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Abstract— A hierarchical layering of primary, secondary, and
tertiary control is the standard operation paradigm for bulk
power systems. Similar hierarchical decision architectures have
been proposed for microgrids. However, the control objectives
in microgrids must be achieved while allowing for robust plug-
and-play operation and maximal flexibility, without hierarchical
decision making, time-scale separations, and central authorities.
Here, we explore control and optimization strategies for the
three decision layers and illuminate some possibly-unexpected
connections and dependencies among them. Our analysis builds
upon first-principle models and decentralized droop control. We
investigate distributed architectures for secondary frequency
regulation and find that averaging-based distributed controllers
using communication among the generation units offer the best
combination of flexibility and performance. We further leverage
these results to study constrained AC economic dispatch in
a tertiary control layer. We show that the minimizers of the
economic dispatch problem are in one-to-one correspondence
with the set of steady-states reachable by droop control. This
equivalence results in simple guidelines to select the droop
coefficients, which include the known criteria for load sharing.

I. INTRODUCTION

With the goal of integrating distributed renewable genera-
tion and energy storage systems, the concept of a microgrid
has recently gained popularity [2]–[5]. Microgrids are low-
voltage distribution networks composed of distributed gen-
eration, storage, load, and managed autonomously from the
larger transmission network. Microgrids are able to connect
to a larger power system, but are also able to island them-
selves and operate independently. The sources in a microgrid
generate either DC or variable frequency AC power, and
are interfaced with an AC grid via power electronic DC/AC
inverters. Through these inverters, cooperative actions must
be taken to ensure stability, power balance, load sharing, and
economic operation. A variety of decision and control archi-
tectures — ranging from centralized to fully decentralized
— have been proposed to address these challenges [5]–[7].

In conventional bulk power systems, the different control
tasks are separated in their time scales and aggregated into a
hierarchy. The foundation of this hierarchy, termed primary
control, must rapidly balance generation and demand, while
sharing the load, synchronizing the AC voltage frequencies,
and stabilizing their magnitudes. This is accomplished via
decentralized droop control balancing of power injections
and voltage frequencies and magnitudes. Droop controllers
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induce steady-state errors in frequency and voltage mag-
nitudes, which are corrected in a secondary control layer.
A few selected generators then perform secondary control
by balancing generation with load and inter-area power
transfers. Termed automatic generation control (AGC), this
architecture is based on centralized integral control and
operates on a slower time scale than primary control [8].
The operating point stabilized by primary/secondary control
is scheduled in a tertiary control layer to dispatch the gener-
ation to minimize operational costs or to establish a fair load
sharing. Typically, an economic dispatch is optimized offline,
in a centralized fashion, using precise load forecasts [9].

While this hierarchical architecture can be adapted from
the transmission level to microgrids, the control challenges
and architecture limitations imposed by the microgrid frame-
work are diverse and daunting. The high penetration of re-
newables, the low levels of inertia, and the poorly predictable
load profiles lead to volatile dynamics requiring fast control
actions. On the other hand, the distributed nature of mi-
crogrids preclude centralized control strategies of any kind.
Microgrid controllers must be able to adapt in real time to
unknown and variable loads and network conditions. In short,
the three layers of the control hierarchy for microgrids must
allow for as close to plug-and-play operation as possible, be
either distributed or completely decentralized, and operate
seamlessly without a pre-imposed separation of time scales.

For these reasons, recent research efforts aim at connecting
the three different decision layers – in load control, in AGC,
and in microgrids. Primary and secondary control can be
achieved in a fully decentralized fashion [10] at the cost of
steady-state deviations from the desired power injection pro-
file. Thus, distributed controllers merging primary and sec-
ondary control have been proposed based upon continuous-
time averaging with all-to-all [11]–[13] or nearest-neighbor
[14]–[16] communication. The tertiary optimization layer can
be merged with the primary and secondary control layer
based on continuous-time optimization approaches [1], [17]–
[22]. Similar discrete-time approaches are based on game-
theoretic ideas [23] or discrete-time averaging algorithms
[24], [25].

All of the above references share the following character-
istics: (i) Averaging-based control strategies are employed
to maintain the desired operating point despite an unknown
load profile. (ii) All approaches incorporating the tertiary
optimization layer essentially rely upon the following insight
termed economic dispatch criterion [9]: all marginal utilities
must be identical in a lossless network. On the other hand, all
of the above strategies make use of physical models ranging
from nonlinear differential-algebraic models to the absence
of models. Likewise, the proposed control strategies are of



different communication and computational complexities.
In this paper, we present a comprehensive modeling frame-

work for microgrids with heterogenous components and
different control tasks (Section II). Building on decentralized
primary droop control, we study a first-principle, nonlinear,
and differential-algebraic model. In Section III, we investi-
gate the limitations of droop control and show that the set of
steady-states reachable via droop control are in one-to-one
correspondence with the set of feasible injection setpoints.

In Section IV, we first discuss the limitations of decentral-
ized secondary integral control akin to AGC. Next, we review
the distributed averaging-based PI (DAPI) control strategy
[14], [15], [18], [21] the effectiveness of which has been
confirmed experimentally [16]. We show that DAPI control
successfully regulates the frequency, maintains the injections
and stability properties of the primary control in presence of
unknown loads, and does not require any separation of time
scales.

