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Abstract

A large-scale power grid’s ability to transfer energy from producers to consumers

is constrained by both the network structure and the nonlinear physics of power

flow. Violations of these constraints have been observed to result in voltage collapse

blackouts, where nodal voltages slowly decline before precipitously falling. How-

ever, methods to test for voltage collapse are dominantly simulation-based, o↵ering

little theoretical insight into how grid structure influences stability margins. For a

simplified power flow model, here we derive a closed-form condition under which

a power network is safe from voltage collapse. The condition combines the com-

plex structure of the network with the reactive power demands of loads to produce

a node-by-node measure of grid stress, a prediction of the largest nodal voltage

deviation, and an estimate of the distance to collapse. We extensively test our

predictions on large-scale systems, highlighting how our condition can be leveraged

to increase grid stability margins.

Introduction

Modern power grids are some of the largest and most complex engineered systems. Currently

however, growing consumer demand and the transition to distributed and deregulated small-scale

generation are leading to increased system stress, and grid operators have strong economic incentives

to operate networks close to their physical limits [1, 2, 3]. When these physical limits are approached

or breached, power systems can experience a form of network-wide failure termed voltage collapse
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[4, 5, 6, 7, 8]. Voltage collapse and related instabilities have been identified as contributing factors in

several recent large-scale blackouts, including Scandinavia (2003), the northeastern United States

(2003), Athens (2004) and Brazil (2009) [7, 8, 9]. An obstacle in predicting voltage collapse is the

extensive use of capacitor banks to hold up voltage levels at substations and along transmission lines.

This voltage support keeps the system within operational constraints, but conceals the low stability

margin of the network, leading to increased blackout risk [7, 10]. Voltage fluctuations are presently

being further aggravated by the increasing integration of utility-scale wind and photovoltaic sources.

A key problem is therefore to develop physically insightful, easily computable stability conditions

under which a network is safe from voltage collapse.

Applications of network theory and statistical mechanics to power transmission networks have to

this point focused heavily on synchronization [11, 12, 13, 14, 15, 16, 17, 18, 19], a phenomenon

associated with the self-stabilizing collective behavior of synchronous generators [20]. Synchro-

nization is primarily controlled by the flow of active power; the real power used by loads to do

work [8]. Interest in synchronization has led to a robust theoretical understanding of active power

[21, 22, 1, 16, 23], and a plethora of closed-form conditions under which power networks synchro-

nize. In contrast, voltage collapse — a collective nonlinear instability [4, 5, 7] — has received little

attention from a network perspective.

While voltage collapse is a multifaceted phenomena involving generator and transformer limits, the

most important fundamental e↵ect is a saddle-node bifurcation of the network equations, resulting

in the loss of system equilibrium. Voltage phenomena are driven primarily by reactive power, a

much less intuitive concept than active power. Reactive power represents the ebb and flow of energy

in the electromagnetic fields of system components. This energy is stored and released during each

AC cycle, allowing system components to function normally and to facilitate the transfer of useful

active power with minimal transmission losses [7]. Understanding and controlling reactive power

is therefore essential for the e�cient and safe operation of the grid.

Theoretical understanding of reactive power flow and voltage collapse in complex networks is poor

however, and numerical simulation is currently the only satisfactory approach to guard against
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voltage collapse; see [24, 25, 26, 4, 5, 27, 28, 29, 7] for numerical tests based on sensitivity matrices,

and [30, 31, 32, 10, 1, 23] for approaches based on continuation methods, optimization, and energy

methods. The network is usually analyzed not only under normal conditions, but under a large

set of contingencies generated from single-component failures. A broad survey of computational

approaches can be found in [33]. While e↵ective computational tools in practice, these numerical

approaches often o↵er little theoretical insight into how the underlying parameters and network

structure influence voltage stability. An exception is the branch flow monitoring approach in [34, 35],

where voltage collapse and network structure are linked by showing that collapse is preceded by

the saturation of transfer paths between sources and sinks of power (Supplementary Note 2).

In contrast with computational methods focused on predicting voltage collapse with great accuracy,

here we develop a simple and new analytical framework for analyzing voltage collapse, and focus in

particular on understanding how the structure of the network influences stability margins. While

previous analytic works [36, 37] have relied on spectral graph measures such as algebraic connectivity

[14, 13, 16], the closed-form voltage stability condition we propose below accounts for the grid

structure by simultaneously incorporating all eigenvalues of an appropriate system matrix, and

combines this information with the sizes and locations of shunt capacitors and loads. To our

knowledge, this stability condition is the first to achieve this combination. Our analysis, which is

based on a simplified power flow model, yields predictions for the voltage profiles of power grids

and provides an explicit stability margin against voltage collapse. The predictions are found to be

quite accurate in standard test cases. Our approach is not only mathematically accurate, but also

appealing and intuitive to scholars versed in network science and dynamic processes over networks.

