
Breaking the Hierarchy: Distributed Control &
Economic Optimality in Microgrids

Florian Dörfler, John W. Simpson-Porco, and Francesco Bullo

Abstract—Modeled after the hierarchical control architecture
of power transmission systems, a layering of primary, secondary,
and tertiary control has become the standard operation paradigm
for microgrids. Despite this superficial similarity, the control
objectives in microgrids across these three layers are varied and
ambitious, and they must be achieved while allowing for robust
plug-and-play operation and maximal flexibility, without hierar-
chical decision making and time-scale separations. In this work,
we explore control strategies for these three layers and illuminate
some possibly-unexpected connections and dependencies among
them. Building from a first-principle analysis of decentralized
primary droop control, we study centralized, decentralized, and
distributed architectures for secondary frequency regulation. We
find that averaging-based distributed controllers using commu-
nication among the generation units offer the best combination
of flexibility and performance. We further leverage these results
to study constrained AC economic dispatch in a tertiary control
layer. Surprisingly, we show that the minimizers of the economic
dispatch problem are in one-to-one correspondence with the set
of steady-states reachable by droop control. In other words,
the adoption of droop control is necessary and sufficient to
achieve economic optimization. This equivalence results in simple
guidelines to select the droop coefficients, which include the
known criteria for power sharing. We illustrate the performance
and robustness of our designs through simulations.

I. INTRODUCTION

With the goal of integrating distributed renewable genera-
tion and energy storage systems, the concept of a microgrid has
recently gained popularity [2]–[5]. Microgrids are low-voltage
electrical distribution networks, heterogeneously composed
of distributed generation, storage, load, and managed au-
tonomously from the larger transmission network. Microgrids
are able to connect to a larger electric power system, but are
also able to island themselves and operate independently.

Distributed energy sources in a microgrid generate either
DC or variable frequency AC power, and are interfaced with an
AC grid via power electronic DC/AC inverters. Through these
inverters, cooperative actions must be taken to ensure synchro-
nization, voltage stability, power balance, load sharing, and
economic operation [6], [7]. A variety of control and decision
architectures — ranging from centralized to fully decentralized
— have been proposed to address these challenges [5]–[8]. In
transmission networks, the different control tasks are separated
in their time scales and aggregated into a hierarchy. Similar
operation layers have been proposed for microgrids.
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Control Hierarchy in Transmission Systems: The foundation
of this hierarchy, termed primary control, must rapidly balance
generation and demand, while sharing the load, synchronizing
the AC voltage frequencies, and stabilizing their magnitudes.
This is accomplished via decentralized droop control, where
generators are controlled such that their power injections are
proportional to their voltage frequencies and magnitudes [9].

Droop controllers induce steady-state errors in frequency
and voltage magnitudes, which are corrected in a secondary
control layer. At the transmission level, the network is parti-
tioned into control areas, and a few selected generators then
balance local generation in each area with load and inter-area
power transfers. Termed automatic generation control (AGC),
this architecture is based on centralized integral control and
operates on a slower time scale than primary control [10].

The operating point stabilized by primary/secondary control
is scheduled in a tertiary control layer, to establish fair load
sharing among the sources, or to dispatch the generation to
minimize operational costs. In conventional operation of bulk
power systems, an economic dispatch is optimized offline, in
a centralized fashion, using precise load forecasts [11]. In
[12]–[15] it has been shown that the dynamics of a power
transmission system with synchronous generators and AGC
naturally optimize variations of the economic dispatch.

Adaption of Control Layers to Microgrids: With regards to
primary control in microgrids, inverters are typically controlled
to emulate the droop characteristic of synchronous generators
[3]–[7]. Despite forming the foundation for the operation of
microgrids, networks of droop-controlled inverters have only
recently been subject to a rigorous analysis. In [16], [17], the
authors presented necessary and sufficient stability conditions
in a droop-controlled microgrid. We also refer to [18]–[23] for
alternative analyses resulting in sufficient conditions.

Secondary control strategies akin to AGC have been adapted
to microgrids. In [12], decentralized and centralized integral
controllers are studied. In [24] (respectively [25]) distributed
integral controllers based on all-to-all frequency (respectively
power output) averaging are proposed. In [26], the trade-off
between time-scale separation and achievable decentralized
performance is analyzed. In [27] discrete-time averaging-
based approaches are proposed for secondary regulation and
tertiary-level economic dispatch. In [28], a decentralized state
feedback is designed. All of these decentralized and distributed
secondary control strategies share the common disadvantage
that the primary and secondary control loops may interact in an
adverse way unless a time-scale separation is enforced or the
control gains are carefully tuned. In [16], the authors proposed
a distributed averaging-based integral control strategy that does
not require any tuning or a time-scale separation.

Transmission Level vs. Distribution & Microgrids: While



the hierarchical architecture has been adapted from the trans-
mission level to microgrids, the control challenges and archi-
tecture limitations imposed by the microgrid framework are
as diverse as they are daunting. The low levels of inertia in
microgrids mean that primary control must be fast and reliable
to maintain voltages, frequencies, and power flows within
acceptable tolerances, while the highly variable and distributed
nature of microgrids preclude centralized control strategies of
any kind. Microgrid controllers must be able to adapt in real
time to unknown and variable loads and network conditions. In
short, the three layers of the control hierarchy for microgrids
must allow for as close to plug-and-play operation as possible,
be either distributed or completely decentralized, and operate
seamlessly without a pre-imposed separation of time scales.

Contributions and Contents: In this article, we present
a comprehensive modeling framework for microgrids with
heterogenous components and different control tasks; see
Section II. Building on our previous work [16], we study the
decentralized limitations of primary control in Section III. In
particular, we show that the set of feasible setpoints for power
flow dispatch is in one-to-one correspondence with the set of
steady-states reachable via decentralized droop control.

In Section IV, we study several decentralized and distributed
secondary integral control strategies. We first discuss the
limitations of decentralized secondary integral control akin to
AGC. Next, we study distributed secondary control strategies.
We provide a rigorous analysis for the strategies proposed in
[24], [25] for a proper choice of control gains and compare
them to our earlier work [16] with regards to tuning limitations
and communication complexity. We show that all these dis-
tributed strategies successfully regulate the frequency, main-
tain the injections and stability properties of the primary droop
controller, and do not require any separation of time scales.
Finally, we demonstrate that these properties are maintained
when only a subset of generating units participate in secondary
control action. The effectiveness of these distributed secondary
control strategies has been confirmed in experiments [24], [29].

In Section V, we study tertiary control policies that mini-
mize an economic dispatch problem. We leverage a recently
discovered relation between AC and DC power flows [30],
[31] and show that the set of minimizers of the nonlinear and
non-convex AC economic dispatch optimization problem are
in one-to-one correspondence with the minimizers of a convex
DC dispatch problem. Our next result shows a surprising
symbiotic relationship between primary/secondary control and
tertiary. We show that the minimum of the AC economic
dispatch can be achieved by a decentralized droop control
design. Conversely, every droop controller results in a steady-
state which is the minimizer of some AC economic dispatch.
We deduce, among others, that the optimal droop coefficients
are inversely proportional to the marginal cost of generation.

In Section VI, we illustrate the performance and robustness
of our controllers with a simulation study of the IEEE 37 bus
distribution network. Finally, Section VII concludes the paper.
The remainder of this section introduces some preliminaries.