In Section V, we study tertiary control policies that mini-
mize an economic dispatch problem. We leverage a recently
discovered relation between AC and DC power flows [26],
[27] and show that the minimizers of the nonlinear and non-
convex AC economic dispatch optimization problem are in
one-to-one correspondence with the minimizers of a convex
DC dispatch problem. Our next result shows a surprising
symbiotic relationship between primary/secondary control
and tertiary. We show that the minimum of the AC economic
dispatch can be achieved by decentralized droop control.
Conversely, every droop controller results in a steady-state
which is the minimizer of some AC economic dispatch. We
deduce, among others, that the optimal droop coefficients are
inversely proportional to the marginal cost of generation.

In Section VI, we illustrate the performance and robustness
of our controllers with a simulation study of the IEEE 37 dis-
tribution network. Finally, Section VII concludes the paper.
The remainder of this section introduces some preliminaries.

Preliminaries and Notation

Vectors: Given a finite set V , let |V| denote its cardinality.
Given a finite index set I and a real-valued one-dimensional
array {x1, . . . , x|I|}, the associated vector and diagonal
matrix are x ∈ R|I| and diag({xi}i∈I) ∈ R|I|×|I|. Let 1n
and 0n be the n-dimensional vectors of unit and zero entries.
We denote the diagonal vector space Span (1n) by 1n and
its orthogonal complement by 1⊥n , {x ∈ Rn : 1Tnx=0}.

Algebraic graph theory: We denote by G(V, E , A) an
undirected and weighted graph, where V is node set, E ⊆
V × V is the edge set, and A = AT ∈ R|V|×|V| is the
adjacency matrix. If a number ` ∈ {1, . . . , |E|} and an
arbitrary direction are assigned to each edge, the incidence
matrix B ∈ R|V|×|E| has non-zero components Bk` = 1 if
node k is the sink node of edge ` and Bk` = −1 if node
k is the source node of edge `. The Laplacian matrix is
L , Bdiag({aij}{i,j}∈E)BT . If the graph is connected, then
ker(BT ) = ker(L) = 1|V|. For acyclic graphs, ker(B) = ∅,
and for every x ∈ 1⊥|V| there is a unique ξ ∈ R|E| satisfying
Kirchoff’s Current Law (KCL) x = Bξ, where x and ξ
correspond to nodal injections and edge flows, respectively.

Geometry on the n-torus: The set S1 denotes the circle, an
angle is a point θ ∈ S1, and an arc is a connected subset of
S1. Let |θ1 − θ2| be the geodesic distance between θ1, θ2 ∈
S1. The n-torus is Tn = S1×· · ·×S1. For γ ∈ [0, π/2[ and a
graph G(V, E , ·), let ∆G(γ) = {θ ∈ T|V| : max{i,j}∈E |θi−
θj | ≤ γ} be the closed set of angle arrays θ = (θ1, . . . , θn)
with neighboring angles θi and θj , {i, j} ∈ E no further than
γ apart. Let ∆G(γ) be the interior of ∆G(γ).

II. MICROGRIDS AND THEIR CONTROL CHALLENGES

A. Microgrids and AC Circuits

We model a microgrid as a synchronous linear circuit with
admittance matrix Y ∈ Cn×n. The associated connected,
undirected, and complex-weighted graph is G(V, E , A) with
node set (or buses) V = {1, . . . , n}, edge set (or branches)
E ⊂ V × V , and symmetric weights (or admittances) aij =
−Yij = −Yji ∈ C for each {i, j} ∈ E . We restrict ourselves
to the acyclic (also called radial) topologies prevalent in
low-voltage distribution networks. To each node i ∈ V , we
associate a power injection Pe,i+

√
−1Qe,i ∈ C and a voltage

phasor Vi = Eie
√
−1θi ∈ C corresponding to the magnitude

Ei > 0 and the phase angle θi ∈ S1 of a harmonic voltage
signal. For inductive lines, the admittance matrix Y ∈ Cn×n
is purely imaginary, and the active/reactive injections are

Pe,i =
∑n

j=1
Im(Yij)EiEj sin(θi − θj) , i ∈ V , (1a)

Qe,i = −
∑n

j=1
Im(Yij)EiEj cos(θi − θj) , i ∈ V. (1b)

We adopt the standard decoupling approximation [4] where
all voltage magnitudes Ei are constant in the active power
injections (1a) and Pe,i = Pe,i(θ). By continuity and expo-
nential stability, our results are robust to bounded voltage
dynamics [15], [26], which we illustrate via simulations.

We partition the buses into loads and inverters, V = VL ∪
VI , and denote their cardinalities by n , |V|, nL , |VL|, and
nI , |VI |. Each load i ∈ VL demands a constant amount of
active power P ∗i ∈ R and satisfies the power flow equation

0 = P ∗i − Pe,i(θ) , i ∈ VL . (2)

We refer to the buses VL strictly as loads, with the under-
standing that they can be loads or constant-power sources.

We denote the rating (maximal power injection) of inverter
i ∈ VI by P i ≥ 0. As a necessary feasibility condition,
we assume that the total load

∑
i∈VL P

∗
i is a net demand

serviceable by the inverters’ maximal generation:

0 ≤ −
∑

i∈VL
P ∗i ≤

∑
i∈VI

P i . (3)

After designing inner control loops, an inverter can be re-
garded as controllable voltage source behind a reactance [4].