Since we focus on the influence of grid structure on voltage collapse, we analyze the simplest possible

network model that captures the essential bifurcation phenomena; we discuss important extensions

involving second order e↵ects due to active power coupling as well as component failures in the

Discussion section. While our simplified model does not account for active power coupling, we show

through extensive numerical experiments that our predictions remain robust when including these

e↵ects, and we specifically highlight when they break down.
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Results

Power Network Modeling

We consider a high-voltage power network with n � 1 load nodes and m � 1 generator nodes, and

in this article we focus on the decoupled reactive power flow equations

Q

i

= �
X

n+m

j=1

V

i

B

ij

V

j

, i 2 {1, . . . , n} , (1)

whereQ
i

(resp. V
i

) is the reactive power demanded (resp. voltage magnitude) at load i 2 {1, . . . , n}.

Voltage magnitudes V

j

at generators nodes j 2 {n + 1, . . . , n + m} are regulated by internal

controllers to constant values, and the sum in (1) therefore contains both quadratic and linear

terms in the unknown load voltages V
L

= (V
1

, . . . , V

n

). The symmetric coe�cients B

ij

= B

ji

quantify the e↵ective strength of connection between nodes i and j. These coupling coe�cients

have the form B

ij

= b

ij

cos(✓
i

� ✓

j

), where b

ij

� 0 quantifies the strength of the transmission line

joining nodes i and j, and ✓

i

� ✓

j

is the di↵erence between the angles of the voltage phasors at the

two nodes. These phase angles may be estimated in advance using a decoupled active power flow

model [38], or come from the output of a numerical power flow solver. The diagonal elements are

defined by B

ii

= �
P

j 6=i

b

ij

+ b

ii

, where b
ii

accounts for inductive or capacitive shunts (connections

to ground). The sparsity pattern of the matrix B

ij

therefore encodes both the structure of

the physical network and the degree of coupling between nodes after accounting for active power

transfers. Equation (1) arises from considering the balance of reactive power at each node in the

network while neglecting second-order e↵ects accounting for coupling with active power flows and

phase angle dynamics; more modeling information may be found in (Supplementary Note 3).

A novel mechanical analogy for the power flow (1) is shown in Fig. 1(b). The equilibrium configu-

ration of the spring network corresponds to the desirable high-voltage solution of (1), and can be

interpreted as a local minimum (Fig. 1(c)) of the energy function [31]
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Figure 1: Mechanical and energy interpretations of power flow. (a) An example power network with two
generators (green) supplying power to three loads (red). Power demands (Q

1

, Q

2

, Q

3

) are placed on the load
nodes; (b) a mechanical analogy: a linear spring network placed in a potential field. The generator voltages
(green) are “pinned” at constant values, while the load voltages (red) are masses “hanging” o↵ the generators,
their equilibrium values being determined by their weights (the power demands Q

L

= (Q
1

, Q

2

, Q

3

)), the
heights of the fixed generator voltages (V

4

, V

5

), and by the sti↵ness of the spring network (the susceptance
matrix B). Voltage collapse can occur when one of the masses crosses an appropriate collapse boundary
curve; (c) Contour plot of energy function when Q

3

= 0 and node 3 is eliminated via Kron reduction [13].
Since E(V

L

) contains logarithms, it tends to �1 as either axis is approached. In a normalized system of
units, the stable high-voltage equilibrium rests in a local minimum at (0.94, 0.94), while an unstable low-
voltage equilibrium sits at the saddle (0.68, 0.30). Voltage collapse occurs when these equilibria coalesce and
the system trajectory diverges.

where 

i

, P
n+m

j=1

B

ij

(Supplementary Note 4). Note that the power demands Q

i

generate a

logarithmic potential, leading to multiple equilibria (Fig. 1(c)). Standard practice is that for

stable and economical network operation with minimal transmission losses, nodal voltages should

remain near their open-circuit values as obtained for an unloaded (and thus unstressed) network

[8]. Intuitively then, a stable steady-state is characterized by

|V
i

� V

⇤
i

|/V ⇤
i

 � , i 2 {1, . . . , n} , (3)

where V

⇤
i

is the open-circuit voltage at the ith node and � > 0 is a dimensionless variable quan-

tifying an allowable percentage limit on deviations. Intuition from Fig. 1 suggests that a sti↵,

lightly loaded grid will have a high and uniform voltage profile with small deviation �, while a

weak, heavily loaded grid will result in voltage collapse. The following analytic results will make

this intuition precise and mathematically accurate.
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Analytic Results

