inverter node and fictitious node at constant voltage E∗i . In Theorem 3.1, the inverter nodes are eliminated via Kron
reduction, leaving a reduced network with only fixed voltage nodes and load nodes .

the driving terms in parentheses, which attempt to distort the
network voltage profile, and the homogenizing effect of the
network through the (nonlinear) consensus [E]LE.

Remark 1: (Interpretation of Quadratic Droop Con-
troller). In analogy with feedback strategies used in the
study of port-Hamiltonian systems [18], the design (7) can be
interpreted as control by interconnection, where we intercon-
nect the physical electrical network with fictitious controller
circuits at the inverter nodes i ∈ VI [28]. Indeed, consider

Fig. 3. Linear circuit representation of the quadratic droop controller (7).

the two-node circuit of Figure 3, where the first node has
variable voltage Ei and is connected via a susceptance −Ci
to the second node at fixed voltage E∗i . The current-voltage
relations for this circuit take the form(

Ii
I∗i

)
=

(
Ci −Ci
−Ci Ci

)(
Ei
E∗i

)
, (10)

where Ii (resp. I∗i ) is the extracted current† at the node with
voltage Ei (resp. E∗i ). Now, let there be |VI | of the two-
node circuits in Figure 3. If we associate the variable-voltage
nodes of these circuits with the inverter nodes of our original
network (Figure 2) by imposing that the current injected into
one must exit from the other, we obtain an augmented network
with n+|VI | nodes, and in vector notation the current-voltage
relations in the new network take the form IL

0|VI |
I∗I

 =

LLL LLI 0
LIL LII + CI −CI
0 −CI CI

ELEI
E∗I

 , (11)

where we have partitioned the nodal currents and voltage
magnitudes in terms of the loads (IL and EL), inverters (II
and EI ), and the fictitious controller nodes (I∗I and E∗I ). In

†“Extracted” because L = −Im(Y ). Since we work under the decoupling
assumption, these are technically the imaginary parts of the currents.

this augmented network, the inverters behave as interior nodes
connecting the fictitious controller nodes to the loads, and
do not sink or source power themselves. Left multiplying
the first two blocks of equations in (11) by [E] and noting
that [EL]IL = QL, we immediately obtain the right hand
side of (9). Thus, unlike the conventional droop controller
(6), the quadratic droop controller preserves the structure of
the network circuit equations in closed-loop. �

Remark 2: (State Space of Network). Let M ⊂ Rn
denote the |VI |-dimensional subset of Rn defined implicitly
by the |VL| algebraic equations in the closed-loop system (9).
We consider (9) to be defined only on the intersectionM>0=
M∩ Rn>0. Indeed, within the phasor modeling framework,
each nodal voltage Ei represents a voltage magnitude and
is intrinsically nonnegative. This choice of state space will
simplify our analysis by excluding non-physical and short-
circuit equilibria which would not occur in practice. �

A basic question regarding the closed-loop system (9) is
the following: under what conditions on load, network topol-
ogy, admittances, and controller gains does the differential-
algebraic system (9) possess a locally exponentially sta-
ble equilibrium? Our first result exploits the homogeneous
quadratic nature of the control law (7) to establish a corre-
spondence between the equilibria of (9) and the solutions of
a power flow equation for a reduced network.

Theorem 3.1: (Reduced Power Flow Equation for
Quadratic Droop Network). Consider the closed-loop sys-
tem (9) resulting from the quadratic droop controller (7).
Partition the Laplacian matrix and nodal voltage variables
according to loads and inverters as

L =

(
LLL LLI
LIL LII

)
, E = (EL, EI)

T ,

and define

Lred , LLL − LLI (CI + LII)
−1
LIL ∈ R|VL|×|VL| , (12)

W1 , −L−1redLLI (LII + CI)
−1
CI ∈ R|VL|×|VI | , (13)



E∗avg ,W1E
∗
I ∈ R|VL|>0 , (14)