Preliminaries and Notation
Vectors and matrices: Given a finite set V , let |V| denote its

cardinality. Given a finite index set I and a real-valued one-

dimensional array {x1, . . . , x|I|}, the associated vector and
diagonal matrix are x ∈ R|I| and diag({xi}i∈I) ∈ R|I|×|I|.
Let 1n and 0n be the n-dimensional vectors of unit and zero
entries. We denote the diagonal vector space Span (1n) by 1n
and its orthogonal complement by 1⊥n , {x ∈ Rn : 1Tnx=0}.

Algebraic graph theory: We denote by G(V, E , A) an
undirected and weighted graph, where V is node set, E ⊆ V×V
is the edge set, and A = AT ∈ R|V|×|V| is the adjacency
matrix. If a number ` ∈ {1, . . . , |E|} and an arbitrary direction
are assigned to each edge, the incidence matrix B ∈ R|V|×|E|
is defined component-wise as Bk` = 1 if node k is the sink
node of edge ` and as Bk` = −1 if node k is the source node
of edge `; all other elements are zero. The Laplacian matrix is
L , Bdiag({aij}{i,j}∈E)BT . If the graph is connected, then
ker(BT ) = ker(L) = 1|V|. For acyclic graphs, ker(B) = ∅,
and for every x ∈ 1⊥|V| there is a unique ξ ∈ R|E| satisfying
Kirchoff’s Current Law (KCL) x = Bξ. In a circuit, x are the
nodal injections, and ξ are the associated edge flows.

Geometry on the n-torus: The set S1 denotes the circle, an
angle is a point θ ∈ S1, and an arc is a connected subset
of S1. Let |θ1 − θ2| be the geodesic distance between two
angles θ1, θ2 ∈ S1. The n-torus is Tn = S1 × · · · × S1. For
γ ∈ [0, π/2[ and a graph G(V, E , ·), let ∆G(γ) = {θ ∈ T|V| :
max{i,j}∈E |θi − θj | ≤ γ} be the closed set of angle arrays
θ = (θ1, . . . , θn) with neighboring angles θi and θj , {i, j} ∈ E
no further than γ apart. Let ∆G(γ) be the interior of ∆G(γ).

II. MICROGRIDS AND THEIR CONTROL CHALLENGES

A. Microgrids and AC Circuits

In this paper, we adopt the standard model of a microgrid as
synchronous linear circuit with admittance matrix Y ∈ Cn×n.
The associated connected, undirected, and complex-weighted
graph is G(V, E , A) with node set (or buses) V = {1, . . . , n},
edge set (or branches) E ⊂ V × V , and symmetric weights
(or admittances) aij = −Yij = −Yji ∈ C for each branch
{i, j} ∈ E . We restrict ourselves to acyclic (also called radial)
topologies prevalent in low-voltage distribution networks.

To each node i ∈ V , we associate an electrical power
injection Se,i = Pe,i +

√
−1Qe,i ∈ C and a voltage phasor

Vi = Eie
√
−1θi ∈ C corresponding to the magnitude Ei > 0

and the phase angle θi ∈ S1 of a harmonic voltage solution to
the AC circuit equations. The complex vector of nodal power
injections is then Se = V ◦(Y V )C , where C denotes the com-
plex conjugation ◦ is the Hadamard (element-wise) product.
For inductive lines, the admittance matrix Y ∈ Cn×n is purely
imaginary, and the active/reactive nodal power injections are

Pe,i =
∑n

j=1
Im(Yij)EiEj sin(θi − θj) , i ∈ V , (1a)

Qe,i = −
∑n

j=1
Im(Yij)EiEj cos(θi − θj) , i ∈ V. (1b)

We adopt the standard decoupling approximation [4], [9]
where all voltage magnitudes Ei are constant in the active
power injections (1a) and Pe,i = Pe,i(θ). By continuity and
exponential stability, our results are robust to bounded voltage
dynamics [16], [30], which we illustrate via simulations.

We partition the set of buses into loads and inverters, V =
VL∪VI , and denote their cardinalities by n , |V|, nL , |VL|,



and nI , |VI |. Each load i ∈ VL demands a constant amount
of active power P ∗i ∈ R and satisfies the power flow equation

0 = P ∗i − Pe,i(θ) , i ∈ VL . (2)

We refer to the buses VL strictly as loads, with the understand-
ing that they can be either loads or constant-power sources.

We denote the rating (maximal power injection) of inverter
i ∈ VI by P i ≥ 0. As a necessary feasibility condition, we
assume throughout this article that the total load

∑
i∈VL P

∗
i is

a net demand serviceable by the inverters’ maximal generation:

0 ≤ −
∑

i∈VL
P ∗i ≤

∑
i∈VI

P i . (3)

After appropriate inner control loops are established, an in-
verter behaves much like a controllable voltage source behind
a reactance [4], which is the standard model in the literature.

B. Primary Droop Control
The frequency droop controller is the main technique for

primary control in microgrids [3]–[7]. At inverter i, the fre-
quency θ̇i is controlled to be proportional to the measured (see
[4] for details) power injection Pe,i(θ) according to

Diθ̇i = P ∗i − Pe,i(θ) , i ∈ VI , (4)

where P ∗i ∈ [0, P i] is a nominal injection setpoint, and the
proportionality constant Di ≥ 0 is referred to as the (inverse)
droop coefficient. In this notation, θ̇i is actually the frequency
error ωi − ω∗, where ω∗ is the nominal network frequency.

The droop-controlled microgrid is then described by the
nonlinear, differential-algebraic equations (DAE) (2),(4).

Remark 1: (Droop Controllers for Non-Inductive Net-
works). The equations (1)-(4) are valid for purely inductive
lines without resistive losses. This assumption is typically
justified, as the inverter output impedances can be controlled
to dominate over the network impedances [32]. Nonetheless,
our analysis can be easily extended towards more general
networks, including resistive/capacitive lines [4, Chapter 19.4],
constant R/X ratio lines [33, Eq. (7)-(10)], and (by continuity)
networks with sufficiently uniform R/X ratio lines. �

C. Secondary Frequency Control
The droop controller (4) induces a static error in the steady-

state frequency. If the droop-controlled system (2), (4) settles
to a frequency-synchronized solution, θ̇i(t) = ωsync ∈ R for
all i ∈ V , then summing over all equations (2),(4) yields the
synchronous frequency ωsync as the scaled power imbalance

ωsync ,

∑
i∈V P

∗
i∑

i∈VI Di
. (5)

Notice that ωsync is zero if and only if the nominal injections
P ∗i are balanced:

∑
i∈V P

∗
i = 0. Since the loads are generally

unknown and variable, it is not possible to select the nominal
source injections to balance them. Likewise, to render ωsync
small, the coefficients Di cannot be chosen arbitrary large,
since the primary control becomes slow and possibly unstable.

To eliminate this static error in network frequency, addi-
tional secondary control inputs ui : R≥0 → R are needed.
The controlled inverter equation (4) then becomes

Diθ̇i = P ∗i − Pe,i(θ) + ui(t) . (6)

If there is a synchronized solution to the secondary-controlled
equations (2),(6) with frequency ω∗sync and steady-state sec-
ondary control inputs u∗i =limt→∞ ui(t), then we obtain it as

ω∗sync =

∑
i∈V P

∗
i +

∑
j∈VI u

∗
i∑

i∈VI Di
= ωsync +

∑
j∈VI u

∗
i∑

i∈VI Di
. (7)

Clearly, there are many choices for the inputs u∗i to achieve
the control objective ω∗sync = 0. However, the inputs u∗i are
typically constrained due to additional performance criteria.