B. Primary Droop Control

The frequency droop controller is the main technique for
primary control in microgrids [3]–[7]. At inverter i, the
frequency θ̇i is controlled to be proportional to the measured
(see [4] for details) power injection Pe,i(θ) according to

Diθ̇i = P ∗i − Pe,i(θ) , i ∈ VI , (4)



where P ∗i ∈ [0, P i] is a nominal injection setpoint, and the
proportionality constant Di ≥ 0 is referred to as the (inverse)
droop coefficient. In this notation, θ̇i is actually the frequency
error ωi − ω∗, where ω∗ is the nominal network frequency.

The droop-controlled microgrid is then described by the
nonlinear, differential-algebraic equations (DAE) (2),(4).

Remark 1: (Extensions). The model (1),(4) assumes
purely inductive lines, which can be justified as the inverter
output impedances can be controlled to dominate over the
network impedances. Our analysis can be easily extended
towards more general networks, including resistive/capacitive
lines, constant R/X ratios, and networks with sufficiently
uniform R/X ratios. Likewise, all of our results pertaining
to equilibria of the model (2),(4) and their local stability
properties extend to synchronous machines, inverters with
measurement delays, and frequency-dependent loads. We
refer to [1] for details and focus on the model (2),(4). �

C. Secondary Frequency Control

If the droop-controlled system (2), (4) settles to a solution
with synchronized frequencies, θ̇i(t) = ωsync ∈ R for all
i ∈ V , then summing over all equations (2),(4) yields

ωsync ,

∑
i∈V P

∗
i∑

i∈VI Di
. (5)

Notice that ωsync is a scaled power imbalance and equals
zero if and only if the nominal injections P ∗i are bal-
anced:

∑
i∈V P

∗
i = 0. Since the loads are generally

unknown, it is not possible to schedule the sources
to balance them. Likewise, to render ωsync small, the
gains Di cannot be chosen arbitrary large, since the pri-
mary control becomes slow and possibly unstable.

To eliminate this frequency error, the primary control (4)
needs to be augmented with secondary control inputs ui(t):

Diθ̇i = P ∗i − Pe,i(θ) + ui(t) . (6)

If there is a synchronized solution to the secondary-
controlled equations (2),(6) with frequency ω∗sync and steady-
state secondary control u∗i =limt→∞ ui(t), then we obtain

ω∗sync =

∑
i∈V P

∗
i +

∑
j∈VI u

∗
i∑

i∈VI Di
= ωsync +

∑
j∈VI u

∗
i∑

i∈VI Di
. (7)

Clearly, there are many choices for the inputs u∗i to achieve
the control objective ω∗sync = 0. However, the inputs u∗i are
typically constrained due to additional performance criteria.

D. Tertiary Operational Control

A tertiary control layer has the objective to minimize an
economic dispatch, that is, the cost accumulated generation:

minimize
θ∈Tn , u∈RnI

f(u) =
∑

i∈VI

1

2
αiu

2
i (8a)

subject to P ∗i + ui = Pe,i(θ) ∀ i ∈ VI , (8b)
P ∗i = Pe,i(θ) ∀ i ∈ VL , (8c)

|θi − θj | ≤ γ(AC)
ij ∀ {i, j} ∈ E , (8d)

Pe,i(θ) ∈ [0, P i] ∀ i ∈ VI , (8e)

Here, αi > 0 is the marginal cost for source i ∈ VI . The
decision variables are the angles θ and secondary control in-
puts u. The non-convex equality constraints (8b)-(8c) are the
nonlinear steady-state secondary control equations, the secu-
rity constraint (8d) limits the power flow on each branch
{i, j} ∈ E by γ(AC)

ij ∈ [0, π/2[, and (8e) is a generation
constraint. Two typical instances of the economic dispatch
(8) are as follows: For P ∗i = 0, ui equals Pe,i(θ), and
the total generation cost is penalized. For positive nominal
generation setpoints P ∗i > 0 (e.g., scheduled according to
some load forecast), u∗i is the real-time operating reserve.

III. DECENTRALIZED PRIMARY CONTROL STRATEGIES

A. Symmetries, Synchronization, and Transformations

The microgrid equations (2),(4) feature an inherent rota-
tional symmetry: they are invariant under a rigid rotation of
all angles. Formally, let rots(r) ∈ S1 be the rotation of a
point r ∈ S1 counterclockwise by the angle s ∈ [0, 2π]. For
(r1, . . . , rn) ∈ Tn, define the equivalence class

[(r1, . . . , rn)]={(rots(r1), . . . , rots(rn))∈Tn : s ∈ [0, 2π]} .

Thus, a synchronized solution θ∗(t) of (2),(4) is part of a one-
dimensional connected synchronization manifold [θ∗]; or an
equilibrium manifold of (2),(4) if ωsync = 0. Thus, when we
refer to a synchronized solution as “stable” or “unique”, these
properties are to be understood modulo rotational symmetry.

We make use of this rotational symmetry and establish
the equivalence of three different problems: stability of syn-
chronized solutions for primary control, stability of equilibria
with appropriate constant secondary control inputs ui, and
stability of equilibria in a set of shifted coordinates.

