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Abstract—We consider the problem of voltage stability and
reactive power balancing in islanded small-scale electrical net-
works outfitted with DC/AC inverters (“microgrids”). A droop-
like voltage feedback controller is proposed which is quadratic in
the local voltage magnitude, allowing for the application of circuit-
theoretic analysis techniques to the closed-loop system. Under
our design, the operating points of the closed-loop microgrid are
in exact correspondence with the solutions of a reduced power
flow equation, and we provide explicit solutions and small-signal
stability analyses under several static and dynamic load models.
Controller optimality is characterized as follows: we show a one-
to-one correspondence between the high-voltage equilibrium of
the microgrid under quadratic droop control, and the solution
of an optimization problem which minimizes a trade-off between
reactive power dissipation and voltage deviations. Power sharing
performance of the controller is characterized as a function of the
controller gains, network topology, and parameters. Proportional
sharing of the total load between inverters is achieved in a low-
gain limit, independent of the circuit topology or reactances. All
results hold for arbitrary grid topologies, with arbitrary numbers
of inverters and loads. Numerical results confirm the robustness
of the controller to unmodeled dynamics.

Index Terms—Inverter control, microgrids, voltage control,
Kron reduction, nonlinear circuits

I . I N T R O D U C T I O N

The wide-spread integration of low-voltage small-scale re-
newable energy sources requires that the present centralized
electric power transmission paradigm to evolve towards a more
distributed future. As a flexible bridge between distributed
generators and larger distribution grids, microgrids continue to
attract attention [1]–[3]. Microgrids are low-voltage electrical
distribution networks, heterogeneously composed of distributed
generation, storage, load, and managed autonomously from the
larger primary grid. While often connected to the larger grid
through a “point of common coupling”, microgrids are also
able to “island” themselves and operate independently [2],
[4]. This independent self-sufficiency is crucial for reliable
power delivery in remote communities, in military outposts,
in developing nations lacking large-scale infrastructure, and
in backup systems for critical loads such as hospitals and
campuses. Energy generation within a microgrid can be quite
heterogeneous, including photovoltaic, wind, micro-turbines,
etc. Many of these sources generate either variable frequency
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Fig. 1. (a) Schematic of a “parallel” microgrid, in which several inverters
supply power to a common bus (effectively a single load) (b) A non-parallel
microgrid consisting of five loads and three inverters .

AC power or DC power, and are interfaced with a synchronous
AC grid via power electronic DC/AC inverters. In islanded
operation, at least some of these inverters must operate as
grid-forming devices. Through these grid-forming inverters,
control actions are be taken to ensure synchronization, voltage
stability, and load sharing in the network [1], [2], [4], [5], and to
establish higher-level objectives such as frequency regulation
and economic dispatch [6]–[8].

A. Literature Review

The so-called droop controllers (and their many derivatives)
have been used with some success to achieve primary control
goals such as stability and load sharing, see [1], [2], [4], [9]–
[12]. Despite being the foundational technique for networked
operation of islanded microgrids (Figure 1), the stability and
basic limitations of droop-controlled microgrids have only
recently begun to be investigated from a rigorous system-
theoretic point of view [6], [13]–[15].

Our focus here is on voltage control, which we now pro-
vide some context for. In high-voltage networks, the grid-
side voltages of transformers which interface synchronous
generators are regulated to nominal set points via automatic
voltage regulator systems. First, if this strategy was applied
to inverters in low-voltage networks, the small mismatches in
voltage set points would combine with the large impedances
presented by distribution lines, and result in large circulating
reactive currents between inverters. Second, due to the close
electrical proximity of devices in microgrids and the small
power capacities (ratings) of the devices, any one device can
quite easily become overloaded. To avoid this, it is desirable
that controllers establish set percentages of the total load to
be supplied by each inverter (so-called power sharing). These
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technical obstacles motivated the use of voltage droop control
[16] as a heuristic proportional controller to establish power
sharing between units while maintaining voltages within a
reasonable range around their set point values; see Section
II-B for a technical review of this controller.

The widespread deployment of voltage droop has led to
several attempts at stability analysis [13], [14]. Both references
begin with all-to-all Kron-reduced network models which do
not explicitly contain loads. They then assume the existence of
a system equilibrium, and derive sufficient stability conditions
which depend on the uncharacterized equilibrium. Results
apply only for constant-impedance or constant-current load
models, and no characterizations are given of power sharing in
steady state. Thus, the available literature offers no guidance
on the foundational issue of operating point feasibility, i.e.,
the existence and locations of steady states for the microgrid
which satisfy operational constraints. Precise loading limits
and security margins are therefore unknown, making system
monitoring and non-conservative operation difficult. Moreover,
stable network operation is often limited by stiff constant power
loads, which increase their current consumption as voltages
fall.

Regarding control performance, a well-recognized drawback
of voltage droop control is that — while achieving better
power sharing performance than mere voltage regulation —
the power sharing properties can still be quite poor. This
has led some authors to investigate alternative strategies to
implement (reactive) power sharing [7], [11], [17], [18] that
are based on additional measurement, such as direct load
measurements or inter-unit communication. These approaches
however offer no guidance in characterizing the power sharing
properties of voltage droop control. A general discussion of
fundamental limits for voltage control and reactive power
sharing can be found in [7, Section III], and some recent non-
droop-based (but nonetheless related) approaches to reactive
power compensation can be found in [19]–[28].

In summary, two fundamental outstanding problems regard-
ing the voltage stability of droop-controlled microgrids are (i)
to establish conditions under which a stable network equilib-
rium exists for various load models, and (ii) to characterize
the controller’s power sharing performance in terms of the
controller gains, grid topology, and branch admittances.

B. Contributions

In the preliminary version of this work [29], we introduced
the quadratic droop controller, a slight modification of the
conventional linear droop curve to a quadratic one. Quadratic
droop leads to the same steady states as conventional droop
control (for particular gains) but allows circuit-theoretic tech-
niques to be leveraged for analysis purposes. In [29] we studied
system stability for the case of an islanded parallel microgrid,
where several inverters feed power to a single common load
or a common distribution bus (Figure 1(a) and Remark 4). In
this paper we depart from the case of a parallel microgrid
and study system stability for arbitrary interconnections of
inverters and loads, under various load models. In addition, we
investigate the optimality and performance characteristics of

the controller. Power flow linearization ideas presented in [30]
are also relevant to the current presentation at a technical level,
and will be used in proofs of several results.

There are three main technical contributions in this paper.
First, in Section III we present the quadratic droop controller,
highlighting its circuit-theoretic foundations. We state and
prove a correspondence between the equilibrium points of
the closed-loop system and the solutions of a reduced power
flow equation, before proceeding to analyze the stability of the
closed-loop system for both static and dynamic load models. In
particular, we analyze system stability for the static ZI and ZIP
load models, and for a dynamic model describing a variable
shunt susceptance. Our stability analyses in Theorem 3.1,
Theorem 3.3, and Theorem 3.4 result in succinct and physically
intuitive stability conditions, significantly generalizing the
results and intuition developed for parallel microgrids in [29].

Second, in Section IV-A we investigate the optimality
properties of the quadratic droop controller. We demonstrate
that the microgrid dynamics under quadratic droop control can
be interpreted as a decentralized primal algorithm for solving
a particular optimization problem, leading to an additional
interpretation of the quadratic droop controller as an algorithm
which attempts to minimize a trade-off between total reactive
power dissipation and voltage deviations. We comment on
possible extensions and generalizations of these results.