We suggest that for assessing voltage stability and collapse, one should consider not the underlying

electrical network encoded in the susceptance matrix B, but a reduced and re-weighted auxiliary

network. This auxiliary network shares the same topology as the physical network, but with

new edge weights which encode both generator voltage levels and the topology and strength of

connections between loads and generators. After potentially reordering the network nodes so that

loads and generators are labeled, respectively {1, . . . , n} and {n+ 1, . . . , n+m}, we may partition

the (n+m)⇥ (n+m) coupling matrix B with elements B
ij

into four block matrices as

B =

0

B@
B

LL

B
LG

B
GL

B
GG

1

CA . (4)

The n⇥n sub-matrix B
LL

now describes the interconnections among loads, while the n⇥m matrix

B
LG

specifies the interconnections between loads and generators. This partitioning suggests a

natural mapping from generators to loads through the matrix B�1

LL

B
LG

, which we can use to define

the open-circuit load voltages V⇤
L

= (V ⇤
1

, . . . , V

⇤
n

) by

V⇤
L

= �B�1

LL

B
LG

V
G

, (5)

where V
G

= (V
n+1

, . . . , V

n+m

) is the vector of fixed generator voltages. To quantify the sti↵ness of

the spring network in Fig. 1(b), we combine the nominal voltages (5) with the sub-matrix B
LL

in

equation (4) to obtain the symmetric sti↵ness matrix

Q
crit

, 1

4
diag(V⇤

L

) ·B
LL

· diag(V⇤
L

) , (6)

where diag(V⇤
L

) is the matrix with (V ⇤
1

, . . . , V

⇤
n

) on the main diagonal. In other words, Q
crit

has

units of power and its ijth entry is given by V

⇤
i

V

⇤
j

B

ij

/4. Selected topological features, edge weights,

generator voltages, and the relative locations of generators and loads are all concisely encoded in

the sti↵ness matrix Q
crit

.
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Just as the sti↵ness matrix of a standard spring network relates displacements to spring forces, the

matrix Q
crit

can be thought of as relating the dimensionless voltage deviations (V
i

�V

⇤
i

)/V ⇤
i

to the

reactive power demands Q
L

= (Q
1

, . . . , Q

n

). Indeed, this normalization to dimensionless variables

is key to our theoretical analysis. To arrive at small normalized deviations of the form (3), it then

seems reasonable that the dimensionless matrix-vector product Q�1

crit

Q
L

should be small in some

sense. Our main result below shows that this intuition based on linear spring networks can be made

precise, leading to guarantees on voltage deviations for the nonlinear network (1). A derivation and

a formal proof can be found in the Methods section and in (Supplementary Note 5), respectively.

Theorem 1: The power flow equations (1) have a unique, stable, high-voltage solution (V
1

, . . . , V

n

)

if

� =
��Q�1

crit

Q
L

��
1 < 1 , (7)

where
��Q�1

crit

Q
L

��
1 is the largest magnitude of the entries of the vector Q�1

crit

Q
L

. Moreover, each

component V

i

of the unique high-voltage solution satisfies the bound |V
i

� V

⇤
i

|/V ⇤
i

 ��, where

�� = (1�
p
1��)/2.

The matrix-vector product Q�1

crit

Q
L

captures the interaction between the auxiliary network struc-

ture and the locations of loads, with the infinity norm k · k1 identifying the maximally stressed

node. The scalar �� then bounds the largest voltage deviation in the network. No reactive loading

corresponds to zero stress � = 0 and �� = 0; voltages align with their open-circuit values. Con-

versely, when � = 1, the network’s guaranteed stability margin has been depleted. Said di↵erently,

� < 1 guarantees the existence of a stable equilibrium, while � � 1 is a necessary condition for

voltage collapse, where at least one node of the network has become overly stressed. The stability

condition (7) can be therefore be interpreted as a dual to previous literature showing that voltage

collapse is always preceded by at least one edge of the network becoming overly stressed [34, 35].

Moreover, the bound � < 1 is the tightest possible general bound, as cases can be constructed

where voltage collapse occurs at � = 1 (Supplementary Note 5, Remark 4). Note that (6) captures

the desired intuition of the spring network analogy in Fig. 1(b); the network sti↵ness matrix Q
crit

should be large when compared to the reactive loading Q
L

; see (Supplementary Note 5) for complex
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network, power system, and circuit-theoretic interpretations of the stability condition. In terms

of Fig. 1(c),
p
1�� lower bounds the distance in voltage-space between the stable and unstable

equilibria in the power system energy landscape. In summary, the stability condition (7) concisely

and elegantly captures the physical intuition developed in Fig. 1 and in the previous section, and

guarantees the existence of a unique equilibrium for the nonlinear network equations (1).