Recall that, in absence of secondary control, ωsync is the
scaled power imbalance (5). By transforming to a rotating
coordinate frame with frequency ωsync, that is, θi(t) 7→
rotωsynct(θi(t)) (with slight abuse of notation, we maintain the
variable θ), a synchronized solution of (2),(4) is equivalent
to an equilibrium of the shifted control system

0 = P̃i − Pe,i(θ) , i ∈ VL , (9a)

Diθ̇i = P̃i − Pe,i(θ) , i ∈ VI , (9b)

where the shifted injections are P̃i = P ∗i for i ∈ VL, and
P̃i = P ∗i − Diωsync for i ∈ VI . Observe that the shifted
injections in (9) are balanced: P̃ ∈ 1⊥n . Equivalently to
transforming to a rotating frame with frequency ωsync, we
can assume that the secondary control input in (2),(6) takes
the constant value ui = −Diωsync to arrive at the shifted
control system (9). We summarize these observations:

Lemma 3.1: (Synchronization Equivalences). The fol-
lowing statements are equivalent:

(i) The primary droop-controlled microgrid (2),(4) pos-
sesses a locally exponentially stable and unique syn-
chronization manifold t 7→ [θ(t)] ⊂ Tn for all t ≥ 0;

(ii) The secondary droop-controlled microgrid (2),(6) with
constant secondary-control input ui = −Diωsync for
all i ∈ VI possesses a locally exponentially stable and
unique equilibrium manifold [θ̄] ⊂ Tn;



(iii) The shifted control system (9) possesses a locally
exponentially stable and unique equilibrium [θ̃] ⊂ Tn.

If the equivalent statements (i)-(iii) are true, then all systems
have the same synchronization manifolds [θ(t)]=[θ̄]=[θ̃] ⊂
Tn and the same power injections Pe(θ(t)) = Pe(θ̄) = Pe(θ̃).
Additionally, θ(t)=rotωsynct(ξ0) for some ξ0 ∈ [θ̄]=[θ̃].

In light of Lemma 3.1, we restrict the discussion in this
section to the shifted control system (9). Observe also that
equilibria of (9) are invariant under constant scaling of all
droop coefficients: if Di is replaced by Di · β for some β ∈
R, then ωsync changes to ωsync/β. Since the product Di ·
ωsync remains constant, the equilibria of (9) do not change.
Moreover, if β > 0, then the stability properties of equilibria
do not change since time can be rescaled as t 7→ t/β.

B. Existence, Uniqueness, & Stability of Synchronization
In vector form, the equilibria of (9) satisfy

P̃ = BA sin(BT θ) , (10)

where A = diag({Im(Yij)EiEj}{i,j}∈E) and B ∈ R|V|×|E|
is the incidence matrix. For an acyclic network, ker(B) = ∅,
and the unique vector of branch flows ξ ∈ R|E| (associated
to the shifted injections P̃ ) is given by KCL as ξ = B†P̃ =
(BTB)−1BT P̃ . Hence, equations (10) equivalently read as

ξ = A sin(BT θ) . (11)

Due to boundedness of the sinusoid, a necessary condition
for solvability of (11) is ‖A−1ξ‖∞ < 1. The following result
shows that this condition is also sufficient and guarantees
stability of an equilibrium manifold of (9) [15, Theorem 2].

Theorem 3.2: (Existence and Stability of Synchroniza-
tion). Consider the shifted control system (9). Let ξ ∈ R|E|
be the unique vector satisfying the KCL, given by ξ = B†P̃ .
The following two statements are equivalent:

(i) Synchronization: there exists an arc length γ ∈
[0, π/2[ such that the shifted control system (9) pos-
sesses a locally exponentially stable and unique equi-
librium manifold [θ∗] ⊂ ∆G(γ);

(ii) Flow feasibility: the power flow is feasible, that is,

Γ , ‖A−1ξ‖∞ < 1. (12)

If the equivalent statements (i) and (ii) hold true, then the
quantities Γ ∈ [0, 1[ and γ ∈ [0, π/2[ are related uniquely
via Γ = sin(γ), and sin(BT θ∗) = A−1ξ.

C. Power Flow Constraints and Proportional Load Sharing
While Theorem 3.2 gives the exact stability condition, it

offers no guidance on how to select the control parameters
(P ∗i , Di) to achieve a set of desired steady-state power
injections. One desired objective is that all sources meet their
the actuation constraints Pe,i(θ) ∈ [0, P i] and share the load
in a fair way according to their power ratings [4], [5]:

Definition 1: (Proportional Load Sharing). Consider an
equilibrium manifold [θ∗] ⊂ Tn of the shifted control
system (9). The inverters share the total load proportionally
according to their power ratings if for all i, j ∈ VI ,

Pe,i(θ
∗)/P i = Pe,j(θ

∗)/P j . (13)

We also define a useful choice of droop coefficients.
Definition 2: (Proportional Controller Coefficients).

The controller coefficients (droop coefficients and injections
setpoints) are selected proportionally if for all i, j∈VI

P ∗i /Di = P ∗j /Dj and P ∗i /P i = P ∗j /P j . (14)
A proportional choice of controller coefficients leads to a

fair load sharing among the inverters according to their
ratings and subject to actuation constraints [15, Theorem 7]:

Theorem 3.3: (Power Flow Constraints and Power
Sharing). Consider an equilibrium manifold [θ∗] ⊂ Tn of
the shifted control system (9) with proportional controller
coefficients. The following statements are equivalent:

(i) Injection constraints: 0 ≤ Pe,i(θ
∗) ≤ P i, ∀i ∈ VI ;

(ii) Serviceable load: 0 ≤ −
∑
i∈VL P

∗
i ≤

∑
j∈VI P j .

Moreover, the inverters share the total load
∑
i∈VL P

∗
i pro-

portionally according to their power ratings.

D. Power Flow Shaping
We now address the following “controllability” question:

given a set of desired power injections for the inverters, can
one select the droop coefficients to generate these injections?

We define a power injection setpoint as a point of power
balance, at fixed load demands and subject to the basic
feasibility condition given in Theorem 3.2.