Third and finally, in Section IV-B we investigate the power
sharing properties of our controller, and closely examine two
asymptotic limits. In the limit of high controller gains, we
show that the reactive power is supplied by an inverter to a
load in inverse proportion to the electrical distance between
the two, independent of relative controller gains. Conversely, in
the low-gain limit we find that inverters provide reactive power
in proportion to their controller gains, independent of electrical
distance. When neither limit is appropriate, we provide a
general formula which quantifies the power sharing error as
a function of the controller gains and network parameters.
These results show that large controller gains lead to accurate
voltage regulation and power sharing based on electrical
distances, while small controller gains minimize reactive power
dissipation and yield proportional power sharing (but with
increased risk of instability). Our predictions along with the
robustness of the approach are studied numerically in Section
V. Remarks throughout the paper provide details on extensions
and interpretations of our results, and can be skipped on a first
reading without loss of continuity.

At a more conceptual level, this work has two major
features which distinguish it from the primary literature on
droop control. The first is our analytical approach, based on
circuit theory [31] and approximations of nonlinear circuit
equations [30]. While we make specific modeling assumptions,
they are standard in the field [4] and allow us to derive
strong yet intuitive results regarding stability and optimality of
operating points. Our focus is on characterizing the operating
points arising from decentralized voltage control, along with
characterizing controller performance at the network level. We
make use of different load models in different sections of the
paper, in part to simplify certain presentations, and in part to
illustrate a variety of analysis techniques which should prove



3

useful for other researchers. The second distinguishing feature
is our explicit consideration of loads which are not collocated
with inverters. Voltages at non-collocated loads are typically
lower then the controlled voltages at inverters, and hence it is
these load voltages which ultimately limit network stability.

The remainder of this section recalls some basic notation.
Section II reviews basic models for microgrids, loads, and
inverters, along with the conventional droop controller and the
relevant literature. Our main results are housed in Sections
III–V. In Section VI we summarize and provide directions for
future research.

C. Preliminaries and Notation

Sets, vectors and functions: We let R (resp. R>0) denote the
set of real (resp. strictly positive real) numbers, and let j be the
imaginary unit. Given x ∈ Rn, [x] ∈ Rn×n is the associated
diagonal matrix with x on the diagonal. Throughout, 1n and
0n are the n-dimensional vectors of unit and zero entries, and
0 is a matrix of all zeros of appropriate dimensions. The n×n
identity matrix is In. A matrix W ∈ Rn×m is row-stochastic
if its elements are nonnegative and W1m = 1n. A matrix
A ∈ Rn×n is an M -matrix if Aij ≤ 0 for all i 6= j and all
eigenvalues of A have positive real parts. In this case −DA
is Hurwitz for any positive definite diagonal D ∈ Rn×n (so-
called D-stability), and A−1 ≥ 0 component-wise, with strict
inequality if A is irreducible [32].

I I . M O D E L I N G A N D P R O B L E M S E T U P

We briefly review our microgrid model and recall the con-
ventional voltage droop controller.

A. Review of Microgrids and AC Circuits

a) Network Modeling: We adopt the standard model of a
quasi-synchronous microgrid as a linear circuit represented by
a connected and weighted graph (V, E), where V = {1, . . . , n+
m} is the set of vertices (buses) and E ⊆ V × V is the set
of edges (branches). There are two types of buses: n ≥ 1
load buses L = {1, . . . , n}, and m ≥ 1 inverter buses I =
{n+ 1, . . . , n+m}, such that V = L ∪ I. These two sets of
buses will receive distinct modeling treatments in what follows.

The edge weights of the graph are the associated branch
admittances yij = gij + jbij ∈ C.† The network is con-
cisely represented by the symmetric bus admittance matrix
Y ∈ C(n+m)×(n+m), where the off-diagonal elements are
Yij = Yji = −yij for each branch {i, j} ∈ E (zero if {i, j} /∈
E), and the diagonal elements are given by Yii =

∑n+m
j 6=i yij . To

each bus i ∈ V we associate a phasor voltage Vi = Eie
jθi and

a complex power injection Se,i = Pe,i+ jQe,i. For dominantly
inductive lines, transfer conductances may be neglected and
Y = jB is purely imaginary, where B ∈ R(n+m)×(n+m) is
the susceptance matrix. We refer to Remark 1 for a discussion

†For the short transmission lines of microgrids, line charging and leakage
currents are neglected and branches are modeled as series impedances [33].
Shunt capacitors/reactors will be included later as load models.

of this assumption. The power flow equations then relate the
bus electrical power injections to the bus voltages via

Pe,i =
∑n+m

j=1
BijEiEj sin(θi − θj) , i ∈ V , (1a)

Qe,i = −
∑n+m

j=1
BijEiEj cos(θi − θj) , i ∈ V. (1b)

In this work we focus on dynamics associated with the reactive
power flow equation (1b), and refer the reader to [6]–[8], [34]
and the references therein for analyses of microgrid active
power/frequency dynamics. We will work under the standard
decoupling approximation, where |θi − θj | ≈ 0 and hence
cos(θi − θj) ≈ 1 for each {i, j} ∈ E ; see [12], [35]. This can
be relaxed to non-zero but constant power angles θi − θj =
γij < π/2 at the cost of more complicated formulae, but we
do not pursue this here; see Remark 1. Under the decoupling
assumption, the reactive power injection Qe,i(θ,E) in (1b)
becomes a function of only the voltages E, yielding

Qe,i(E) = −Ei
∑n+m

j=1
BijEj , (2)

or compactly in vector notation as

Q = −[E]BE , (3)

where E = (E1, . . . , En+m). For later reference, some well-
known properties of the susceptance matrix are recorded in
Lemma A.1.

b) Load Modeling: When not specified otherwise, we
assume a static load model of the form Qi(Ei), where the
reactive power injection Qi is a smooth function of the supplied
voltage Ei. With our sign convention, Qi(Ei) < 0 corresponds
to an inductive load which consumes reactive power. Specific
static and dynamic load models will be used throughout the
paper, and we introduce these models when needed.

c) Inverter Modeling: A standard grid-side model for a
smart inverter is as a controllable voltage source

τiĖi = ui , i ∈ I , (4)

where ui is a control input to be designed, and τi > 0 is
a time constant modeling sensing, processing, and actuation
delays. The model (4) assumes that the control loops which
regulate the inverter’s internal voltages and currents are stable,
and that these internal loops are fast compared to the grid-side
time scales over which loads change. This model is widely
adopted among experimentalists in the microgrid field [1],
[36], [37], and further explanations can be found in [7] and
references therein. We note that grid-feeding (i.e., maximum
power point tracking) photovoltaic inverters or back-to-back
converters interfacing wind turbines can be modeled from the
grid side as constant power sources, and are therefore included
in our framework as loads.

B. Review of Conventional Droop Control

The voltage droop controller is a decentralized controller for
primary voltage control in islanded microgrids. The controller
is a heuristic based on the previously discussed decoupling
assumption, and has an extensive history of use; see [1], [2],
[9], [11], [16], [17]. For the case of inductive lines, the droop
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controller specifies the input signal ui in (4) as the local
feedback [4, Chapter 19]∗

ui = −(Ei − E∗i )− niQe,i(E) , i ∈ I , (5)

where E∗i > 0 is the nominal voltage for the ith inverter, and
Qe,i(E) is the measured reactive power injection; see [4], [38]
for details regarding measurement of active/reactive powers.
The controller gain ni > 0 is referred to as the droop coefficient.
From (5), it is clear that if the inverter reactive power injection
Qe,i(E) is non-zero, the voltage Ei will deviate from E∗i .