D. Tertiary Operational Control

A tertiary operation and control layer has the objective to
minimize an economic dispatch problem, that is, an appropri-
ate quadratic cost of the accumulated generation:

minimize
θ∈Tn , u∈RnI

f(u) =
∑

i∈VI

1

2
αiu

2
i (8a)

subject to P ∗i + ui = Pe,i(θ) ∀ i ∈ VI , (8b)
P ∗i = Pe,i(θ) ∀ i ∈ VL , (8c)

|θi − θj | ≤ γ(AC)
ij ∀ {i, j} ∈ E , (8d)

Pe,i(θ) ∈ [0, P i] ∀ i ∈ VI , (8e)

Here, αi > 0 is the marginal cost for source i ∈ VI . The deci-
sion variables are the angles θ and secondary control inputs u.
The non-convex equality constraints (8b)-(8c) are the nonlinear
steady-state secondary control equations (8b)-(8c), the security
constraint (8d) limits the power flow on each branch {i, j} ∈ E
with γ(AC)

ij ∈ [0, π/2[, and (8e) is a generation constraint.
Two typical instances of the economic dispatch (8) are as

follows: For P ∗i = 0, ui equals Pe,i(θ), and the total generation
cost is penalized. If the nominal generation setpoints P ∗i are
positive (e.g., scheduled according to some load forecast), then
u∗i is the operating reserve to meet the real-time demand.

E. Heterogeneous Microgrids with Additional Components

In the following, we briefly list additional components in a
microgrid, which can be captured by the model (1a),(2),(4).

Synchronous machines: Synchronous generators (respec-
tively motors) are sources (respectively loads) with dynamics

Miθ̈i +Diθ̇i = P ∗i − Pe,i(θ) , (9)

where Mi > 0 is the inertia term, and the damping coefficient
Di = Ddiss,i +Ddroop,i > 0 combines dissipation Ddiss,iθ̇i and
a droop term Ddroop,iθ̇i [9]. The constant power injection P ∗i ∈
R is positive for a generator and negative for a load. As shown
in [34, Theorem 5.1], the synchronous machine model (9) is
topologically equivalent to a first-order model of the form (4).

Inverters with measurement delays: The delay between the
power measurement Pe,i(θ) at an inverter i ∈ VI and the droop
control actuation (4) can be explicitly modeled by a first-order
lag filter with state si ∈ R and time constant Ti > 0:

Diθ̇i = P ∗i − si ,
Tiṡi = Pe,i(θ)− si .

(10)

As shown in [23, Lemma 4.1], after a linear change of
variables, the dynamics (10) equal the machine dynamics (9).



Frequency-dependent loads: If the demand depends on the
frequency [13]–[16], [20], [26], that is, the left-hand side of
(2) is Diθ̇i with Di > 0, the load dynamics (2) are identical to
inverter dynamics (4) with P ∗i ≤ 0. In this case, the microgrid
is modeled by ordinary differential equations. This frequency-
dependence does not alter the local stability of equilibria [30].

In summary, all results pertaining to equilibria of the
microgrid model (2),(4) and their local stability extend to
synchronous machines, inverters with measurement delays,
and frequency-dependent loads. Likewise, all secondary or
tertiary control strategies can be equally applied. With these
extensions in mind, we focus on the microgrid model (2),(4).

III. DECENTRALIZED PRIMARY CONTROL STRATEGIES

In this section, we study the fundamental properties of the
droop-controlled microgrid (2),(4). In Section IV, we design
appropriate secondary controllers, which preserve the proper-
ties of primary control even if the load profile is unknown.

A. Symmetries, Synchronization, and Transformations

The microgrid equations (2),(4) feature an inherent rota-
tional symmetry: they are invariant under a rigid rotation of
all angles. Formally, let rots(r) ∈ S1 be the rotation of a
point r ∈ S1 counterclockwise by the angle s ∈ [0, 2π]. For
(r1, . . . , rn) ∈ Tn, define the equivalence class

[(r1, . . . , rn)]={(rots(r1), . . . , rots(rn))∈Tn : s ∈ [0, 2π]} .

Thus, a synchronized solution θ∗(t) of (2),(4) is part of a
one-dimensional connected synchronization manifold [θ∗]. For
ωsync = 0, a synchronization manifold is also an equilibrium
manifold of (2),(4). In the following, when we refer to a
synchronized solution as “stable” or “unique”, these properties
are to be understood modulo rotational symmetry.

We make use of this rotational symmetry and establish the
equivalence of three different problems: stability of synchro-
nized solutions for primary control, stability of equilibria with
appropriate constant secondary control inputs ui, and stability
of equilibria for a new system in a set of shifted coordinates.

Recall that, without secondary control, the synchronous fre-
quency ωsync is the scaled power imbalance (5). By transform-
ing to a rotating coordinate frame with frequency ωsync, that
is, θi(t) 7→ rotωsynct(θi(t)) (with slight abuse of notation, we
maintain the variable θ), a synchronized solution of (2),(4) is
equivalent to an equilibrium of the shifted control system

0 = P̃i − Pe,i(θ) , i ∈ VL , (11a)

Diθ̇i = P̃i − Pe,i(θ) , i ∈ VI , (11b)

where the shifted power injections are P̃i = P ∗i for i ∈ VL,
and P̃i = P ∗i − Diωsync for i ∈ VI . We emphasize that the
shifted injections in (11) are balanced: P̃ ∈ 1⊥n . Notice that,
equivalently to transforming to a rotating frame with frequency
ωsync (or replacing P by P̃ ), we can assume that the secondary
control input in (2),(6) takes the constant value ui = −Diωsync
for all i ∈ VI to arrive at the shifted control system (11).

We summarize these observations in the following lemma.
Lemma 3.1: (Synchronization Equivalences). The follow-

ing statements are equivalent:

(i) The primary droop-controlled microgrid (2),(4) pos-
sesses a locally exponentially stable and unique synchro-
nization manifold t 7→ [θ(t)] ⊂ Tn for all t ≥ 0;

(ii) The secondary droop-controlled microgrid (2),(6) with
constant secondary-control input ui = −Diωsync for
all i ∈ VI possesses a locally exponentially stable and
unique equilibrium manifold [θ̄] ⊂ Tn;

(iii) The shifted control system (11) possesses a locally
exponentially stable and unique equilibrium [θ̃] ⊂ Tn.

If the equivalent statements (i)-(iii) are true, then all systems
have the same synchronization manifolds [θ(t)] = [θ̄] = [θ̃] ⊂
Tn and the same power injections Pe(θ(t)) = Pe(θ̄) = Pe(θ̃).
Additionally, θ(t) = rotωsynct(ξ0) for some ξ0 ∈ [θ̄] = [θ̃].

In light of Lemma 3.1, we restrict the discussion in this
section to the shifted control system (11).

Observe also that equilibria of (11) are invariant under
constant scaling of all droop coefficients: if Di is replaced by
Di ·β for some β ∈ R, then ωsync changes to ωsync/β. Since the
product Di · ωsync remains constant, the equilibria of (11) do
not change. Moreover, if β > 0, then the stability properties of
equilibria do not change since time can be rescaled as t 7→ t·β.

B. Existence, Uniqueness, & Stability of Synchronization
In vector form, the equilibria of (11) satisfy

P̃ = BA sin(BT θ) , (12)

where B ∈ R|V|×|E| is the incidence matrix of the network
and A = diag({Im(Yij)EiEj}{i,j}∈E) is the diagonal matrix
of line susceptances, weighted by voltage magnitudes. For an
acyclic network, ker(B) = ∅, and the unique vector of branch
power flows ξ ∈ R|E| (associated to the shifted power injec-
tions P̃ ) is given by the KCL as ξ = B†P̃ = (BTB)−1BT P̃ .