For fixed reactive demands Q
L

, the stability test (7) states that the largest stability margins are

obtained by making Q�1

crit

small. Since the parameters of the grid are embedded in the sti↵ness

matrix Q
crit

defined in (6), the stability test (7) provides insight into how the parameters of the

network influence its stability margins. Rigorous statements may be found in (Supplementary Note

6), while here we present the key insights. For example, by examining the definitions (5) and (6)

one observes that raising generator voltage levels V
G

will weaken (in magnitude) the elements of

Q�1

crit

and therefore increase stability margins. In terms of Fig. 1(b), this corresponds to “raising

the ceiling”, which increases the distance to the stability boundary. Since the coupling weights

B

ij

enter the sti↵ness matrix (6) both directly and through the open-circuit voltages V⇤
L

, their

e↵ects on stability margins are subtle, and counter-examples can be constructed where increasing

the coupling between generators and loads decreases stability margins (Supplementary Note 6).

Nonetheless, one may show rigorously that under normal network conditions, strengthening the

edge weights B

ij

between loads and generators and increasing the shunt capacitances b

ii

at loads

are both beneficial to stability margins. The first corresponds to sti↵ening the springs (4, 2) and

(5, 3) of Fig. 1(b), while the second can be thought of as extra upward force directly applied to

nodes {1, 2, 3}. In summary, the stability condition (7) can be leveraged to provide new qualitative

insights into how the network structure and parameters influence stability margins.

Finally, in contrast to standard voltage collapse studies, note that we have made no assumptions

about the direction of the reactive power demands Q
L

, which appear linearly in (7). Therefore,

the condition (7) simultaneously accounts for all directions in the space of reactive power demands.

This generality may result in the test (7) being conservative for a particular direction in the space

of power demands. On the other hand, this generality allows one to assess network stability for an

entire set of possible power demands via a single evaluation of the condition (7).
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The inverse of the sti↵ness matrix is the sensitivity matrix relating percentage changes in voltage

to changes in reactive demands Q
L

, as can be seen from the linearized relationship (V
i

�V

⇤
i

)/V ⇤
i

=

�(Q�1

crit

Q
L

)
i

/4. A comparison of the sti↵ness matrix Q
crit

and its inverse is shown in Fig. 2. The

sti↵ness matrix Q
crit

is itself very sparse, mirroring the physical topology of the grid. This sparsity

allows the inequality (7) to be rapidly checked by solving a sparse linear system Q
crit

x = Q
L

; the

vector x serves as a linear approximation of (and an upper bound on) the exact voltage deviations

(V
i

�V

⇤
i

)/V ⇤
i

. In contrast, the inverse Q�1

crit

is a dense matrix with significant o↵-diagonal elements,

indicating the importance of not only local but also multi-hop interactions. While we omit the

details here, the stability condition (7) can be extended to additionally guarantee the satisfaction

of hard, predefined limits on both voltage magnitudes and the reactive power injections of generators

(Supplementary Note 5, Remark 2 and Supplementary Note 6, respectively).
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Figure 2: Sparsity patterns of network matrices for 57 node test case. (a) the sti↵ness matrix Q
crit

rep-
resenting the auxiliary network. (b) The inverse sti↵ness matrix Q�1

crit

. The 57 node network contains 50
loads and 7 generators. Nodes are sorted and grouped by connected components of the subgraph induced by
Q

crit

, with connected components ordered from largest to smallest; nodes {1, . . . , 48} are part of one large
connected component, while nodes {49, 50} each constitute their own component. Color scale represents
normalized values of the matrix elements, with dark blue being zero and red being one. Diagonal elements
of Q

crit

are displayed in absolute value for clarity.
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Numerical Assessment of Voltage Stability Condition

In this section we provide three numerical studies to assess the accuracy of the stability condition (7)

in large-scale power networks, and to determine its predictive limitations. Our first study focuses

on the accuracy of the theoretical bound |V
i

� V

⇤
i

|/V ⇤
i

 �� in typical networks operating in the

normal regime far away from voltage collapse. We consider eleven widely-established test cases

[39], ranging from a small 9 node network to a representation of the Polish grid with nearly 2400

nodes. To generate a diverse set of sample networks, we construct 1000 realizations of each network,

with up to 30% deviation from forecast conditions in generation and up to 50% deviation in active

and reactive power demands, drawn from a normal distribution centered around base conditions;

see (Supplementary Methods) for details. For each realization, we solve the more realistic lossless

coupled active/reactive AC power flow equations numerically, and we compare the largest nodal

voltage deviation �

exact

= max
i

|V
i

�V

⇤
i

|/V ⇤
i

from the numerically determined voltage profile to the

analytic bound �� = 1

2

(1 �
p
1��) from our main result (7) based on the simplified model (1)

with the numerically determined phase angles ✓
i

� ✓

j

substituted.