Remark 1: (Comments on Modeling, Decoupling, and
Droop Control) Formally, the decoupling assumption leading
to (2) is an assumption about the sensitivity of reactive power
injections Qe,i with respect to angle differences θi − θj .
From (1b), this sensitivity is proportional to sin(θi − θj),
and around normal operating points is therefore roughly zero;
phase angles effect reactive power mostly though second-order
effects. The strong relationship between reactive power and
voltage magnitudes is why the former is often used as a tool to
regulate the latter. The voltage droop controller (5) is designed
under the assumption that the susceptance to conductance
ratios |bij |/gij are large within the microgrid. This assumption
is typically justified in engineered settings, as the inverter
output impedances are controlled to dominate over network
impedances giving the network a strongly inductive characteris-
tic [39], [4, Chapter 7]. For dominantly resistive (or capacitive)
microgrids, the appropriate droop controllers take different
forms [4, Chapter 19], with the following general structure.
Assume all branches have uniform conductance/susceptance
ratios −gij/bij = ρ ≥ 0. Then the controller (5) is modified
by replacing Qe,i in (5) with Q̃e,i = sin(ϕ)Pe,i + cos(ϕ)Qe,i,
where tan(ϕ) = ρ. A standard calculation [8] yields Q̃e,i =
−
√

1 + ρ2
∑n+m
j=1 BijEiEj cos(θi−θj). This formula reduces

to (1b) when ρ = 0. Without loss of generality then, we restrict
ourselves to inductive networks with the controller (5). Note
however that as a special case of the above with tan(φ) = π/2,
all analysis will also apply to P/V droop control for resistive
AC microgrids (or even DC microgrids). �

Despite its extensive history, the voltage droop controller
(5) has so far resisted any rigorous stability analysis. In our
opinion, the key obstacle has been — and remains — the
difficulty in determining the high-voltage equilibrium of the
closed-loop system for arbitrary interconnections of devices.
We remove this obstacle in the next section by proposing a
controller based on the nonlinear physics of AC power flow.

I I I . Q U A D R AT I C D R O O P C O N T R O L

A. Definition and Interpretation

While the droop controller (5) is simple and intuitive, it is
based on the linearized behavior of AC power flow around
the system’s open-circuit operating point, and does not respect
the inherently quadratic nature of reactive power flow. We
instead propose a physically-motivated modification of the

∗For grid-connected inverters, one sometimes sees this formula augmented
with power set points ui = −(Ei − E∗i )− ni(Qe,i(E)−Qset

i ). Here we
consider islanded operation where Qset

i = 0.

conventional voltage-droop controller (5). In place of (5),
consider instead the quadratic droop controller

ui = KiEi(Ei − E∗i )−Qe,i(E) , i ∈ I , (6)

where Ki < 0 is the controller gain.† Compared to the conven-
tional controller (5), the gain on the regulating term (Ei−E∗i )
in (6) now scales with the inverter voltage. Combining the
power flow (2) with a static load model Qi(Ei) at each load
bus i ∈ L, we must also satisfy the power balance equations

0 = Qi(Ei)−Qe,i(E) , i ∈ L . (7)

Combining now the inverter model (4), the quadratic droop
controller (6), the load power balance (7), and the power flow
equation (3), the closed-loop dynamical system is differential-
algebraic, and can be written compactly as(

0n
τIĖI

)
=

(
QL(EL)

[EI ]KI(EI − E∗I )

)
+ [E]BE , (8)

where EI = (En+1, . . . , En+m), QL(EL) =
(Q1(E1), . . . , Qn(En)), and τI and KI are diagonal matrices
with elements τi and Ki respectively. Since the variables Ei
represent voltage magnitudes referenced to ground, they are
intrinsically positive, and for physical consistency we restrict
our attention to positive voltage magnitudes.

Remark 2: (Interpretations) Before proceeding to our main
analysis, we offer two interpretations of the quadratic controller
(6), one theoretical and one pragmatic.

Circuit-theoretic interpretation: The design (6) can be inter-
preted as control by interconnection, where we interconnect the
physical electrical network with fictitious “controller circuits”
at the inverter buses i ∈ I [40]. Indeed, consider the two-bus

Fig. 2. Linear circuit representation of the quadratic droop controller (6).

circuit of Figure 2, where the blue bus has variable voltage
Ei and is connected via a susceptance Ki < 0 to the green
bus of fixed voltage E∗i . The current-voltage relations for this
fictitious circuit are(

Ii
I∗i

)
= j

(
Ki −Ki

−Ki Ki

)(
Ei
E∗i

)
, (9)

where Ii (resp. I∗i ) is the current injection at the bus with
voltage Ei (resp. E∗i ). Now, let there be m of the two-bus
circuits in Figure 2; one for each inverter. If we identify the
variable-voltage blue buses of these circuits with the inverter
buses of our original network, and impose that the current
injected into the former must exit from the latter, we obtain an
augmented network with n+ 2m buses, and in vector notation
the current-voltage relations in the new network are IL

0m
I∗I

 = j

BLL BLI 0
BIL BII +KI −KI

0 −KI KI

ELEI
E∗I

 . (10)

†While the chosen sign convention Ki < 0 is unconventional, it will
simplify the resulting formulae and help us interpret the controller physically.
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Fig. 3. Diagram showing network augmentation and reduction. First, each inverter bus of the network in Figure 1(b) is interconnected with a two-bus
controller circuit, consisting of an inverter bus and fictitious bus at constant voltage E∗i . In Theorem 3.1, the inverter buses are eliminated via Kron
reduction, leaving a reduced network with only fixed voltage buses and load buses .

where we have block partitioned all variables according to
loads, inverters, and fictitious controller buses. In this aug-
mented circuit, the inverters behave as interior nodes joining
the fictitious controller buses to the loads, and do not sink
or source power themselves. Left multiplying the first two
blocks of equations in (10) by [E] and noting that by the
definition of (decoupled) reactive power j[EL]IL = QL(EL),
we immediately obtain the right hand side of (8). Thus, the
closed-loop equilibrium points under quadratic droop control
can be interpreted as the solutions of the power balance
equations for an expanded linear circuit.

Practical interpretation: Far from being linear, volt-
age/reactive power capability characteristics of synchronous
generators display significant nonlinearities. In the absence of
saturation constraints, the characteristics are in fact quadratic
[33, Equation 3.105], and thus the quadratic droop controller
(6) more accurately mimics the behavior of a synchronous
generator with automatic voltage regulation, compared to the
classical controller (5). This quadratic dependence means that
the marginal voltage drop (voltage drop per unit increase in
reactive power) increases with reactive power provided. �

Remark 3: (Generalizations) The quadratic droop controller
(6) is a special case of the general feedback controller

ui = Ei
∑

j∈I

(
αijEj + βijE

∗
j

)
, (11)

where αij = αji and βij are gains. One recovers (6) by setting
αii = Ki, βii = −Ki, and all other parameters to zero. While
the decentralized controller (6) can be interpreted as control-by-
interconnection with the circuit of Figure 2, the controller (11)
represents a more general, densely interconnected circuit with
m variable-voltage nodes and m fixed voltage nodes. Since
decentralized control strategies are preferable in microgrids, we
focus on the decentralized controller (6) with the understanding
that results may be extended to the more general (11). �

B. Equilibria and Stability Analysis by Network Reduction

We first pursue the following question: under what condi-
tions on load, network topology, admittances, and controller
gains does the differential-algebraic closed-loop system (8)

possess a locally exponentially stable equilibrium? By exploit-
ing the structure of the quadratic droop controller (6), we will
establish a correspondence between the equilibria of (8) and the
solutions of a power flow equation for a reduced network. In
this subsection we focus on generic static load models Qi(Ei)
before addressing specific load models in Section III-C.

For notational convenience, we first define a few useful
quantities. We block partition the susceptance matrix and nodal
voltage variables according to loads and inverters as

B =

(
BLL BLI
BIL BII

)
, E = (EL, EI) , (12)

and define the reduced susceptance matrix Bred ∈ Rn×n by

Bred , BLL −BLI (BII +KI)
−1
BIL . (13)

Moreover, we define the averaging matrices W1 ∈ Rn×m and
W2 ∈ Rm×(n+m) by

W1 , −B−1
redBLI (BII +KI)

−1
KI , (14)

W2 , (BII +KI)
−1
(
−BIL KI

)
. (15)

It can be shown (Proposition A.2) that Bred is invertible, and
that W1 and W2 are both row-stochastic matrices. Finally we
define the open-circuit load voltages E∗L ∈ Rn>0 via

E∗L ,W1E
∗
I . (16)

Since W1 is row-stochastic, each component of E∗L is a
weighted average of inverter set points E∗i .