Definition 3: (Feasible Power Injection Setpoint). Let
γ ∈ [0, π/2[. A vector P set ∈ Rn is a γ-feasible power
injection setpoint if it satisfies the following three properties:

(i) Power balance: P set ∈ 1⊥n ;
(ii) Load invariance: P set

i = P ∗i for all loads i ∈ VL;
(iii) γ-feasibility: the associated branch power flows ξset =

B†P set are feasible, that is, ‖A−1ξset‖∞ ≤ sin(γ).
The next result characterizes the relationship between

droop control and γ-feasible injection setpoints. For simplic-
ity, we omit the case ωsync = 0, since in this case the droop
coefficients offer no control over the steady-state injections.

Theorem 3.4: (Power Flow Shaping). Consider the
shifted control system (9). Assume ωsync 6= 0, let P set ∈ 1⊥n ,
and let γ ∈ [0, π/2[. The following statements are equivalent:
(i) Coefficient selection: there exists a selection of droop

coefficients Di, i ∈ VI , such that the steady-state
injections satisfy Pe(θ

∗) = P set, with [θ∗] ⊂ ∆G(γ);
(ii) Feasibility:P set is a γ-feasible power injection setpoint.
If the equivalent statements (i) and (ii) hold true, then the
quantities Di and P set

i are related with arbitrary β 6= 0 as

Di = β(P ∗i − P set
i ) , i ∈ VI . (15)

Moreover, [θ∗] is locally exponentially stable if and only if
β(P ∗i − P set

i ) is nonnegative for all i ∈ VI .
Proof: (i) =⇒ (ii): Since θ∗ ∈ ∆G(γ) and Pe(θ

∗) ∈
1⊥n , Theorem 3.2 shows that P set is a γ-feasible setpoint.

(ii) =⇒ (i): Let P set be a γ-feasible setpoint. Consider
the droop coefficients Di = β(P ∗i − P set

i ). Since ωsync 6= 0,
for each i ∈ VI we obtain the steady-state injection

Pe,i(θ
∗)= P̃i = P ∗i −Diωsync

=P ∗i − β(P ∗i − P set
i )

1

β

∑
i∈V P

∗
i∑

i∈VI (P ∗i − P set
i )︸ ︷︷ ︸

=1

=P set
i ,



where we used
∑
i∈VI P

set
i = −

∑
i∈VL P

∗
i . Since

Pe,i(θ
∗)=P ∗i =P set

i for each i ∈ VL, we have Pe(θ) = P set.
Since P set is γ-feasible, θ∗ is well defined in ∆G(γ). By the
Jacobian arguments leading to [15, Theorem 2], the shifted
system (9) is stable if and only if all Di are nonnegative.

By Theorem 3.4, the set of feasible setpoints is in one-
to-one correspondence with the steady-states reachable by
droop control. We refer to [1] for a modification on how to
include the injection constraint P set

i ∈ [0, P i].

IV. DISTRIBUTED SECONDARY CONTROL STRATEGIES

Primary droop control (4) results in the static frequency
error ωsync in (5). The purpose of the secondary control ui(t)
in (6) is to eliminate this static error despite unknown loads.

A. Decentralized Secondary Integral Control

We partition the set of inverters as VI = VIP ∪VIS , where
the action of the VIP inverters is restricted to primary droop
control, and the VIS inverters perform the secondary control:

Diθ̇i = P ∗i − Pe,i(θ) , i ∈ VIP , (16a)

Diθ̇i = P ∗i − Pe,i(θ) + ui(t) , i ∈ VIS . (16b)

Assume that each of the VIS inverters uses decentralized
integral control to suppress the steady-state frequency error:

ui(t) = −pi , kiṗi = θ̇i , i ∈ VIS , (17)

For |VIS |=1 (mimicking AGC in transmission networks), if
a steady-state exists, then θ̇i must converge to zero and pi
to the total power imbalance

∑
i∈V P

∗
i . Hence, the control

(17) can achieve frequency regulation, but it fails to maintain
load sharing and places a large burden on a single source.

For |VIS | ≥ 2, the control (17) results in a set of invariant
closed-loop subspaces corresponding to different choices of
u∗ rendering ω∗sync to zero; see (7). One way to remove these
subspaces is to implement (17) via the low-pass filter

ui(t) = −pi , kiṗi = θ̇i − εpi , i ∈ VIS , (18)

For small ε > 0 and large k � 1 (enforcing a time-scale
separation), the controller (18) achieves practical stabiliza-
tion but does not exactly regulate the frequency [10]. In
conclusion, the decentralized control (17) and its variations
generally fail to achieve fast frequency regulation while
maintaining load sharing. Additionally, a single microgrid
source may not have the authority or the capacity to perform
secondary control.

B. Distributed Averaging PI (DAPI) Control

As an alternative secondary control strategy, consider the
distributed averaging PI (DAPI) controller [15]:

ui = −pi , kiṗi = Diθ̇i +
∑
j∈VIS

Lij

(
pi
Di
− pj
Dj

)
. (19)

Here, we assume that ki > 0, |VIS | ≥ 2, and L is the Lapla-
cian of a weighted, connected and undirected communication
graph between the VIS inverters. The following result shows
that, for any choice of gains Di > 0 and ki > 0, the DAPI
control (2), (16), (19) stabilizes the closed loop, regulates the

network frequency, and preserves the injections established
by the primary control. For simplicity, we only present the
result for VIS =VI proved in [15, Theorem 8]. The extended
case VIS ( VI is analyzed in [1], [13]. In the latter case, the
load sharing is recovered only among the VIS inverters.