W2 , (LII + CI)
−1 (−LIL CI

)
∈ R|VI |×n. (15)

The following two statements are equivalent:
(i) Original Network: The network voltage vector E =

(EL, EI) ∈M>0 is an equilibrium point of (9);
(ii) Reduced Network: The load voltage vector EL ∈

R|VL|>0 solves the reduced power flow equation (RPFE)

QL = [EL]Lred(EL − E∗avg) , (16)

and the inverter voltage vector is given by

EI =W2

(
EL
E∗I

)
∈ R|VI |>0 . (17)

Remark 3: (Interpretation of Reduced Power Flow
Equations). Given the “control by interconnection” inter-
pretation of the quadratic droop controller introduced in
Remark 1, the RPFE (16) is straightforward to interpret.
Eliminating the inverter voltages EI from the augmented
network current-voltage relations (11) through Kron reduction
[29], one obtains the equivalent reduced representation(

IL
I∗I

)
=

(
Lred −LredW1

−WT
1 Lred CI(LII + CI)

−1LII

)(
EL
E∗I

)
.

Left-multiplying the first equation by [EL] immediately yields
(16). Hence, the RPFE (16) is exactly the reactive power
balance equation QL = [EL]IL in the reduced network at
the load nodes VL, with current injections given by IL =
Lred(EL−E∗avg) (c.f. [21, Equation 2.10b]). The second line
of equations can be thought of as determining the fictitious
controller current injections once the first set are solved for
EL. This reduction process is shown in Figure 2. Note that
while the number of nodes in the original network and in the
reduced network are equal, the topologies are not necessarily
the same [29, Theorem 3.4]. �

Theorem 3.1 immediately yields two insightful results.
Corollary 3.2: (Exact Solution for Zero Load). Consider

the RPFE (16) for no load, i.e.,QL = 0|VL|. Then EL = E∗avg
is the unique solution in R|VL|>0 .

It can be shown that W1 is row-stochastic, and hence by
(14) each component of E∗avg is a convex combination of
the inverter set points E∗I . Thus, W1 describes how the set
point voltages are averaged by the network to produce the
load terminal voltages under zero reactive loading. We note
that this “baseline” voltage profile is non-uniform, due to
the inhomogeneous inverter set point voltages. While (16) is
difficult to solve for general ZIP loads, a simple and general
result for combinations of constant-impedance/current (ai3 =
0) loads follows from Theorem 3.1.

Corollary 3.3: (Exact Solution for ZI Loads). Consider
the RPFE (16) for ZI loads

QL = [EL][bshunt]EL + [EL]Ishunt , (18)

where the constant-impedance loads are non-capacitive
([bshunt] ∈ R|VL|×|VL| is negative semidefinite) and
the constant-current load vector Ishunt ∈ R|VL| satisfies

Ishunt>>− LredE
∗
avg. Then the unique solution EL ∈ R|VL|>0

to (16) is given by

EL = (Lred − [bshunt])
−1(LredE

∗
avg + Ishunt) . (19)

I V. Q U A D R AT I C D R O O P C O N T R O L F O R
PA R A L L E L M I C R O G R I D S

While complex in general, the RPFE (16) is particularly
simple for the common class of parallel microgrids, which
consist of a single load fed by multiple inverters in parallel
(Figure 1(a)). In this section we let nodes VI = {1, . . . , n−1}
correspond to the inverter nodes, and let node VL = {0} be
the common connection point for a total of n nodes. In this
case, the network Laplacian has the simple structure

L =


∑n−1
i=1 |bi0| −|b10| · · · −|b(n−1)0|
−|b10| |b10| · · · 0

...
...

. . .
...

−|b(n−1)0| 0 · · · |b(n−1)0|

 ,

where bi0 < 0 is the susceptance between inverter i ∈
{1, . . . , n − 1} and the load (or distribution bus). In this
case, the algebraic power flow equation (8) takes the form‡

h(E) , Q0 −
∑n−1

j=1
|bj0|E0(E0 − Ej) = 0 . (20)

Before studying the equilibria for this configuration, we
examine closely the global structure of our constraint set
M , {E ∈ Rn | h(E) = 0} (see Figure 4).