Theorem 3.1: (Reduced Power Flow Equation for
Quadratic Droop Network) Consider the closed-loop system
(8) resulting from the quadratic droop controller (6), along
with the definitions (13)–(16). The following two statements
are equivalent:

(i) Original Network: The voltage vector E = (EL, EI) ∈
Rn+m
>0 is an equilibrium point of (8);

(ii) Reduced Network: The load voltage vector EL ∈ Rn>0

is a solution of the reduced power flow equation

0n = QL(EL) + [EL]Bred(EL − E∗L) , (17)
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and the inverter voltage vector is recovered via

EI = W2

(
EL
E∗I

)
∈ Rm>0 . (18)

Theorem 3.1 states that, to study the existence and unique-
ness of equilibria for the closed-loop system (8), we need
only study the reduced power flow equation (17). Voltages
at inverters may then be recovered uniquely from (18). In
fact, since W2 is row-stochastic (Proposition A.2), the inverter
voltages (18) are simply weighted averages of load voltages
EL and inverter set point voltages E∗I .

The reduced power flow equation (17) is straightforward to
interpret in terms of the circuit-reduction of Figure 3. First, as
in Remark 2, we augment the original circuit with fictitious
controller buses. Eliminating the inverter voltages EI from
the augmented network current balance (10) through Kron
reduction [31], one obtains the input/output equivalent circuit(

IL
I∗I

)
= j

(
Bred −BredW1

−WT
1 Bred KI(BII +KI)

−1BII

)(
EL
E∗I

)
.

(19)
This reduction process is shown in Figure 3. Left-multiplying
the first block in (19) by [EL] immediately yields the reduced
power flow (17). Hence (17) is exactly the reactive power
balance equation QL = j[EL]IL in the reduced network of
Figure 3 after reduction (cf. [35, Equation 2.10b]). The bottom
block of equations in (19) determines the fictitious controller
current injections once the top block is solved for EL.

Proof of Theorem 3.1: (i)⇒(ii): Setting the left-hand side of
the closed-loop system (8) to zero, equilibrium points satisfy

0n+m =

(
QL(EL)

[EI ]KI(EI − E∗I )

)
(20)

+

(
[EL] 0

0 [EI ]

)(
BLL BLI
BIL BII

)(
EL
EI

)
.

Since E ∈ Rn+m
>0 solves (20), we can left-multiply the lower

block of equations in (20) by [EI ]
−1 to obtain

0m = KI(EI − E∗I ) +BIIEI +BILEL , (21)

and solve for EI to obtain the inverter voltages (18). Substitut-
ing (18) into the first block of equations in (20), we calculate

−QL(EL) = [EL]BLLEL

− [EL]BLI(BII +KI)
−1 (BILEL −KIE

∗
I )

= [EL] (BLL −BLI(BII +KI)
−1BIL)︸ ︷︷ ︸

Bred

EL

− [EL]BLI(BII +KI)
−1KIE

∗
I︸ ︷︷ ︸

BredE∗
L

= [EL]Bred(EL − E∗L) ,

which is the reduced power flow equation (17).
(ii)⇒(i): Due to (18) and Proposition A.2 (iii), we have that
EL ∈ Rn>0 implies that EI ∈ Rm>0 and hence E ∈ Rn>0.
An easy computation shows that (17) and (18) together imply
that (EL, EI) satisfy the fixed-point equations (20), and thus
E ∈ Rn+m

>0 is an equilibrium point. �

In a similar spirit, the following result states that local
exponential stability of an equilibrium point of (8) may be
checked by studying a reduced Jacobian matrix.

Theorem 3.2: (Stability from Reduced Jacobian) Consider
the closed-loop system (8) resulting from the quadratic droop
controller (6). If the Jacobian of the reduced power flow
equation (17), given in vector notation by

Jred(EL) =
∂QL
∂EL

(EL)+[EL]Bred +[Bred(EL−E∗L)] , (22)

is a Hurwitz matrix when evaluated at a solution EL ∈ Rm>0

of (17), then the equilibrium point (EL, EI) of the differential-
algebraic system (8) is locally exponentially stable. Moreover,
assuming that ∂Qi(Ei)

∂Ei
≤ 0 for each load bus i ∈ L, a sufficient

condition for (22) to be Hurwitz is that

Bred ≺ [EL]−2[QL(EL)] . (23)

Proof of Theorem 3.2: We appeal to [41, Theorem 1], which
states that local stability of the differential-algebraic system (8)
at the equilibrium E ∈ Rn+m

>0 may be studied by linearizing
the differential algebraic system, eliminating the algebraic equa-
tions from the system matrix, and checking that the resulting
reduced matrix is Hurwitz. Consider the generalized eigenvalue
problem (GEP) Jv = λτv where v ∈ Rn, τ = blkdiag(0, τI)
and Jacobian matrix J of (8) is given by

J = [E]B + [BE] +D . (24)

The diagonal matrix D ∈ R(n+m)×(n+m) has elements Dii =
dQi(Ei)/dEi for i ∈ L and Dii = Ki(Ei − E∗i ) +KiEi for
i ∈ I. Since E is strictly positive, we left-multiply through by
[E]−1 and formulate the previous GEP as the symmetric GEP

Mv = λ[E]−1τv , (25)

where

M = MT , B + [E]−1([BE] +D) . (26)

Partitioning the eigenvector v as v = (vL, vI), block parti-
tioning M , and eliminating the top set of algebraic equations,
we arrive at a reduced GEP MredvI = λ[EI ]

−1τIvI where
Mred = MT

red ,MII −MILM
−1
LLMLI . The matrices on both

sides are symmetric, and in particular the matrix [EI ]
−1τI

on the right is diagonal and positive definite. The eigenvalues
{λi}i∈I of this reduced GEP are therefore real, and it holds that
λi < 0 for each i ∈ I if and only if Mred is negative definite.
We now show indirectly that −Mred is positive definite,
by combining two standard results on Schur complements.
Through some straightforward computations, one may use (13),
(16), (18) and (21) to simplify M to

M =

(
M11 BLI
BIL BII +KI

)
,

where M11 = [EL]−1(∂QL/∂EL)+BLL+[EL]−1[Bred(EL−
E∗L)]. Since the bottom-right block −(BII + KI) of −M is
positive definite, −M will be positive definite if and only if
the Schur complement with respect to this bottom-right block
is also positive definite. This Schur complement is equal to

−[EL]−1 ∂QL
∂EL

(EL)−Bred− [EL]−1[Bred(EL−E∗L)] , (27)



7

which is exactly −[EL]−1 times the Jacobian (22) of (17).
Since Jred is Hurwitz with nonnegative off-diagonal elements,
−J is an M -matrix and is therefore D-stable. It follows that
the Schur complement (27) is positive definite, and hence that
Mred is positive definite, which completes the proof of the main
statement. For the moreover statement, proceed along similar
arguments and consider the symmetric version [EL]−1Jred(EL)
of (22), which equals

[EL]−1 ∂QL
∂EL

(EL) +Bred + [EL]−1[Bred(EL − E∗L)] .

Solving the reduced power flow equation (17) for Bred(EL −
E∗L) and substituting into the third term above, we find that

[EL]−1Jred = [EL]−1 ∂QL
∂EL

(EL) +Bred − [EL]−2[QL(EL)] .