Hence, the equilibrium equations (12) equivalently read as

ξ = A sin(BT θ) . (13)

Due to boundedness of the sinusoid, a necessary condition for
solvability of equation (13) is ‖A−1ξ‖∞ < 1. The following
result shows that this condition is also sufficient and guarantees
stability of an equilibrium manifold of (11) [16, Theorem 2].

Theorem 3.2: (Existence and Stability of Synchroniza-
tion). Consider the shifted control system (11). Let ξ ∈ R|E|
be the unique vector of power flows satisfying the KCL, given
by ξ = B†P̃ . The following two statements are equivalent:

(i) Synchronization: there exists an arc length γ ∈ [0, π/2[
such that the shifted control system (11) possesses
a locally exponentially stable and unique equilibrium
manifold [θ∗] ⊂ ∆G(γ);

(ii) Flow feasibility: the power flow is feasible, that is,

Γ , ‖A−1ξ‖∞ < 1. (14)

If the equivalent statements (i) and (ii) hold true, then the
quantities Γ ∈ [0, 1[ and γ ∈ [0, π/2[ are related uniquely via
Γ = sin(γ), and sin(BT θ∗) = A−1ξ.

While Theorem 3.2 gives the necessary and sufficient con-
dition for the existence of a synchronized solution, it offers
no guidance on how to select the droop control parameters
(P ∗i , Di) to satisfy the actuation constraint Pe,i(θ) ∈ [0, P i],
or to achieve a set of desired steady-state power injections.
We will address these questions in the following subsections.



C. Power Flow Constraints and Proportional Power Sharing
One desired objective in a microgrid is that all sources share

the load in a fair way according to their power ratings [4]–[6]:
Definition 1: (Proportional Power Sharing). Consider an

equilibrium manifold [θ∗] ⊂ Tn of the shifted control system
(11). The inverters VI share the total load

∑
i∈VL P

∗
i propor-

tionally according to their power ratings if for all i, j ∈ VI
Pe,i(θ

∗)/P i = Pe,j(θ
∗)/P j . (15)

We also define a useful choice of droop coefficients.
Definition 2: (Proportional Droop Coefficients and Nomi-

nal Injection Setpoints). The droop coefficients and injections
setpoints are selected proportionally if for all i, j∈VI

P ∗i /Di = P ∗j /Dj and P ∗i /P i = P ∗j /P j . (16)

A proportional choice of droop control coefficients leads to a
fair load sharing among the inverters according to their ratings
and subject to their actuation constraints [16, Theorem 7]:

Theorem 3.3: (Power Flow Constraints and Power Shar-
ing). Consider an equilibrium manifold [θ∗] ⊂ Tn of the
shifted control system (11). Let the droop coefficients be se-
lected proportionally. The following statements are equivalent:

(i) Injection constraints: 0 ≤ Pe,i(θ
∗) ≤ P i, ∀i ∈ VI ;

(ii) Serviceable load: 0 ≤ −
∑
i∈VL P

∗
i ≤

∑
j∈VI P j .

Moreover, the inverters share the total load
∑
i∈VL P

∗
i propor-

tionally according to their power ratings.
Theorem 3.3 also holds for lossy and meshed circuits [16].

D. Power Flow Shaping
We now address the following “controllability” question:

given a set of desired power injections for the inverters, can
one select the droop coefficients to generate these injections?

We define a power injection setpoint as a point of power
balance, at fixed load demands and subject to the basic
feasibility condition given in Theorem 3.2.

Definition 3: (Feasible Power Injection Setpoint). Let γ ∈
[0, π/2[. A vector P set ∈ Rn is a γ-feasible power injection
setpoint if it satisfies the following three properties:

(i) Power balance: P set ∈ 1⊥n ;
(ii) Load invariance: P set

i = P ∗i for all loads i ∈ VL;
(iii) γ-feasibility: the associated branch power flows ξset =

B†P set are feasible, that is, ‖A−1ξset‖∞ ≤ sin(γ).

The next result characterizes the relationship between droop
controller designs and γ-feasible injection setpoints. For sim-
plicity, we omit the singular case where ωsync = 0, since
in this case the droop coefficients offer no control over the
steady-state inverter injections Pe,i(θ

∗) = P ∗i −Diωsync.
Theorem 3.4: (Power Flow Shaping). Consider the shifted

control system (11). Assume ωsync 6= 0, let P set ∈ 1⊥n , and
let γ ∈ [0, π/2[. The following statements are equivalent:

(i) Coefficient selection: there exists a selection of droop
coefficients Di, i ∈ VI , such that the steady-state
injections satisfy Pe(θ

∗) = P set, with [θ∗] ⊂ ∆G(γ);
(ii) Feasibility: P set is a γ-feasible power injection setpoint.

If the equivalent statements (i) and (ii) hold true, then the
quantities Di and P set

i are related with arbitrary β 6= 0 as

Di = β(P ∗i − P set
i ) , i ∈ VI . (17)

Moreover, [θ∗] is locally exponentially stable if and only if
β(P ∗i − P set

i ) is nonnegative for all i ∈ VI .
Proof: (i) =⇒ (ii): Since θ∗ ∈ ∆G(γ) and Pe(θ

∗) ∈ 1⊥n ,
Theorem 3.2 shows that P set is a γ-feasible injection setpoint.

(ii) =⇒ (i): Let P set be a γ-feasible injection setpoint.
Consider the droop coefficients Di = β(P ∗i − P set

i ). Since
ωsync 6= 0, for each i ∈ VI we obtain the steady-state injection

Pe,i(θ
∗) = P̃i = P ∗i −Diωsync

= P ∗i − β(P ∗i − P set
i )

1

β

∑
i∈V P

∗
i∑

i∈VI (P ∗i − P set
i )︸ ︷︷ ︸

=1

= P set
i ,

where we used
∑
i∈VI P

set
i = −

∑
i∈VL P

∗
i . Since Pe,i(θ

∗)=
P ∗i =P set

i for each i ∈ VL, we have Pe(θ) = P set. Since P set

is γ-feasible, θ∗ is well defined in ∆G(γ). By the reasoning
leading to Theorem 3.2 (see [16, Theorem 2]), the shifted
system (11) is stable if and only if all Di are nonnegative.

Remark 2: (Generation Constraints). For a γ-feasible
injection setpoint, the inverter generation constraint P set

i ∈
[0, P i] is generally not met. This constraint is feasible if
P ∗i = 0 (i ∈ VI ) and an additional parametric condition holds:

−
∑

j∈VL
P ∗j ≤

(
P i/Di

)∑
j∈VI

Dj , i ∈ VI . (18)

The inequalities (18) limit the heterogeneity of the inverter
power injections, and are sufficient for the load serviceability
condition (3), as one can see by rearranging and summing over
all i ∈ VI . A similar result holds for the choice P ∗i = P i. �

IV. CENTRALIZED, DECENTRALIZED, AND DISTRIBUTED
SECONDARY CONTROL STRATEGIES

The primary droop controller (4) results in the static fre-
quency error ωsync in (5). The purpose of the secondary control
ui(t) in (6) is to eliminate this frequency error despite un-
known and variable loads. In this section, we investigate differ-
ent decentralized and distributed secondary control strategies.