Lemma 4.1: (Topology of Constraint Set for Parallel
Microgrid). Consider the power balance equation (20) for a
parallel microgrid, and define the total susceptance magnitude
btot > 0 and the singular normal vector a ∈ Rn by

btot ,
∑n−1

j=1
|bj0| , a ,

(
−1 , |b10|

2btot
, . . . ,

|b(n−1)0|
2btot

)T
,

with associated hyperplane

H ,
{
E ∈ Rn | aTE = 0

}
. (21)

The following statements hold:
(i) Singular Surface: The singular surface S of the load

power balance (20) is given by S =M∩H;
(ii) Topology of State Space M>0:

(a) If Q0 ≥ 0, there exists a unique stable component
Mstable of M such that M>0 = Mstable

>0 is
nonempty and simply connected;

(b) If Q0 < 0, there exist unique stable and unstable
components Mstable (resp. Munstable) of M
such that M>0 = Mstable

>0 ∪ Munstable
>0 ∪ S>0,

where all sets in the union are nonempty and
simply connected.

Remark 4: (Physically Measurable States). It is argued
in [19] thatMstable

>0 is the only physically observable portion

‡As “stiff” constant-power loads (ai1 = ai2 = 0) are the most interesting,
we restrict ourselves to them in the sequel, and denote the load by Q0. Our
results for the parallel topology extend to general ZIP loads.



Fig. 4. Equilibrium locations for (a) Q0 > 0, (b) Q0 ∈] − Qsing, 0[, and (c) Q0 ∈] − Qcrit,−Qsing[. Gray arrows represent the behavior of the
associated singularly perturbed system (22) with parasitic term εĖ0.

of the state space, in that if one performed measurements on
the physical system in steady state, one would only ever
obtain measurements on or near Mstable

>0 . The restriction to
M>0 is clear from Remark 2. To understand the additional
restriction to the stable component, consider instead of the
load balance (20) an associated singularly perturbed system

εĖ0 = h(E) , (22)

where ε > 0. The additional term εĖ0 could arise due to
parasitics neglected during modeling of the system. Now,
note that any small disturbance or noise in the system will
push the state E off the constraint set M>0, such that the
“boundary layer” dynamics (22) will determine whether the
state will be attracted or repelled from M>0. From Lemma
4.1, Mstable

>0 is exactly the attracting portion of M>0, while
initial conditions arbitrarily close to Munstable

>0 — if it exists
— will be repelled; see Figure 4. Thus, if we performed a
measurement on our system in steady state, we would expect
to never observe voltages nearMunstable

>0 . Based on physical
grounds, we therefore restrict our attention to Mstable

>0 . �

In the following, local exponential stability of an equilib-
rium E+ ∈ Mstable

>0 refers to the behavior of nearby initial
conditions also belonging to Mstable

>0 , see [30].

Theorem 4.2: (Existence of High-Voltage Equilibrium
for Parallel Microgrids). Consider the closed-loop system
(9) for a parallel microgrid resulting from the quadratic droop
controller (7). Define the critical voltage vector Ecrit ∈ Rn>0

and the critical load Qcrit > 0 by

Ecrit ,

(
E∗avg
2

; W2

(
E∗avg/2
E∗I

))
, (23a)

Qcrit ,
1

4
Lred(E

∗
avg)

2 . (23b)

The following two statements are equivalent:

(i) Stable High Voltage Equilibrium: The closed-loop
(9) possesses exactly one locally exponentially stable
equilibrium E+ ∈Mstable

>0 satisfying E+ >> Ecrit;
(ii) Load Feasibility: The load is not overly inductive,

Q0 > −Qcrit. (24)

If the above statements are satisfied, E+ is given by

E+
0 =

E∗avg
2

(
1 +

√
1 +

Q0

Qcrit

)
, (25a)