The first term is diagonal and by assumption negative semidef-
inite, and hence Jred(EL) will be Hurwitz if (23) holds, which
completes the proof. �

The sufficient condition (23) is intuitive: it states that at equi-
librium, the network matrix Bred should be more susceptive
than the equivalent load susceptances Qi/E2

i . The results of
Theorem 3.2 are implicit, in that checking stability depends on
the undetermined solutions of the reduced power flow equation
(17); in Section III-C we apply Theorems 3.1 and 3.2 to specific
load models and obtain explicit conditions.

Remark 4: (Parallel Microgrids) In [29] we provided an
extensive analysis of the closed loop (8) for a “parallel” or
“star” topology, where all inverters feed a single common load.
In particular, for a constant power load we provided a necessary
and sufficient condition for the existence of a stable equilibrium.
Depending on the system parameters, the microgrid can have
zero, one, or two physically meaningful equilibria, and displays
both saddle-node and singularity-induced bifurcations. Perhaps
surprisingly, overall network stability is not equivalent to pair-
wise stability of each inverter with the common load. �

C. Equilibria and Stability Conditions for ZI, ZIP, and Dynamic
Shunt Load Models

In this section we leverage the general results of Section
III-B to study the equilibria and stability of the microgrid for
some specific, tractable load models. To begin, the reduced
power flow equation (17) can be solved exactly for combina-
tions of constant-impedance and constant-current loads.

Theorem 3.3: (Stability with “ZI” Loads) Con-
sider the reduced power flow equation (17) for constant-
impedance/constant-current loads

QZI
L (EL) = [EL][bshunt]EL + [EL]Ishunt , (28)

where bshunt ∈ Rn (resp. Ishunt ∈ Rn) is the vector of constant-
impedance loads (resp. constant current loads). Assume that

(i) −(Bred + [bshunt]) is an M -matrix , and
(ii) Ishunt > BredE

∗
L component-wise .

Then the unique solution EZI
L ∈ Rn>0 to (17) is given by

EZI
L = (Bred + [bshunt])

−1(BredE
∗
L − Ishunt) , (29)

and the associated equilibrium point (EZI
L , E

ZI
I ) of the closed-

loop system (8) is locally exponentially stable.
The first technical condition in Theorem 3.3 restricts the

impedance loads from being overly capacitive, while the second
restricts the current loads from being overly inductive (since
BredE

∗
L < 0n component-wise). Both would be violated only

under fault conditions in the microgrid, and are therefore non-
conservative. As expected, in the case of open-circuit operation
(no loading) when Ishunt = bshunt = 0n, (29) reduces to
EZI
L = E∗L, the open-circuit load voltage vector.

Proof of Theorem 3.3: Substituting the ZI load model (28)
into the reduced power flow equation (17), we obtain

0n = [EL] ((Bred + [bshunt])EL − (BredE
∗
L − Ishunt))

= [EL](Bred + [bshunt])(EL − EZI
L ) , (30)

where in the second line we have factored out (Bred +[bshunt])
and then identified the second term in parentheses with (29).
Observe that EL = EZI

L is a solution to (30). Since (Bred +
[bshunt]) is nonsingular and we require that EL ∈ Rn>0, EZI

L

is the unique solution of (30). It remains only to show that
EZI
L ∈ Rn>0. Since −(Bred + [bshunt]) is by assumption an M -

matrix, the inverse (Bred+[bshunt])
−1 has nonpositive elements

[32]. By invertibility, (Bred +[bshunt])
−1 cannot have any zero

rows, and therefore the product of (Bred + [bshunt])
−1 with

the strictly negative vector BredE
∗
L − Ishunt yields a strictly

positive vector EZI
L ∈ Rn>0 as in (29).

To show local stability, we apply Theorem 3.2 and check
that the Jacobian of (30) evaluated at (29) is Hurwitz. Differ-
entiating (30), we calculate that

Jred = [EL](Bred + [bshunt]) + [(Bred + [bshunt])(EL−EZI
L )] ,

and therefore that

Jred(EZI
L ) = [EZI

L ](Bred + [bshunt]) , (31)

which is Hurwitz since −(Bred + [bshunt]) is by assumption
an M -matrix and M -matrices are D-stable. �

A more general static load model still is the ZIP model
Qi(Ei) = bshunt,iE

2
i +Ishunt,iEi+Qi which augments the ZI

model (28) with an additional constant power demand Qi ∈ R
[35]. The full ZIP model is depicted in Figure 4. In vector

Fig. 4. Pictorial representation of ZIP load model.

notation, the ZIP model generalizes (28) as

QZIP
L (EL) = [EL][bshunt]EL + [EL]Ishunt +QL . (32)

Unlike the ZI model (28), the reduced power flow equation
(17) cannot be solved analytically for ZIP loads, except for
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the special case of a parallel microgrid. Even in this special
case, the network can have multiple equilibrium points with
non-trivial stability properties [29]. The following result builds
on analysis techniques developed in [30] and provides an
approximate characterization of the high-voltage solution to
(17) when the constant power term QL is “small”.

Theorem 3.4: (Stability with “ZIP” Loads) Consider the
reduced power flow equation (17) with the ZIP load model (32),
let the conditions of Theorem 3.3 hold, and let EZI

L be the high-
voltage solution of (17) for ZI loads as given in Theorem 3.3.
Furthermore, define the short-circuit capacity matrix

Qsc , [EZI
L ](Bred + [bshunt])[E

ZI
L ] ∈ Rn×n . (33)

If ‖QL‖ is sufficiently small, then there exists a unique high-
voltage solution EZIP

L ∈ Rn>0 of the reduced power flow
equation (17) with ZIP loads (32), given by

EZIP
L = [EZI

L ]
(
1n −Q−1

sc QL + ε
)
, (34)

where ‖ε‖ = O(‖Q−1
sc QL‖2), and the corresponding equilib-

rium point (EZIP
L , EZIP

I ) of (8) is locally exponentially stable.

Proof: See Appendix A. �

Similar to the technical conditions (i) and (ii) in Theorem 3.3
regarding constant-impedance and constant-current load com-
ponents, Theorem 3.4 requires the constant-power component
QL of the load model to be sufficiently small. The high-voltage
solution (34) can be thought of as a regular perturbation of the
solution EZI

L for ZI loads, where ε is a small error term. As
‖Q−1

sc QL‖ → 0, ‖ε‖ → 0 quadratically, and EZIP
L → EZI

L .

While the ZIP load model can accurately capture the steady-
state behavior of most aggregated loads, when considering
dynamic stability of a power system it is often important to
check results obtained for static load models against those
obtained using basic dynamic load models [35]. A common dy-
namic load model is the dynamic shunt model Tiḃdyn−shunt,i =
Qi − E2

i bdyn−shunt,i, or in vector notation

T ḃdyn−shunt = QL − [EL]2bdyn−shunt , (35)

where T is a diagonal matrix of time constants. The
model specifies a constant-impedance load model Qi(Ei) =
bdyn−shunt,iE

2
i , with the shunt susceptance bdyn−shunt,i dynam-

ically adjusted to achieve a constant power consumption Qi in
steady-state. This is a common low-fidelity dynamic model for
thermostatically controlled loads, induction motors, and loads
behind tap-changing transformers [35]. We restrict our attention
to inductive loads Qi ≤ 0, as these are the most common in
practice, and without loss of generality we assume that Qi < 0
for all i ∈ L, since if Qi = 0 the unique steady state of (35)
is bdyn−shunt,i = 0 and the equation can be removed.

Theorem 3.5: (Stability with Dynamic Shunt Loads) Con-
sider the reduced power flow equation (17) with the dynamic
shunt load model (35) and Qi < 0. If ‖QL‖ is sufficiently
small, then there exists a unique solution (EDS

L , bDS
dyn−shunt) ∈

Rn>0 × Rn<0 of (17),(35), given by

EDS
L = [E∗L]

(
1n −Q−1

sc QL + ε
)
, (36a)

bDS
dyn−shunt = [EDS

L ]−2QL , (36b)

where Qsc = [E∗L]Bred[E∗L] and ‖ε‖ = O(‖Q−1
sc QL‖2). The

corresponding equilibrium point (EDS
L , EDS

I , bDS
dyn−shunt) of

the system (8), (35) is locally exponentially stable.