A. Decentralized Secondary Integral Control
To investigate decentralized secondary control, we partition

the set of inverters as VI = VIP ∪VIS , where the action of the
VIP inverters is restricted to primary droop control, and the
VIS inverters use the local frequency error for integral control:

ui(t) = −pi , kiṗi = θ̇i , i ∈ VIS ,
ui(t) = 0 , i ∈ VIP .

(19)

Consider the case |VIS | = 1, which mimics AGC inside a
control area of a transmission network. It can be shown, as
a direct corollary to Theorem 4.3 (in Section IV-D), that this
controller achieves frequency regulation but fails to maintain
the power sharing. Additionally, if a steady-state exists, pi
must converge to the total power imbalance

∑
i∈V P

∗
i , which

places a large and unpredictable burden on a single generator.
For |VIS | ≥ 2, the control (19) results in a set of invariant

closed-loop subspaces corresponding to different choices of
u∗ rendering ω∗sync to zero (see (7)). One way to remove these
subspaces is to implement (19) via the low-pass filter

ui(t) = −pi , kiṗi = θ̇i − εpi , i ∈ VIS , (20)



For small ε > 0 and large k > 0 (enforcing a time-scale
separation), the controller (20) achieves practical stabilization
but does not exactly regulate the frequency [26]. In conclusion,
the decentralized control (19) and its variations generally
fail to achieve fast frequency regulation while maintaining
power sharing among generating units. Additionally, a single
microgrid source may not have the authority or the capacity to
perform secondary control. In the following, we analyze dis-
tributed strategies that exactly recover the primary injections.

B. Centralized Averaging PI (CAPI) Control
Different distributed secondary control strategies have been

proposed in [24], [25]. In [24], an integral feedback of a
weighted average frequency among all inverters is proposed:3

ui(t) = −pi , kiṗi =

∑
j∈VI Dj θ̇j∑
j∈VI Dj

, i ∈ VI , (21)

Here, pi is the secondary variable and ki > 0. For P ∗i = 0, the
average frequency in (21) is the sum of the inverter injections
Pe,i(θ). In this case, (21) equals the secondary control strategy
in [25], where the averaged inverter injections are integrated.

By counter-examples, it can be shown that the secondary
controller (21) does not have the power sharing property of
the shifted control system (11) unless the values of Di and ki
are carefully tuned. In the following, we suggest the choice

ki = k/Di , i ∈ VI , (22)

where k > 0. The closed loop (2), (6), (21), (22) is given by

0 = P ∗i − Pe,i(θ) , i ∈ VL , (23a)

Diθ̇i = P ∗i − Pe,i(θ)− pi , i ∈ VI , (23b)

k
ṗi
Di

=

∑
j∈VI Dj θ̇j∑
j∈VI Dj

, i ∈ VI . (23c)

By changing variables qi , pi/Di − ωsync for i ∈ VI and
observing that kq̇i =

∑
j∈VI Dj θ̇j/

∑
j∈VI Dj is identical for

all i ∈ VI , we can rewrite the closed-loop equations (23) as

0 = P̃i − Pe,i(θ) , i ∈ VL , (24a)

Diθ̇i = P̃i − Pe,i(θ)−Diq , i ∈ VI , (24b)

kq̇ =

∑
j∈VI Dj θ̇j∑
j∈VI Dj

, (24c)

where P̃i is as in (11). In this transformed system, (24c) can
be implemented as a centralized controller: it receives infor-
mation from all inverters and then dispatches the secondary
control variable q. Due to this insight on the controller’s com-
munication complexity, we refer to (21)-(22) as the centralized
averaging proportional integral (CAPI) controller.

Theorem 4.1: (Stability of CAPI-Controlled Network).
Consider the droop-controlled microgrid (2),(6) with P ∗i ∈

3The controller [24] also contains a proportional feedback of the average
frequency. We found that such a proportional feedback does not preserve the
equilibria of the shifted control system (11) (unless the gains are carefully
tuned), and we omit it here. The controller in [24] uses an arithmetic average
with all Di = 1 in (21). Since the synchronization frequency (5) is obtained
by a weighted average and since Diθ̇i is the inverter injection Pe,i(θ) (for
P ∗
i = 0), we found the choice (21) more natural. Simulations indicate that

any convex combination of the inverter frequencies yields identical results.

[0, P i] and Di > 0 for i ∈ VI . Assume a complete communi-
cation topology among the inverters VI , and let ui(t) be given
by the CAPI controller (21) with the parametric choice (22).
The following two statements are equivalent:

(i) Stability of primary droop control: the droop control
stability condition (14) holds;

(ii) Stability of CAPI control: there exists an arc length
γ ∈ [0, π/2[ such that the closed loop (23) possesses
a locally exponentially stable and unique equilibrium
manifold ([θ∗], p∗) ⊂ ∆G(γ)× RnI .

If the equivalent statements (i) and (ii) hold true, then [θ∗] is
given as in Theorem 3.2, and p∗i = Diωsync for i ∈ VI .

Proof: We start by writing system (24) in vector form.
Let DI = diag({Di}i∈VI ), and let Dtot =

∑
i∈VI Di. Let P̃ =

(P̃L, P̃I), and accordingly let Pe(θ) = (Pe,L(θ), Pe,I(θ)),
where Pe,I(θ) and Pe,L(θ) are the injections for nodes VI and
VL. Accordingly, partition the angles as θ = (θL, θI). With
this notation, the closed loop (24) reads in vector form asI 0 0

0 DI 0
0 0 k ·Dtot


︸ ︷︷ ︸

,Q1

 0

θ̇I
q̇

 =

I 0 0
0 I DI1
0 1T Dtot

P̃L − Pe,L(θ)

P̃I − Pe,I(θ)
−q



=

I 0 0
0 DI 0
0 0 1


︸ ︷︷ ︸

,Q2

I 0 0
0 D−1I 1
0 1T Dtot


︸ ︷︷ ︸

,Q3

P̃L − Pe,L(θ)

P̃I − Pe,I(θ)
−q


︸ ︷︷ ︸

,x

. (25)

The matrices Q1 and Q2 are nonsingular, while Q3 is singular
with ker(Q3) = Span ([0 , (DI1nI

) ,−1]). On the other hand,
[1Tn 1Tn 0]x = 0 due to balanced injections 1T P̃ = 0 and flows
1TPe(θ) = 0. It follows that x 6∈ ker(Q3). Thus, possible
equilibria of (25) are x = 0n, that is, the equilibria [θ∗] from
(11) and q∗ = 0. By Theorem 3.2, the equation x = 0n is
solvable for [θ∗] ∈ ∆G(γ) if and only if condition (14) holds.

To establish stability, observe that the negative power flow
Jacobian −∂Pe(θ)/∂θ equals the Laplacian matrix L(θ) =
BT diag({aij}{i,j}∈E)B with aij , Im(Yij)EiEj cos(θi −
θj) as weights [30, Lemma 2]. For [θ∗] ∈ ∆G(γ), all weights
aij > 0 are strictly positive for {i, j} ∈ E , and L(θ∗) is a pos-
itive semidefinite Laplacian. A linearization of the DAE (25)
about the regular set of fixed points ([θ∗], 0) and elimination
of the algebraic variables gives the reduced Jacobian

J(θ∗) =

[
I 0
0 (k ·Dtot)

−1

]
︸ ︷︷ ︸

,Q̃1

[
D−1I 1
1T Dtot

]
︸ ︷︷ ︸

,Q̃2

[
−Lred(θ∗) 0

0 −1

]
︸ ︷︷ ︸

,X

,

where Lred(θ∗) is the Schur complement of L(θ∗) with respect
to the load entries with indices VI . It is known that Lred(θ∗) is
again a positive semidefinite Laplacian [35, Lemma II.1]. The
matrix Q̃1 is diagonal and positive definite, and Q̃2 is positive
semidefinite with ker(Q̃2) = Span ([(DI1nI

) ,−1]).
We proceed via a continuity-type argument. Consider mo-

mentarily the perturbed Jacobian Jε(θ∗), where Q̃2 is replaced
by the positive definite matrix Q̃2,ε =

[
D−1

I 1

1T Dtot+ε

]
with ε > 0.