Theorem 4.1: (Stability of DAPI-Controlled Network).
Consider the DAPI-controlled microgrid (2), (16), (19) with
parameters P ∗i ∈ [0, P i], Di, ki > 0 for all i ∈ VI , with
VIS =VI , and with a connected communication graph among
the inverters VI . The following statements are equivalent:

(i) Stability of primary droop control: the droop control
stability condition (12) holds;

(ii) Stability of secondary DAPI control: there exists an
arc length γ ∈ [0, π/2[ such that the closed loop (2),
(16), (19) possesses a locally exponentially stable and
unique equilibrium manifold ([θ∗], p∗) ⊂ ∆G(γ)×RnI .

If the equivalent statements (i) and (ii) hold true, then [θ∗]
is given as in Theorem 3.2, and p∗i = Diωsync for i ∈ VI .

It is interesting to note that the DAPI control can also
be applied to the conventional AGC case [18], and it has
been independently derived for parallel (star) topologies
[21] as a continuous-time demand response strategy. Finally,
variations of the DAPI control (19) with similar performance
but other signal flows (e.g., additionally integrating edge
flows) can also be derived from the perspectives of network
flow optimization [22], [28] or dynamic consensus [29], [30].

V. DECENTRALIZED TERTIARY CONTROL STRATEGIES

In this section, we examine the tertiary control layer.
Similar to load sharing or flow shaping, we show that the AC
economic dispatch (8) can be minimized by droop control.

A. Convex Reformulation of the AC Economic Dispatch
The AC economic dispatch (8) is a non-convex problem

due to the nonlinear AC injections entering in the constraints.
In practical system operation, the nonlinear AC injections
Pe,i(θ) are often approximated by the linear DC injections

PDC,i(θ) =
∑n

j=1
Im(Yij)EiEj(θi − θj) , i ∈ V . (20)

Accordingly, the AC economic dispatch (8) is approximated
by the corresponding DC economic dispatch given by

minimize
δ∈Rn , v∈RnI

f(v) =
∑

i∈VI

1

2
αiv

2
i (21a)

subject to P ∗i + vi = PDC,i(δ) ∀ i ∈ VI , (21b)
P ∗i = PDC,i(δ) ∀ i ∈ VL , (21c)

|δi − δj | ≤ γ(DC)
ij ∀ {i, j} ∈ E , (21d)

PDC,i(δ) ∈ [0, P i] ∀ i ∈ VI , (21e)

where the DC variables (δ, v) are distinguished from the AC
variables (θ, u). In formulating the DC economic dispatch
(21), we also changed the line flow parameters from γ(AC)

ij to
γ(DC)
ij ∈ [0, π/2[ for all {i, j} ∈ E . The DC dispatch (21) is a

quadratic program with linear constraints and hence convex.
Typically, the solution (δ∗, v∗) of the DC dispatch (21)

serves as proxy for the solution of the non-convex AC dis-
patch (8). The following result shows that both problems are
equivalent for acyclic networks and appropriate constraints.



Theorem 5.1: (Equivalence of AC and DC Economic
Dispatch in Acyclic Networks). Consider the AC economic
dispatch (8) and the DC economic dispatch (21) in an acyclic
network. The following statements are equivalent:

(i) AC feasibility: the AC economic dispatch problem (8)
with parameters γ(AC)

ij < π/2 for all {i, j} ∈ E is
feasible with a global minimizer (θ∗, u∗) ∈ Tn×RnI ;

(ii) DC feasibility: the DC economic dispatch problem
(21) with parameters γ(DC)

ij < 1 for all {i, j} ∈ E is
feasible with a global minimizer (δ∗, v∗) ∈ Rn×RnI .

If the equivalent statements (i) and (ii) are true, then
sin(γ(AC)

ij ) = γ(DC)
ij , u∗ = v∗, sin(BT θ∗) = BT δ∗, and

f(u∗) = f(v∗) is a global minimum.
Proof: Denote the unique vector of AC branch power

flows by ξ = A sin(BT θ); see (11). For an acyclic network,
we have ker(B) = ∅, and ξ ∈ Rn−1 can be equivalently
rewritten as ξ = ABT δ for some δ ∈ Rn. Thus, we obtain

A sin(BT θ) = ABT δ . (22)

Now, we associate δ with the angles of the DC flow (20), so
that (22) is a bijective map between the AC and DC flows.

Due to the AC security constraints (8d), the sine is invert-
ible. If the DC security constraints (21d) satisfy ‖BT δ‖∞ ≤
max{i,j}∈E γ

(DC)
ij < 1, then BT θ can be uniquely recovered

from (and mapped to) BT δ via (22). Additionally, up to
rotational symmetry and modulo 2π, the angle θ and be
uniquely recovered from (and mapped to) δ. Thus, identity
(22) between the AC and the DC flow serves as a bijective
change of variables (modulo 2π and up to rotational sym-
metry). This change of variables maps the AC dispatch (8)
to the DC dispatch (21) as follows. The AC injections Pe(θ)
are replaced by the DC injections PDC(δ). The AC security
constraint (8d) translates uniquely to the DC constraint (21d)
with γ(DC)

ij = sin(γ(AC)
ij ) < 1. The AC injection constraint

(8e) is mapped to the DC injection constraint (21e).
Finally, if both problems (8) and (21) are feasible with

minimizers u∗ = v∗ and sin(BT θ∗) = BT δ∗, then f(u∗) =
f(v∗) is the global minimum due to convexity of (21).