Proof: We sketch the proof in Appendix A. �

Remark 5: (From Quadratic to Conventional Droop):
While the stability results derived above hold for the quadratic
droop-controlled microgrid, under certain selections of con-
troller gains a direct implication can be drawn from the above
stability results to stability of the microgrid under conventional,
linear voltage droop control. Additional information can be
found in [29, Section V]. �

We conclude this section by commenting on the utility of the
preceding analysis and stability results. If hard design limits
are imposed on the load voltages EL, the expressions (29)
or (34) for the unique high-voltage solutions can be used for
design purposes to (non-uniquely) back-calculate controller
gains, and/or to determine bounds on tolerable loading profiles.

I V. C O N T R O L L E R P E R F O R M A N C E

Having thoroughly investigated the stability properties of
the closed-loop system (8) in Section III, we now turn to
questions of optimality and controller performance. Here we
are interested in inverse-optimality of the resulting equilibrium
point of the system in an optimization sense, along with how
well the resulting equilibrium achieves the power sharing
objective. We do not address system-theoretic optimality or
performance of the controller, in the sense of standard optimal
control or the minimization of closed-loop system norms.

A. Optimality of Quadratic Droop Control

While in Section III we emphasized the circuit-theoretic
interpretation of the quadratic droop controller (6), it is also
relevant to ask whether the resulting equilibrium point of
the system is inverse-optimal with respect to any criteria.
For simplicity of exposition, we restrict our attention in this
subsection to constant-impedance load models of the form

Qi(Ei) = bshunt,iE
2
i . (37)

Analogous extensions to ZIP load models are possible using
energy function theory [42], at the cost notational complex-
ity and less insight. To begin, note that for nodal voltages
(EL, EI) ∈ Rn+m

>0 , the total reactive power Qloss absorbed by
the inductive transmission lines of the microgrid is given by

Qloss(EL, EI) =
∑
{i,j}∈E

Bij(Ei − Ej)2 .

Similarly, the total reactive power absorbed by the loads is

Qload(EL) = −
∑

i∈L
bshunt,iE

2
i .

Efficient operation of the microgrid stipulates that we minimize
reactive power losses and consumption, since transmission and
consumption of reactive power contributes to thermal losses.‡

Simultaneously however, we have the practical requirement that

‡For an inverse-optimality analysis that relates real power generation to
frequency droop control, see [8].
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inverter voltages Ei must remain close to their rated values
E∗i > 0. We encode this requirement in the quadratic cost

Cvolt(EI) = −
∑

j∈I
κi(Ei − E∗i )2 , (38)

where κi < 0 are cost coefficients. Consider now the combined
optimization problem

minimize
E∈Rn+m

>0

C = Qloss(E) +Qload(EL) + Cvolt(EI) , (39)

where we attempt to enforce a trade-off between minimizing
reactive power dissipation and minimizing voltage deviations.
The next result shows that an appropriately designed quadratic
droop controller (6) is a decentralized algorithm for solving the
optimization problem (39). Conversely, any quadratic droop
controller solves an optimization problem of the form (39) for
appropriate coefficients κi.

Proposition 4.1: (Optimality and Quadratic Droop) Con-
sider the closed-loop microgrid system (8) with constant-
impedance loads (37) and controller gains {Ki}i∈I , and the
optimization problem (39) with cost coefficients {κi}i∈I .
Assume as in Theorem 3.3 that −(Bred + [bshunt]) is an M -
matrix. If the parameters are selected such that Ki = κi
for each i ∈ I, then the unique locally exponentially stable
equilibrium (EZ

L, E
Z
I ) ∈ Rn+m

>0 of the closed-loop system (8)
is equal to the unique minimizer of the optimization problem
(39), and both are given by

EZ
L = (Bred + [bshunt])

−1BredE
∗
L ∈ Rn>0 , (40)

with EZ
I ∈ Rm>0 recovered by inserting (40) into (18).

Proof of Proposition 4.1: That (EZ
L, E

Z
I ) is the unique locally

exponentially stable equilibrium of (8) follows immediately
from Theorem 3.3 by setting Ishunt = 0n. We now relate the
critical points of the optimization problem (39) to the equilib-
rium equations for the closed-loop system. In vector notation,
we have that Qloss = −ETBE, Qload = −ET

L[bshunt]EL,
and Cvolt = −(EI − E∗I )TKI(EI − E∗I ), where E =
(E1, . . . , En+m). The total cost C may therefore be written as
the quadratic form C = xTBx, where x = (EL, EI , E

∗
I ) and

B = −

BLL + [bshunt] BLI 0
BIL BII +KI −KI

0 −KI KI

 .

The first order optimality conditions ∇C(E) = 0n+m yield(
BLL + [bshunt] BLI

BIL BII +KI

)(
EL
EI

)
=

(
0n

KIE
∗
I

)
. (41)

Solving the second block of equations in (41) for EI yields
the quadratic droop inverter voltages (18). Substituting this
into the first block of equations in (41), simplifying, and left-
multiplying by [EL] yields

0n = [EL][bshunt]EL + [EL]Bred (EL − E∗L) , (42)

where Bred and E∗L are as in (13)–(16). The result (42) is
exactly the reduced power flow equation (30) with Ishunt =
0n, which shows the desired correspondance. It remains only
to show that this unique critical point is a minimizer. The
(negative of the) Hessian matrix of C is given by the matrix of

coefficients in (41). Since the bottom-right block of this matrix
is negative definite, it follows by Schur complements that the
Hessian is positive definite if and only if −(Bred + [bshunt])
is positive definite, which by assumption holds. �

Note that depending on the heterogeneity of the voltage set
points E∗i , minimizing Qloss +Qload may or may not conflict
with minimizing Cvolt. The quadratic droop controller (6) is a
primal algorithm for the optimization problem (39), and can
therefore be interpreted as striking an optimal balance between
maintaining a uniform voltage profile and minimizing total
reactive power dissipation (cf. [19], [43], where similar trade-
offs are studied). The result can also be interpreted as an
application of Maxwell’s minimum heat theorem to controller
design [40, Proposition 3.6].

Remark 6: (Generalized Objective Functions) To obtain
the generalized feedback controller (11), one may replace
Cvolt(EI) given in (38) by

Cvolt(EI) =
∑

i,j∈I

αij
2
EiEj + βijEiE

∗
j .

For a general strictly convex and differentiable cost Cvolt(EI),
analogous methods may be used to arrive at feedback con-
trollers of the form ui = Ei · ∂Cvolt

∂Ei
. See [33, Chapter 9],

[8, Remark 4] [21], [22] for more on nonlinear droop curves
derived from optimization methods, including dead bands and
saturation. �

B. Power Sharing: General Case and Asymptotic Limits

We now study the following question: under an incremental
change in load power demands QL → QL + ∆q, how do
the reactive power injections at inverters change? This is the
question of power sharing. For simplicity of exposition, we
make two standing assumptions in this subsection. First, we
consider only the case of constant power loads QL(EL) = QL.
Second, we consider the case of uniform inverter voltage set
points, such that E∗I = EN ·1m for some fixed nominal voltage
EN > 0. Both assumptions can be easily relaxed to yield more
general (but much more cumbersome) formulae. Under these
assumptions, the results of Theorem 3.4 for ZIP loads simplify
to yield the approximate load voltages

EL ' EN
(

1n −
1

E2
N

B−1
redQL

)
, (43)

with Bred as defined in Theorem 3.1. The following definition
is useful for interpreting our result to follow.