The spectrum of Jε(θ∗) is obtained from Q̃1Q̃2,εXv = λv for



some (λ, v) ∈ C× CnI+1. Equivalently, let y = Q̃−11 v, then

− Q̃2,ε · blkdiag(Lred , 1/(k ·Dtot)) y = λy .

The Courant-Fischer Theorem applied to this generalized
eigenvalue problem implies that, for ε > 0 and modulo
rotational symmetry, all eigenvalues λ are real and negative.

Now, consider again the unperturbed case with ε = 0. Recall
that ker(Q̃2) = Span ([(DI1nI

) ,−1]), and the image of the
matrix blkdiag(Lred , 1/(k ·Dtot)) excludes Span ([1nI

, 0]). It
follows that Q̃2 ·blkdiag(Lred , 1/(k ·Dtot)) y is zero if only if
y ∈ Span([1nI

, 0]) corresponding to the rotational symmetry.
We conclude that the number of negative real eigenvalues of
Jε(θ

∗) does not change as ε ↘ 0. Hence, the equilibrium
([θ∗], 0) of the DAE (25) is locally exponentially stable.

The CAPI controller (21),(22) preserves the primary power
injections while restoring the frequency. However, it requires
all-to-all communication among the inverters, and a restrictive
choice of gains (22). To overcome these limitations, we present
an alternative controller and a modification of CAPI control.

C. Distributed Averaging PI (DAPI) Control

As third secondary control strategy, consider the distributed
averaging proportional integral (DAPI) controller [16]:

ui = −pi , kiṗi = Diθ̇i +
∑

j∈VI
Lij

(
pi
Di
− pj
Dj

)
. (26)

Here, ki > 0 and L is the Laplacian matrix of a weighted,
connected and undirected communication graph between the
inverters. The resulting closed-loop system is then given by

0 = P ∗i − Pe,i(θ) , i ∈ VL , (27a)

Diθ̇i = P ∗i − Pe,i(θ)− pi , i ∈ VI , (27b)

kiṗi = Diθ̇i +
∑

j∈VI
Lij

(
pi
Di
− pj
Dj

)
, i ∈ VI . (27c)

The following result has been established in earlier work [16,
Theorem 8] and shows the stability of the closed loop (27).

Theorem 4.2: (Stability of DAPI-Controlled Network).
Consider the droop-controlled microgrid (2),(6) with parame-
ters P ∗i ∈ [0, P i], and Di > 0 for i ∈ VI . Let the secondary
control inputs be given by (26) with ki > 0 for i ∈ VI and a
connected communication graph among the inverters VI with
Laplacian L. The following two statements are equivalent:

(i) Stability of primary droop control: the droop control
stability condition (14) holds;

(ii) Stability of secondary integral control: there exists
an arc length γ ∈ [0, π/2[ such that the closed loop
(23) possesses a locally exponentially stable and unique
equilibrium manifold ([θ∗], p∗) ⊂ ∆G(γ)× RnI .

If the equivalent statements (i) and (ii) hold true, then [θ∗] is
given as in Theorem 3.2, and p∗i = Diωsync for i ∈ VI .

The DAPI control (26) regulates the network frequency,
requires only a sparse communication network, and preserves
the power injections established by primary control. Moreover,
the gains Di > 0 and ki > 0 can be chosen independently.

We remark that a higher-order variation of the DAPI control
(26) (additionally integrating edge flows) can also be derived
from a network flow optimization perspective [15], [36].

D. Partial Secondary Control

The DAPI and CAPI controller require that all invert-
ers participate in secondary control. To further reduce the
communication complexity and increase the adaptivity of the
microgrid, it is desirable that only a subset of inverters regulate
the frequency. To investigate this scenario, we partition the set
of inverters as VI = VIP ∪ VIS , where the action of the VIP
inverters is restricted to primary droop control, and the VIS
inverters perform the secondary DAPI or CAPI control:

Diθ̇i = P ∗i − Pe,i(θ) , i ∈ VIP , (28a)

Diθ̇i = P ∗i − Pe,i(θ) + ui(t) , i ∈ VIS , (28b)

Observe that the VIP inverters are essentially frequency-
dependent loads and the previous analysis applies. The fol-
lowing result shows that partial secondary control strategies
successfully stabilize the microgrid and regulate the frequency.

Theorem 4.3: (Partially Regulated Networks). Consider
the droop-controlled microgrid with primary and partial sec-
ondary control (2),(28) and with parameters P ∗i ∈ [0, P i],
and Di > 0 for i ∈ VI . For i ∈ VIS , let the secondary
control inputs be given by the CAPI controller (21), (22) with
|VIS | ≥ 1 and a complete communication graph among the
VIS nodes (respectively, by the DAPI controller (26) with
|VIS | ≥ 2 and a connected communication graph among the
VIS nodes). The following statements are equivalent:

(i) Stability of primary droop control: the droop control
stability condition (14) holds;

(ii) Stability of partial secondary control: there is an arc
length γ ∈ [0, π/2[ so that the partially regulated CAPI
system (2), (21), (22), (28) (resp. DAPI system (2), (26),
(28)) possesses a locally exponentially stable and unique
equilibrium manifold ([θ∗], p∗) ⊂ ∆G(γ)× R|VIS |.

If the equivalent statements (i) and (ii) hold true, then for
i ∈ VIS , Pe,i(θ

∗) is given as in Theorem 3.2 and p∗i =
Diωpartial, where ωpartial =

∑
i∈V P

∗
i /(
∑
i∈VIS

Di). For all
other inverters i ∈ VIP , we have that Pe,i(θ

∗) = P ∗i .
Proof: The proof for partial CAPI control (respectively,

partial DAPI control) is analogous to the proof of Theorem
4.1 (respectively, [16, Theorem 8]), while accounting for the
partition VI = VIP ∪ VIS in the Jacobian matrices.

We now investigate the power sharing properties of partial
secondary control. The steady-state injections at ([θ∗], p∗) are

Pe,i(θ
∗) = P ∗i , i ∈ VIP ∪ VL ,

Pe,i(θ
∗) = P ∗i −Diωpartial, i ∈ VIS ,

By applying Theorem 3.3, we obtain the following corollary:
Corollary 4.4: (Injection Constraints and Power Sharing

with Partial Regulation). Consider a locally exponentially
stable equilibrium ([θ∗], p∗) ⊂ ∆G(γ)× R|VIS |, γ ∈ [0, π/2[,
of the partial secondary control system (2),(28) as in Theo-
rem 4.3. Select the droop coefficients and injection setpoints
proportionally. The following statements are equivalent:

(i) Injection constraints: 0 ≤ Pe,i(θ
∗) ≤ P i, ∀i ∈ VIS ;

(ii) Serviceable load: 0 ≤ −
∑

j∈VIP ∪VL
P ∗j ≤

∑
j∈VIS

P j .