Theorem 5.1 relies on the bijection (22) between AC and
DC flows in acyclic networks [26], [27]. For cyclic networks,
the two problems (8) and (21) are generally not equivalent,
but the DC flow is a well-accepted proxy for the AC flow.

We now state a rather surprising result: any minimizer of
the AC economic dispatch (8) can be achieved by appropri-
ately designed droop control (4). Conversely, any steady state
of the droop-controlled microgrid (2),(4) is the minimizer of
an AC economic dispatch (8) with appropriately chosen pa-
rameters. The following theorem makes this idea precise for
strictly feasible minimizers (strictly satisfying the inequality
constraints) and strictly positive (stabilizing) droop coeffi-
cients. The proof can be extended to the constrained case at
the cost of a less explicit relation between the optimization
parameters and the (possibly non-positive) droop coefficients.

Theorem 5.2: (Droop Control & Economic Dispatch).
Consider the AC economic dispatch (8) and the shifted
control system (9). The following statements are equivalent:

(i) Strict feasibility and optimality: there are parameters
αi > 0, i ∈ VI , and γ(AC)

ij < π/2, {i, j} ∈ E such

that the AC economic dispatch problem (8) is strictly
feasible with global minimizer (θ∗, u∗) ∈ Tn × RnI .

(ii) Constrained sync: there exists γ ∈ [0, π/2[ and droop
coefficients Di > 0, i ∈ VI , so that the shifted
control system (9) possesses a unique and locally ex-
ponentially stable equilibrium manifold [θ] ⊂ ∆G(γ)
meeting injection constraints Pe,i(θ)∈ ]0, P i[, i ∈ VI .

If the equivalent statements (i) and (ii) hold true, then [θ∗] =
[θ], γ = max{i,j}∈E γ

(AC)
ij , and for some β > 0 it holds that

Di = β/αi , i ∈ VI . (23)
Theorem 5.2, stated for the shifted control system (9), can

be equivalently stated for the CAPI or DAPI control systems
(by Lemma 3.1). Before proving it, we state a key lemma.

Lemma 5.3: (Properties of strictly feasible points). If
(θ∗, u∗) ∈ Tn×RnI is a strictly feasible minimizer of the AC
economic dispatch (8), then u∗ is sign-definite, i.e., all u∗i ,
i ∈ VI , have the same sign. Conversely, any strictly feasible
pair (θ, u) ∈ Tn × RnI of the AC economic dispatch (8)
with sign-definite u is inverse optimal with respect to some
α ∈ RnI

>0: there are coefficients αi > 0, i ∈ VI , such that
(θ, u) is global minimizer of the AC economic dispatch (8).

Proof: The strictly feasible pairs of (8) are the set of all
(θ, u) ∈ Tn×RnI satisfying the power flow equations (8b)-
(8c) and the strict inequality constraints (8d)-(8e). Summing
all equations (8b)-(8c) yields the necessary solvability con-
dition (power balance constraint)

∑
i∈VI ui=−

∑
i∈V P

∗
i .

To establish the necessary and sufficient optimality condi-
tions in the strictly feasible case, without loss of generality,
we drop the inequality constraints (8d)-(8e). With λ ∈ Rn,
the Lagrangian L : Tn × RnI × Rn → R is

L(θ, u, λ)=
∑
j∈VI

1

2
αju

2
j +

∑
j∈VI

λj
(
uj + P ∗j − Pe,j(θ)

)
+
∑
j∈VL

λj
(
P ∗j − Pe,j(θ)

)
.

The necessary KKT conditions for optimality are:

∂L
∂θi

= 0 : 0 =
∑

j∈V
λj ·

∂Pe,j(θ)

∂θi
, ∀i ∈ V , (24a)

∂L
∂ui

= 0 : αiui = −λi , ∀i ∈ VI , (24b)

∂L
∂λi

= 0 : −ui = P ∗i − Pe,i(θ) , ∀i ∈ VI , (24c)

∂L
∂λi

= 0 : 0 = P ∗i − Pe,i(θ) , ∀i ∈ VL . (24d)

Since the AC dispatch (8) is equivalent to the convex DC
dispatch (see Theorem 5.1), the KKT conditions (24) are also
sufficient for optimality. In vector form, (24a) reads as 0n =
λT∂Pe(θ)/∂θ, where the load flow Jacobian is given by
symmetric Laplacian ∂Pe(θ)/∂θ = B diag({aij}{i,j}∈E)BT
with strictly positive weights aij = Im(Yij)EiEj cos(θi −
θj) (due to strict feasibility of the security constraint (8d)).

It follows that λ ∈ 1n, that is, λi = λ̃ ∈ R for all i ∈ V
and for some λ̃ ∈ R. Hence, condition (24b) reduces to
uiαi = λ̃ for all i ∈ VI , that is, all marginal utilities must



be identical which is also known as the economic dispatch
criterion [9]. Conditions (24c)-(24d) then reduce to

λ̃/αi = P ∗i − Pe,i(θ) , ∀i ∈ VI , (25a)
0 = P ∗i − Pe,i(θ) , ∀i ∈ VL . (25b)

By summing all equations (25), we obtain the constant λ̃ =∑
i∈V P

∗
i /
∑
i∈VI α

−1
i . The minimizers are u∗i = −λ̃/αi and

θ∗ determined from (25). It follows that u∗ is sign-definite.
By comparing the (strict) optimality conditions (25) with

the (strict) feasibility conditions (8b)-(8c), it follows that any
strictly feasible pair (θ, u) with sign-definite u is inverse
optimal for the coefficients αi=−β/ui with someβ>0.