Definition 1: (Differential Effective Reactance) Let Eoc
i

be the voltage at load i ∈ L when all loads are open-circuited.
The differential effective reactance Xeff

ij between loads i, j ∈ L
is the voltage difference Ei −Eoc

i measured at load i when a
unit reactive current is injected at load j with all other current
injections zero.

In other words, Xeff
ij is the proportionality coefficient from

current injections at load j to voltage deviations at load i.
For branches {i, j} ∈ E , we also let Xij denote the direct
reactance between buses i and j, and set Xij = +∞ if there
is no branch. The main result of this section characterizes how
inverter reactive power injections behave under the quadratic
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droop controller (6) as a function of the susceptance matrix B,
load demands QL, and controller gains KI .

Theorem 4.2: (Power Sharing) Consider the closed-loop
system (8) with the approximate load voltages (43). Then the
inverter reactive power injections QI ∈ Rm are given by

QI = KI(BII +KI)
−1BILB

−1
redQL . (44)

Moreover, the following special cases hold:

1) Distance-Based Power Sharing: In the high-gain limit
where Ki → −∞ for each inverter i ∈ I, it holds that

Qi = −
∑
k∈L

1

Xik

∑
j∈L

Xeff
kj Qj , i ∈ I . (45)

That is, loads are preferentially supplied with power by
sources which are electrically nearby;

2) Proportional Power Sharing: In the low-gain limit
where Ki → 0− for each i ∈ I, it holds that

Qi =
Ki∑
i∈I Ki

Qload , i ∈ I , (46)

where Qload = −
∑
i∈LQi is the total load. That

is, sources supply power based only on their relative
controller gains.

In the high gain limit (45), each inverter behaves as a stiff
(constant) voltage source, and power is routed based on electri-
cal distances. In particular, (45) adds up the weighted parallel
transfer paths from all load buses j through all intermediate
load buses k adjacent to inverter i. In the low-gain limit of (46),
inverters react to changes in total load by supplying reactive
power in proportion to their controller gain Ki, which can be
selected as being proportional to the generation capacity of
the unit. Moreover, observe that (46) does not depend on the
network topology. The general formula (44) can be interpreted
as interpolating between these two regimes.

Proof of Theorem 4.2: From the closed-loop system (8)
we observe that in steady-state, the inverter reactive power
injections are given by

QI = KI [EI ](EI − EN1m) , (47)

in which the only variables are the inverter voltages EI .
However, Theorem 3.1 yielded an expression for EI in terms
of EL, namely (18). Substituting the load voltages (43) into
(18) and working through some algebra, one finds that EI =
EN ·W31m +A1QL, where W3 is row-stochastic, and hence

EI = EN1m +A1QL , (48)

where

A1 ,
1

EN
(BII +KI)

−1BILB
−1
red . (49)

Much like in the proof of Theorem 3.4, we linearize (47) around
the open-circuit operating condition (EI = EN1m, QI = 0m).
Performing this linearization, we obtain

QI = ENKI(EI − EN1m) ,

which after substituting (48) and (49) yields the desired result
(44). To show the first statement, for ε > 0 define

Bred,ε = BLL −BLI(BII + εKI)
−1BIL (50a)

Sε = εKI(BII + εKI)
−1BILB

−1
red,ε . (50b)

Note that for ε = 1, we recover the previously derived formula
(44) as QI = S1QL. We calculate that limε→∞Bred,ε = BLL,
and that limε→∞ εKI(BII + εKI)

−1 = Im. It follows that

lim
ε→∞

Sε = BILB
−1
LL .

Applying Lemma A.3 then leads to the first statement. The
proof of the second statement is more delicate, since for ε = 0,
Bred,0 = BLL−BLIB−1

II BLI is singular with one-dimensional
kernel spanned by 1m [31, Lemma II.1]. Nonetheless, B−1

red,ε

may be expanded in a Laurent series around the simple pole
at ε = 0 [44]. Moreover, since for small ε we have εKI(BII +
εKI)

−1 ' εKIB
−1
II , only the term proportional to ε−1 in

the Laurent series of B−1
red,ε will give a non-zero contribution

to limε→0 Sε. Some straightforward computations using [44,
Theorem 1.1] give that the required term in the Laurent series
is ε−1(ε1T

mKI1m)−11n×n, and it follows that

lim
ε→0

Sε = lim
ε→0

εKIB
−1
II BIL ·

1

ε

1

1T
mKI1m

1n×n ,

=
1∑

i∈I Ki
KIB

−1
II BIL1m×n .

Since −B−1
II BIL is row-stochastic [31, Lemma II.1],

B−1
II BIL1n×n = −1m×n, and the result (46) follows by

writing things out in components. �

As a final technical remark regarding Theorem 4.2, we
emphasize that the proportional power sharing result (46)
represents a limit under the linear approximation (43). In
this low-gain limit, B−1

red in (43) becomes very large and
for any fixed QL the second term in the linearization (34)
dominates, leading to large voltage deviations. This violates
the premise under which the linearization was derived, and
may lead to the loss of the closed-loop system’s equilibrium
point or to violation of the decoupling assumption. Thus, the
extent to which the proportional power sharing result may be
implemented in practice is limited by the size of the loads to be
serviced, the stiffness of the grid, and the stability bottleneck
associated with low load voltages. We explore this issue further
via simulations in Section V.

Nonetheless, an interesting observation can be made by
comparing Theorem 4.2 with the optimization problem (38).
Namely, large controller gains lead to accurate voltage regu-
lation and distance-based reactive power sharing, while small
controller gains minimize reactive power dissipation and yield
proportional power sharing (but with risk of instability).

V. S I M U L AT I O N S

Through simulations we now demonstrate the robustness
of our results to unmodeled resistive losses, coupled ac-
tive/reactive power flows, and frequency dynamics. We consider
the islanded microgrid of Figure 1(b) consisting of five loads
and three inverters. Loads are modeled using the dynamic
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shunt model (35) for reactive power demands, along with
the analogous dynamic conductance model for active power
demands. The consumption set points in these load models
are taken as disturbance inputs in what follows, in order to
subject the system to time-varying loads. We model additional
high-frequency variation on the load consumption set points
as uncorrelated white noise, with a standard deviation of
15% of the nominal set points for both active and reactive
power. Branches have a mixed resistive/inductive character
with non-uniform R/X ratios of between 0.3 and 1.1. Inverter
frequencies are controlled by the frequency droop controller

ωi = ω∗ −miPe,i , i ∈ I ,

where ωi is the inverter output frequency, ω∗ = 2π ·60Hz, and
mi > 0 is the frequency droop coefficient. System parameters
are based on those from the experiments in [7], and are omitted
for brevity. The quadratic droop gains are set based on the
conventional droop gains from [7] as Ki = − 1

niE∗
i

, which is
a relatively stiff tuning leading to strong voltage regulation. In
particular, K1 = K2 = 2K3, meaning that inverters 1 and 2
are rated equally, with inverter 3 being rated for half as much
power.

The system is under nominal loading up to t = 2s, at which
point loads {1, 3, 5} are subject to sinusoidal variations with a
50% magnitude and a 0.5s period for both active and reactive
power (at constant power factor). At t = 4s sinusoidal variation
stops and active and reactive consumption set points at load
buses {2, 4} are doubled, before returning to nominal loading
at t = 6s. Figure 5 shows the resulting inverter reactive power
injections.§ With this tuning, the controller is able to maintain
stability and track the load demands, but proportional power
sharing is poor in accordance with Theorem 4.2 (the curves
for inverters 1 and 2 should overlap, but do not). Figure 6
shows the resulting voltage magnitudes at both inverter and
load buses. The inverter voltages stay well regulated, which
prevents load bus voltages from falling below 0.95 p.u.