Moreover, the inverters VIS performing secondary control
share the load proportionally according to their power ratings.



V. DECENTRALIZED TERTIARY CONTROL STRATEGIES

In this section, we examine the tertiary control layer. Similar
to load sharing or flow shaping, we show that the AC economic
dispatch (8) can be minimized by decentralized droop control.

A. Convex Reformulation of the AC Economic Dispatch
The main complication in solving the AC economic dispatch

optimization (8) is the nonlinearity and nonconvexity of the
AC injections constraints (1a). In practical power system oper-
ation, the nonlinear AC injection Pe(θ) is often approximated
by the linear DC injection PDC(θ) with components

PDC,i(θ) =
∑n

j=1
Im(Yij)EiEj(θi − θj) , i ∈ V . (29)

Accordingly, the AC economic dispatch (8) is approximated
by the corresponding DC economic dispatch given by

minimize
δ∈Rn , v∈RnI

f(v) =
∑

i∈VI

1

2
αiv

2
i (30a)

subject to P ∗i + vi = PDC,i(δ) ∀ i ∈ VI , (30b)
P ∗i = PDC,i(δ) ∀ i ∈ VL , (30c)

|δi − δj | ≤ γ(DC)
ij ∀ {i, j} ∈ E , (30d)

PDC,i(δ) ∈ [0, P i] ∀ i ∈ VI , (30e)

where (δ, v) are the DC variables are distinguished from the
AC variables (θ, u). In formulating the DC economic dispatch
(30), we also changed the line flow parameters from γ(AC)

ij to
γ(DC)
ij ∈ [0, π/2[ for all {i, j} ∈ E . The DC dispatch (30) is a

quadratic program with linear constraints and hence convex.
Typically, the solution (δ∗, v∗) of the DC dispatch (30)

serves as proxy for the solution of the non-convex AC dispatch
(8). The following result shows that both problems are equiva-
lent for acyclic networks and appropriate security constraints.

Theorem 5.1: (Equivalence of AC and DC Economic
Dispatch in Acyclic Networks). Consider the AC economic
dispatch (8) and the DC economic dispatch (30) in an acyclic
network. The following statements are equivalent:

(i) AC feasibility: the AC economic dispatch problem (8)
with parameters γ(AC)

ij < π/2 for all {i, j} ∈ E is
feasible with a global minimizer (θ∗, u∗) ∈ Tn × RnI ;

(ii) DC feasibility: the DC economic dispatch problem (30)
with parameters γ(DC)

ij < 1 for all {i, j} ∈ E is feasible
with a global minimizer (δ∗, v∗) ∈ Rn × RnI .

If the equivalent statements (i) and (ii) are true, then
sin(γ(AC)

ij ) = γ(DC)
ij , u∗ = v∗, sin(BT θ∗) = BT δ∗, and

f(u∗) = f(v∗) is a global minimum.
Proof: Denote the unique vector of AC branch power

flows by ξ = A sin(BT θ); see (13). For an acyclic network,
we have ker(B) = ∅, and ξ ∈ Rn−1 can be equivalently
rewritten as ξ = ABT δ for some δ ∈ Rn. Thus, we obtain

A sin(BT θ) = ABT δ . (31)

Now, we associate δ with the angles of the DC flow (29), so
that (31) is a bijective map between the AC and the DC flows.

Due to the AC security constraints (8d), the sine function
is invertible. If the DC security constraints (30d) satisfy
‖BT δ‖∞ ≤ max{i,j}∈E γ

(DC)
ij < 1, then BT θ can be uniquely

recovered from (and mapped to) BT δ via (31). Additionally,

up to rotational symmetry and modulo 2π, the angle θ and be
uniquely recovered from (and mapped to) δ. Thus, identity (31)
between the AC and the DC flow serves as a bijective change
of variables (modulo 2π and up to rotational symmetry).

This change of variables maps the AC economic dispatch
(8) to the DC economic dispatch (30) as follows. The AC
injections Pe(θ) are replaced by the DC injections PDC(δ).
The AC security constraint (8d) translates uniquely to the DC
constraint (30d) with γ(DC)

ij = sin(γ(AC)
ij ) < 1. The AC injection

constraint (8e) is mapped to the DC injection constraint (30e).
Finally, if both problems (8) and (30) are feasible with mini-

mizers u∗ = v∗ and sin(BT θ∗) = BT δ∗, then f(u∗) = f(v∗)
is the unique global minimum due to convexity of (30).

Theorem 5.1 relies on the bijection (31) between AC and
DC flows in acyclic networks [30], [31]. For cyclic networks,
the two problems (8) and (30) are generally not equivalent,
but the DC flow is a well-accepted proxy for the AC flow.

We now state a rather surprising result: any minimizer of the
AC economic dispatch (8) can be achieved by an appropriately
designed droop control (4). Conversely, any steady state of the
droop-controlled microgrid (2),(4) is the minimizer of an AC
economic dispatch (8) with appropriately chosen parameters.
The following theorem makes this idea precise for strictly
feasible minimizers (which strictly satisfying the inequality
constraints) and strictly positive (stabilizing) droop coeffi-
cients. The proof can be easily extended to the constrained case
at the cost of a less explicit relation between the optimization
parameters and the (possibly non-positive) droop coefficients.

Theorem 5.2: (Droop Control & Economic Dispatch).
Consider the AC economic dispatch (8) and the shifted control
system (11). The following statements are equivalent:

(i) Strict feasibility and optimality: there are parameters
αi > 0, i ∈ VI , and γ(AC)

ij < π/2, {i, j} ∈ E such
that the AC economic dispatch problem (8) is strictly
feasible with global minimizer (θ∗, u∗) ∈ Tn × RnI .

(ii) Constrained synchronization: there exists γ ∈ [0, π/2[
and droop coefficients Di > 0, i ∈ VI , so that the shifted
control system (11) possesses a unique and locally
exponentially stable equilibrium manifold [θ] ⊂ ∆G(γ)
meeting the injection constraints Pe,i(θ)∈ ]0, P i[, i ∈ VI .

If the equivalent statements (i) and (ii) hold true, then [θ∗] =
[θ], γ = max{i,j}∈E γ

(AC)
ij , and for some β > 0 it holds that

Di = β/αi , i ∈ VI . (32)

Theorem 5.2, stated for the shifted control system (11), can
be equivalently stated for the CAPI or DAPI control systems
(by Lemma 3.1). Before proving it, we state a key lemma.

Lemma 5.3: (Properties of strictly feasible points). If
(θ∗, u∗) ∈ Tn × RnI is a strictly feasible minimizer of the
AC economic dispatch (8), then u∗ is sign-definite, that is,
all u∗i , i ∈ VI , have the same sign. Conversely, any strictly
feasible pair (θ, u) ∈ Tn ×RnI of the AC economic dispatch
(8) with sign-definite u is inverse optimal with respect to some
α ∈ RnI

>0: there is a set of coefficients αi > 0, i ∈ VI , such that
(θ, u) is global minimizer of the AC economic dispatch (8).

Proof: The strictly feasible pairs of (8) are given by the
set of all (θ, u) ∈ Tn×RnI satisfying the power flow equations
(8b)-(8c) and the strict inequality constraints (8d)-(8e). Sum-



ming all equations (8b)-(8c) yields the necessary solvability
condition (power balance constraint)

∑
i∈VI ui=−

∑
i∈V P

∗
i .