E+
i =

CiE
∗
i + |bi0|E

+
0

Ci + |bi0|
, i ∈ {1, . . . , n− 1} . (25b)

Remark 5: (Interpretation of Feasibility Condition).
Theorem 4.2 gives the necessary and sufficient condition for
the existence of a “high” voltage equilibrium. That is, each
component of the equilibrium is larger than the corresponding
component of the strictly positive vector Ecrit in (23a). One
can verify that (12) and (14) reduce to the scalar values

Lred =
∑n−1

j=1

(
|bj0|Cj
|bj0|+ Cj

)
> 0 ,

E∗avg =
1

Lred

∑n−1

j=1

(
|bj0|Cj
|bj0|+ Cj

)
E∗j > 0 ,

and thus the RPFE (16) reduces to a single quadratic equation.
The parametric condition (24) is exactly the classic power
flow feasibility result for the modified two-node network of
Figure 5 [21, Chapter 2].

Fig. 5. Single-line equivalent circuit for feasibility condition (24).

Perhaps surprisingly, Theorem 4.2 shows that the voltage
stability of parallel networks does not simply decouple line-
by-line into n−1 voltage stability problems. The critical load
(23b) takes into account the network topology, admittances,
and droop controller gains, while the ratio Q0/Qcrit serves
as an exact security metric for network monitoring. �

Theorem 4.2 establishes the existence and local stability
of a high voltage equilibrium for the closed-loop differential-
algebraic system (9). From the explicit form of the equilib-
rium E+ in (25), the reader may suspect that we have ignored
an additional equilibrium. Indeed, under a restricted condition
on the load, a “low” voltage equilibrium E− ∈Mstable

>0 exists
as well. Recall that a hyperbolic equilibrium E− is said to



be of type-k if k of its eigenvalues have positive real parts
[19].

Theorem 4.3: (Unstable Low Voltage Equilibrium for
Inductive Loads). Define the singular load value as

Qsing ,
4Lred/btot

(1 + Lred/btot)2
Qcrit ∈ ]0, Qcrit[ . (26)

The following two statements are equivalent:
(i) Unstable Low Voltage Equilibrium: The closed-loop

(9) possesses exactly one hyperbolic type-1 unstable
equilibrium E− ∈Mstable

>0 satisfying E− << Ecrit;
(ii) Load Restriction : Q0 ∈ ]−Qcrit,−Qsing[ .

If the above statements are satisfied, E− is given by

E−0 =
E∗avg
2

(
1−

√
1 +

Q0

Qcrit

)
, (27)

with E−i , i ∈ {1, . . . , n− 1} given by the analog to (25b).
Remark 6: (Load Restrictions). The load restriction (ii)

ensures that E− ∈ Mstable
>0 , c.f. Remark 4. As in Theorem

4.2, no equilibrium E− exists for Q0 < −Qcrit. When Q0 =
−Qcrit, E+ = E− = Ecrit. That is, the stable and unstable
equilibria coalesce at value Ecrit ∈ Mstable

>0 , then vanish in
a saddle-node bifurcation leading to voltage collapse [10],
[31]. When Q0 = −Qsing it holds that E− ∈ S>0, and the
stability properties of E− change via a singularity-induced
bifurcation [32]. Indeed, when Q0 ∈ ]−Qsing, 0[ one can
show that E− ∈ Munstable

>0 . In this regime, E− is in fact
locally exponentially stable, but is unstable in the ambient
space for the associated parasitic dynamics, see Figure 4 and
Remark 4. For Q0 ≥ 0, E− has negative elements and is
therefore not in the state space M>0. �

Taken together, Lemma 4.1 along with Theorems 4.2 and
4.3 give a clear picture of the dynamics on the state space;
depending on the problem parameters, there are always either
zero, one, or two equilibria in Rn>0 (Figure 4).