Proof of Theorem 5.2: (i) =⇒ (ii): If the AC economic
dispatch (8) is strictly feasible, then its minimizer (θ∗, u∗) is
global (Theorem 5.1), and the optimal inverter injections are
P opt
i = Pe,i(θ

∗) = P ∗i + u∗i with sign-definite u∗ (Lemma
5.3). Since the power flow equations (8b)-(8c) and the strict
inequality constraints (8d)-(8e) are met, P opt

i ∈ ]0, P i[,
[θ∗] ⊂ ∆G(γ) with γ = max{i,j}∈E γ

(AC)
ij , and the vector

of injections (P ∗L, P
opt
I ) is a γ-feasible injection setpoint.

By Theorem 3.4 and identity (15), the droop coefficients
Di = −β(P ∗i − P opt

i ) = βu∗i , i ∈ VI , guarantee that the
shifted control system (9) possesses an equilibrium manifold
[θ] satisfying Pe(θ) = P set = Pe(θ

∗). For βu∗i > 0 (recall
u∗ is sign-definite), [θ] is locally exponentially stable by
Theorem 3.2. Finally, [θ∗] = [θ] since Pe(θ) = Pe(θ

∗).
(ii) =⇒ (i): Any equilibrium manifold [θ] ⊂ ∆G(γ) as

in (ii) is a γ-feasible power injection setpoint with

P̃i = P ∗i −Diωsync = Pe,i(θ) ∀ i ∈ VI , (26a)

P̃i = P ∗i = Pe,i(θ) ∀ i ∈ VL , (26b)
|θi − θj | < γ ∀ i, j ∈ E , (26c)

Pe,i(θ) ∈ ]0, P i[ ∀ i ∈ VI . (26d)

Hence, any θ ∈ [θ] is strictly feasible for the economic dis-
patch (8) if we identify θ∗ with θ (modulo symmetry), γ with
max{i,j}∈E γ

(AC)
ij , and u∗i with −Diωsync (modulo scaling).

Since u∗i is sign-definite, the claim follows from Lemma 5.3.
Finally, a comparison of the stationarity conditions (26a)-

(26b) and the optimality conditions (25) gives Diωsync =

−u∗i = λ̃/αi, where ωsync and λ̃ are constant. Since the
droop gains are defined up to scaling, we obtain (23). �

The equivalence revealed in Theorem 5.2 suggests the fol-
lowing guidelines to select the droop coefficients: choose Di

large for desirable (e.g., economic or low emission) sources
with small marginal costs αi ; and vice versa. These insights
can also be connected to the objective of proportional load
sharing: if each P ∗i and 1/αi are selected proportional to the
rating P i, that is, αiP i = αjP j and P ∗i /P i = P ∗j /P j , then
the associated droop coefficients (23) equal those in (14).

From an optimization perspective, the primary dynamics
(9) serve as a primal algorithm to minimize (8). Likewise,
second-order or integral control dynamics serve as primal-
dual algorithm, as shown for related systems in [19]–[22],
[28], [29]. Indeed, for VIS = VI , the DAPI controller (2),
(16), (19) can be derived as a primal-dual interior point
method to solve the AC economic dispatch (8), see [21,
equation (6)] in absence of inequality constraints.

VI. SIMULATION CASE STUDY

We illustrate the performance and robustness of our con-
trollers via a simulation of the IEEE 37 distribution system in
Fig. 1(a). After an islanding event, the distribution network
is disconnected from the transmission grid, and distributed
sources must ensure stability while regulating the frequency
and sharing the demand. The cyber layer describing the
communication among the distributed generators is shown
in dotted blue. Of the 16 sources, 8 have identical power
ratings, while the other 8 are rated for twice as much power.

Instead of the lossless power flow (1), we use the full lossy
equations. To include reactive power dynamics, the inverter
voltages are controlled via the quadratic voltage-droop [31]

τiĖi = −CiEi(Ei − E∗i )−Qe,i, i ∈ VI ,

where E∗i > 0 is the nominal voltage, Ci, τi > 0 are gains,
and Qe,i ∈ R is the reactive power injection (1b). Fig.
1(b) and (c) show a comparison between the decentralized
secondary controllers (17) implemented at every inverter, and
the DAPI controller (19), with equal gains. While both con-
trollers regulate the frequency, the decentralized controllers
(17) do not maintain load sharing under a change in load.

   









 


   








Fig. 1. Comparison of decentralized control (18) and DAPI control (19).

VII. CONCLUSIONS

We studied decentralized and distributed primary, sec-
ondary, and tertiary control strategies in microgrids and
illuminated some connections between them. Thereby, we
relaxed some restrictions regarding the information structure
and time-scale separation of conventional hierarchical control
strategies adapted from bulk power systems to make them
applicable to microgrids and distribution-level applications.

While this work is a first step towards an understanding of
the interdependent control loops in hierarchical microgrids,
several complicating factors have not been taken into ac-
count. In particular, our analysis is thus far formally restricted
to acyclic networks with lossless (or constant R/X ratio)
lines. Moreover, future work needs to consider more detailed
models including reactive power flows, voltage dynamics,
and ramping constraints on the inverter power injections.
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