To establish the necessary and sufficient optimality con-
ditions for (8) in the strictly feasible case, without loss of
generality, we drop the inequality constraints (8d)-(8e). With
λ ∈ Rn, the Lagrangian L : Tn ×RnI ×Rn → R is given by

L(θ, u, λ)=
∑

j∈VI

1

2
αju

2
j +

∑
j∈VI

λj
(
uj + P ∗j − Pe,j(θ)

)
+
∑

j∈VL
λj
(
P ∗j − Pe,j(θ)

)
.

The necessary KKT conditions [37] for optimality are:

∂L
∂θi

= 0 : 0 =
∑

j∈V
λj ·

∂Pe,j(θ)

∂θi
, ∀i ∈ V , (33a)

∂L
∂ui

= 0 : αiui = −λi , ∀i ∈ VI , (33b)

∂L
∂λi

= 0 : −ui = P ∗i − Pe,i(θ) , ∀i ∈ VI , (33c)

∂L
∂λi

= 0 : 0 = P ∗i − Pe,i(θ) , ∀i ∈ VL . (33d)

Since the AC economic dispatch (8) is equivalent to the convex
DC dispatch (see Theorem 5.1), the KKT conditions (33) are
also sufficient for optimality. In vector form, (33a) reads as
0n = λT∂Pe(θ)/∂θ, where the load flow Jacobian is given by
symmetric Laplacian ∂Pe(θ)/∂θ = BT diag({aij}{i,j}∈E)B
with strictly positive weights aij = Im(Yij)EiEj cos(θi −
θj) (due to strict feasibility of the security constraint (8d)). It
follows that λ ∈ 1n, that is, λi = λ̃ ∈ R for all i ∈ V and for
some λ̃ ∈ R. Hence, condition (33b) reads as ui = −λ̃/αi for
all i ∈ VI , and the conditions (33c)-(33d) reduce to

λ̃/αi = P ∗i − Pe,i(θ) , ∀i ∈ VI , (34a)
0 = P ∗i − Pe,i(θ) , ∀i ∈ VL . (34b)

By summing all equations (34), we obtain the constant λ̃ as
λ̃ =

∑
i∈V P

∗
i /
∑
i∈VI α

−1
i . The minimizers are u∗i = −λ̃/αi

and θ∗ determined from (34). It follows that u∗ is sign-definite.
By comparing the (strict) optimality conditions (34) with

the (strict) feasibility conditions (8b)-(8c), it follows that any
strictly feasible pair (θ, u) with sign-definite u is inverse
optimal for the coefficients αi = −β/ui with some β > 0.

Proof of Theorem 5.2: (i) =⇒ (ii): If the AC economic
dispatch (8) is strictly feasible, then its minimizer (θ∗, u∗) is
global (Theorem 5.1), and the optimal inverter injections are
P opt
i = Pe,i(θ

∗) = P ∗i + u∗i with sign-definite u∗ (Lemma
5.3). Since the power flow equations (8b)-(8c) and the strict
inequality constraints (8d)-(8e) are met, P opt

i ∈ ]0, P i[, [θ∗] ⊂
∆G(γ) with γ = max{i,j}∈E γ

(AC)
ij , and the vector of load and

source injections (P ∗L, P
opt
I ) is a γ-feasible injection setpoint.

By Theorem 3.4 and identity (17), the droop coefficients
Di = −β(P ∗i − P opt

i ) = βu∗i , i ∈ VI , guarantee that the
shifted control system (11) possesses an equilibrium manifold
[θ] satisfying Pe(θ) = P set = Pe(θ

∗). For βu∗i > 0 (recall u∗

is sign-definite), [θ] is locally exponentially stable by Theorem
3.2. Finally, the identity Pe(θ) = Pe(θ

∗) shows that [θ∗] = [θ].
(ii) =⇒ (i): Any equilibrium manifold [θ] ⊂ ∆G(γ) as

in (ii) is a γ-feasible power injection setpoint with

P̃i = P ∗i −Diωsync = Pe,i(θ) ∀ i ∈ VI , (35a)

P̃i = P ∗i = Pe,i(θ) ∀ i ∈ VL , (35b)
|θi − θj | < γ ∀ i, j ∈ E , (35c)

Pe,i(θ) ∈ ]0, P i[ ∀ i ∈ VI . (35d)

Hence, any θ ∈ [θ] is strictly feasible for the economic dis-
patch (8) if we identify θ∗ with θ (modulo symmetry), γ with
max{i,j}∈E γ

(AC)
ij , and u∗i with −Diωsync (modulo scaling).

Since u∗i is sign-definite, the claim follows from Lemma 5.3.
In the strictly feasible case, a comparison of the stationarity

conditions (35a)-(35b) and the optimality conditions (34) gives
Diωsync = −u∗i = λ̃/αi, where ωsync and λ̃ are constant. Since
the droop gains are defined up to scaling, we obtain (32).

The equivalence revealed in Theorem 5.2 suggests the
following guidelines to select the droop coefficients: large
coefficients Di for desirable (e.g., economic or low emission)
sources with small marginal costs αi ; and vice versa. These
insights can also be connected to the proportional power shar-
ing objective: if each P ∗i and 1/αi are selected proportional
to the rating P i, that is, αiP i = αjP j and P ∗i /P i = P ∗j /P j ,
then the associated droop coefficients (32) equal those in (16).

From an optimization perspective, the primary dynamics
(11) serve as a primal algorithm to minimize (8). Likewise,
second-order or integral control dynamics serve as primal-dual
algorithm, as shown for related systems in [13]–[15], [36]

VI. SIMULATION CASE STUDY

We illustrate the performance and robustness of our con-
trollers via simulation of the lossy IEEE 37 distribution system
shown in Fig. 1(a). After an islanding event, the distribution
network is disconnected from the transmission grid, and dis-
tributed generators must ensure stability while regulating the
frequency and sharing the demand. The cyber layer describing
the communication among the distributed generators is shown
in dotted blue. Of the 16 sources, 8 have identical power
ratings, while the other 8 are rated for twice as much power.

Instead of the lossless power flow (1), we use the lossy
equations [9]. To include reactive power dynamics, the inverter
voltages are controlled via the quadratic voltage-droop [17]

τiĖi = −CiEi(Ei − E∗i )−Qe,i, i ∈ VI ,

where E∗i > 0 is the nominal voltage, Ci, τi > 0 are gains,
and Qe,i ∈ R is the reactive power injection (1b). Fig. 1(b) and
(c) show a comparison between the decentralized secondary
controllers (19) implemented at every inverter, and the DAPI
controller (26), with equal gains. While both controllers regu-
late the frequency, the decentralized controllers (19) does not
maintain the power sharing property under a change in load.

VII. CONCLUSIONS

We studied decentralized and distributed primary, secondary,
and tertiary control strategies in microgrids and illuminated
some connections between them. Thereby, we relaxed some
restrictions regarding the information structure and time-
scale separation of conventional hierarchical control strategies



   









 


   








Fig. 1. Comparison of decentralized control (20) and DAPI control (26).

adapted from transmission-level networks to make them more
applicable to microgrids and distribution-level applications.

While this work is a first step towards an understanding
of the interdependent control loops in hierarchical microgrids,
several complicating factors have not been taken into account.
In particular, our analysis is thus far formally restricted to
acyclic networks with lossless (or constant R/X ratio) lines.
Moreover, future work needs to consider more detailed models
including reactive power flows, voltage dynamics, and ramping
constraints on the inverter power injections.
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