We now test the prediction from Theorem 4.2 that making
Ki small will enforce proportional power sharing, but also make
the network more prone to instability. We weaken the feedback
gains Ki substantially, to 5% of their previous values, and
repeat the above experiment. The resulting traces are shown in
Figures 7 and 8. As expected, early in the experiment reactive
power sharing is enforced, with inverters 1 and 2 sharing power
equally and providing twice the power of inverter 3. As seen in
Figure 8, voltage magnitudes are significantly lower than they
were under higher controller gains. When the load is doubled
at t = 4s a voltage collapse occurs and the system is unable to
recover. These experiments confirm that our theoretical results
remain useful in a more general model setting.

V I . C O N C L U S I O N S

In this work we have provided a detailed analysis of the
quadratic droop controller, a tractable modification of conven-
tional droop control for application in islanded microgrids.

§The corresponding traces under the conventional voltage droop controller
are extremely similar, and are therefore omitted for clarity.
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large feedback gains Ki. Vertical axis normalized by base voltage of 230V.

The special structure of quadratic droop control allows for
rigorous circuit-theoretic analysis methods to be applied to the
closed-loop system. A detailed analysis of system equilibria
and stability was provided for several load models, along with
an optimization interpretation of the resulting decentralized
controller. The power sharing characteristics of the controller
were analyzed, showing that the controller interpolates between
proportional power sharing (in the low-gain regime) and power
sharing based on electrical distance (in the high-gain regime).
Our analysis results provide easily verifiable certificates for
system stability, and the proof techniques developed should
prove quite useful for related microgrid control problems.

The approach and techniques reported in this paper should
serve as a guidepost for further work on the following key
technical problems. While our results apply to microgrids
with uniform R/X ratios under a decoupling assumption, the
coordinate transformation used herein to treat uniform R/X
ratio microgrids (see Remark 1) has the side-effect of mixing
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active and reactive power, making true active/reactive power
sharing more subtle to implement. Relaxing these assumptions
may prove possible using recently developed analysis tools
such as coupled power flow linearizations [45]. The design of a
simple, decentralized, and provably stable droop-like controller
for voltage stabilization and power sharing in microgrids
with non-uniform R/X ratios remains an open problem.
Additional important practical directions are an analysis of
interactions between inner voltage/current control loops and
droop control, along with a voltage stability analysis for mixed
inverter/generator networks.

While here we have addressed the problem of primary
control, the authors view secondary voltage control for islanded
microgrids [7] as an area requiring new problem formulations
and increased theoretical attention. In particular, it is not clear
to what extent standard secondary control formulations such
as voltage regulation and reactive power sharing (adopted

from high-voltage systems and power supply backup systems,
respectively) are important in sub-distribution sized microgrids.
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A P P E N D I X A
S U P P O R T I N G L E M M A S A N D P R O O F S

Lemma A.1: (Properties of Susceptance Matrix) The
susceptance matrix B ∈ R(n+m)×(n+m) satisfies

(i) Bij = Bji ≥ 0 for i 6= j, with strict inequality if and
only if {i, j} ∈ E ;

(ii) B is negative semidefinite with a simple eigenvalue at
zero corresponding to the eigenvector 1n+m ;

(iii) all principal submatrices of B are negative definite.

Proposition A.2: (Properties of Reduced Quantities) The
following statements hold:

(i) −Bred is an M -matrix;
(ii) W1 and W2 are row-stochastic;

(iii) E∗L > 0n component-wise.

Proof of Proposition A.2: (i): The first fact follows from the
closure of the set of symmetric positive definite M -matrices
under the Schur complement, as Bred is the Schur complement
of B+blkdiag(0,KI) with respect to the BII+KI block [31,
Lemma II.1]. Similar to [31, Lemma II.1], it can be verified
that W11m = 1n and W21n+m = 1m. The proof of (iii) then
follows from (ii). �

Proof of Theorem 3.4: With the ZIP load model (32), the
reduced power flow equation (30) is modified to

QL = −[EL](Bred + [bshunt])(EL − EZI
L ) . (51)

Inspired by [30], [45], consider now the invertible change of
coordinates defined by

EL = [EZI
L ](1n −Q−1

sc QL + ε) , (52)

where ε ∈ Rn is our new variable. Substituting this into the
power flow (51), some basic algebra leads to

h(ε, qL) , Qscε+ [qL − ε]Qsc(qL − ε) = 0n , (53)

where we have abbreviated qL = Q−1
sc QL. First, note

that h(0n,0n) = 0n. Next, an easy calculation gives that
∂h
∂ε (0n,0n) = Qsc, which is full rank. It follows from the Im-
plicit Function Theorem that there exist open sets U0, V0 ⊂ Rn
(each containing the origin) and a continuously differentiable
function H : U0 → V0 such that h(H(qL), qL) = 0n for
all qL ∈ U0. This in turn shows that for ‖qL‖ = ‖Q−1

sc QL‖
sufficiently small, the expression (52) solves the reduced power
flow equation (51). To obtain the quadratic bound on ‖ε‖,
rearrange (53) and take the norm of both sides to obtain

‖Qscε‖ = ‖[qL − ε]Qsc(qL − ε)‖ . (54)

Since Qsc is invertible, the left-hand side of (54) is lower-
bounded by α‖ε‖, where α > 0. Moreover, a series of
elementary inequalities shows that the right-hand side of (54)
is upper bounded by β‖qL − ε‖2 ≤ β(‖qL‖ + ‖ε‖)2, where
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β ≥ α depends only on Qsc. Combining these bounds, we find
that ε satisfies

‖ε‖ ≤ β

α
(‖qL‖+ ‖ε‖)2 . (55)

Since ‖qL‖ is sufficiently small, in particular it holds that
4α‖qL‖/β < 1. In this case, some simple algebra shows that
inequality (55) further implies that

‖ε‖ ≤ α

2β
− ‖qL‖ −

α

2β

√
1− 4α‖qL‖/β

≤ α

2β
− ‖qL‖ −

α

2β

(
1− β

α
‖qL‖ − 8‖qL‖2

β2

α2

)
= 4

β

α
‖qL‖2 = O(‖Q−1

sc QL‖2) ,

where we have used the fact that for a ∈ [0, 1],
√

1− a ≥
1− a/2− a2/2. Exponential stability follows immediately by
continuity from the case of ZI loads. �

Proof of Theorem 3.5: We provide only a sketch of the
proof. In steady state, the DS model (35) is equivalent to
a constant-power model, and hence the approximate steady-
state load voltages EDS

L are given as in Theorem 3.4 with ZI
components bshunt = 0n and Ishunt = 0n, yielding the stated
equilibrium. Stability can no longer be shown by applying
Theorem 3.2, since Theorem 3.2 was proven in the absence of
load dynamics. A tedious but straightforward calculation shows
that applying the proof methodologies of Theorems 3.2 and
3.4 to the extended dynamics (8),(35) yields local exponential
stability. �

Lemma A.3: (Electrical Distances) Let Xeff
kj be the differ-

ential effective reactance between loads k, j ∈ L, and for
{i, k} ∈ E let Xik = 1/Bik be the direct reactance, with
Xik = +∞ if {i, k} /∈ E . Then

−(BILB
−1
LL)ij =

∑
k∈L

Xeff
kj /Xik .

Proof of Lemma A.3: From the current balance equations
−jIL = BLLEL+BLIEI , observe by setting IL = 0n that the
open-circuit load voltages are given by Eoc

L = −B−1
LLBLIEI ,

which is well-defined by Lemma A.1 (iii). Then the current
balance can be rewritten as EL − Eoc

L = −jB−1
LLIL, and

it follows that Xeff = −B−1
LL. The desired formula is then

immediate by noting that for i ∈ L, j ∈ I, and {i, j} ∈ E ,
1/(BLI)ij = Xij by definition. �
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