V. R E V I S I T I N G T H E C O N V E N T I O N A L D R O O P
C O N T R O L L E R

As we have seen, the analysis of a parallel microgrid
controlled by the quadratic droop controller (7) is consid-
erably simpler than the analogous but seemingly intractable
problem for the conventional droop controller (6). We can in
fact leverage the results of Sections III and IV to provide a
partial analysis of the conventional droop controller (6). The
following result — the proof of which follows by comparing
(6) and (7) — relates the equilibria of the two closed-loop
systems for a special choice of controller gains.

Lemma 5.1: (Equilibria of Conventional Droop Con-
troller). Consider the respective closed-loop systems re-
sulting from the conventional droop controller (6) and the
quadratic droop controller (7) for an arbitrary network topol-
ogy. The following two statements are equivalent:

(i) Quadratic System: E ∈ M>0 is an equilibrium of
the quadratic droop-controlled system with controller
gains Ci > 0, i ∈ VI ;

(ii) Conventional System: E ∈ M>0 is an equilibrium
of the conventionally droop-controlled system with
controller gains C̃i = CiEi where Ci > 0, i ∈ VI .

Theorem 5.2: (Stability of Conventional Droop Con-
troller). Consider the closed-loop system resulting from
the conventional droop controller for a parallel microgrid.
Assume that (24) holds, and that the controller gains are
chosen as in Lemma 5.1. If

max
i,j∈{1,...,n−1}

E∗i
E∗j

< 2 , (28)

then E+, as given by (25), is locally exponentially stable.
The mild extra condition (28) in Theorem 5.2 requires that

the inverter voltage set points are sufficiently similar, and in
practice is always satisfied.

V I . S I M U L AT I O N O F I E E E 3 7 B U S
D I S T R I B U T I O N N E T W O R K

While the exact stability results of Section IV hold only
for the case of an inductive parallel microgrid, in this section
we illustrate the behavior of our quadratic droop controller in
a lossy distribution network. Specifically, Figure 6 shows the
performance of the controller in a modified version of the
IEEE 37 distribution network. After an islanding event, the
distribution network is disconnected from the transmission
grid, and the (for clarity, identical) distributed generators must
take decentralized action to ensure network stability.

At time t = 3 seconds, one of the inductive loads in
the network doubles, and the voltages at the distributed
generators are adjusted according to the quadratic droop
controller (7). Thus, the controller stabilizes the network even
in the presence of large transfer conductances (high R/X
ratio). However, the quadratic droop controller shares one of
the drawbacks of the conventional voltage-droop controller;
namely, the generators do not equally share the required
power demand upon an increase in load (see Section VII).

TABLE I
C O N T R O L L E R PA R A M E T E R S F O R I E E E 3 7 S I M U L AT I O N .

Parameter Symbol Value

Nom. Voltage E∗i 4.8 kV
Quad. Droop Coef. Ci 0.5 S
Time Constants τi 0.01 s

V I I . C O N C L U S I O N S

In this work we have presented and analyzed a novel
voltage controller for inductive microgrids. Unlike the con-
ventional droop controller, our proposed quadratic design
is physically well motivated, and can be interpreted within
“control by interconnection” paradigm. This leads to an
elegant circuit-theoretic description of the closed-loop, and
to an exact analysis of the network equilibria and their
stability properties. The analytical progress in this work now
enables a rigorous study of several important and challenging
problems. First and foremost, an examination of how to share
reactive power demand among heterogeneous generating
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Fig. 6. IEEE 37 bus distribution network containing loads and inverters
, along with simulation results when controlled with the quadratic droop

controller (7).

units now seems feasible. Second, with the fundamental
case of an inductive microgrid understood, the design of a
provably functional decentralized controller for mid-ranged
R/X networks is a potentially tractable problem. Third
and finally, this work should facilitate the design of so-
called “secondary” integral controllers. Although classically
used only to eliminate voltage deviations at the distributed
generators, these integral controllers could also potentially
address the previous two issues of reactive power sharing
and elevated R/X ratios.
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