Our findings are reported in Table 1. The theoretical prediction of the stability test (7) is that

�

exact

 ��; the first column indicates that this inequality held for all realizations for which the

numerical solver converged. All realizations for which the numerical solver failed to converge were

discarded; this occurred in fewer than 1% of all cases. The second and third columns list the

average values of these two quantities over all realizations. As can be seen, these voltage deviations

range from roughly 1% to 6% from open-circuit conditions. The final column shows the average

of the prediction error (�� � �

exact

)/�
exact

over all realizations. For all networks from 9 to 2383

nodes (except the 57 and 300 node networks) the prediction error is less than 1%, indicating that

prediction accuracy is not directly dependent on system size. Perhaps surprisingly considering the

simplicity of the condition (7), the least accurate prediction overestimates voltage deviations by

only 3.8%. We conclude that for normally stressed large-scale networks, the bounds predicted by

the stability condition (7) hold and are accurate even when tested on more complicated coupled

power flow models.
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Our second study analyzes the predictions of (7) in a highly stressed network, again for the more-

realistic lossless coupled active/reactive power flow model. As our focus is on studying bifurcation

phenomena for the network equations, we discard generator limitations in this study and assume

internal generator controls hold the network-side generator voltages constant; see (Supplementary

Note 7) for theoretical extensions which include generator limits. As we noted previously, � � 1

is a necessary condition for voltage collapse, and we now test the gap between this necessary

condition and true point of collapse. We consider the 39 node reduced representation of the New

England power grid, illustrated in Fig. 5(a). Beginning from normal base case loading conditions,

the active and reactive power demands and generation are increased continuously along a chosen

ray in parameter-space, with the size of the increase parameterized by a scalar �, until voltage

collapse occurred at a value � = �

collapse

. For each � 2 [0,�
collapse

], we determine numerically

the system equilibrium and recalculate � from (7) using the numerically determined phase angles

✓

i

� ✓

j

.

The above testing procedure obviously depends on the choice of direction for increase in the space of

power demands and generation. We select two directions and study them separately, to illustrate

the strengths and limitations of our analytic approach based on a simplified power flow model.

As a first choice, we select a direction where the mean power factor4 in the network is decreased

20% to a value of 0.7. This corresponds to a case where loads consume roughly equal amounts

of active and reactive power, which in practice is unusually highly reactive power consumption.

We therefore expect that instabilities associated with reactive power flow should dominate any

unmodeled active power e↵ects, and the simplified model (1) should serve as a good proxy for the

coupled active/reactive power flow equations. As a function of �, Fig. 3 displays the trace of the

voltage magnitude at node 4 (solid black), the loading margin � (dashed blue), and the bound

V

⇤
4

(1 � ��) (dotted red) determined by (7). Node 4 was determined through (7) to be the most

stressed node in the network, and hence the node for which our theoretical bound would be best

tested. First, observe that the numerically determined voltage trace is bounded below by the trace

4The power factor of the ith load is defined as Pi/
p

(P 2
i +Q2

i ), where Pi is the active power drawn by the load.
If Pi = Qi, then the power factor is 0.707.
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of the theoretical bound, as expected. The loading margin � increases roughly linearly with �,

with � = 1 occurring at �/�

collapse

= 0.98. Our previous conclusions regarding the necessity of

� > 1 for voltage collapse therefore hold in this highly stressed case for the more complicated

coupled active/reactive power flow model, and the gap between the necessary condition � > 1 and

the true point of collapse is a surprisingly small 2%.

0 0.2 0.4 0.6 0.8 1

0.5

1

Distance to Col lapse λ/λco l l a p s e

V
o
lt
a
g
e
M
a
g
n
it
u
d
e
V
i/
V
b
a
s
e

0 0.2 0.4 0.6 0.8 1
0

0.5

1

L
o
a
d
in

g
M
a
rg

in
∆

V i (Numer i ca l )

Bou nd (Th eor et i ca l )

∆

Figure 3: Stress testing of voltage stability condition for low power factor loading. The horizontal voltage
axis is scaled by V

base

= 345 kV. The solid black trace is the numerically computed voltage magnitude at
node four, while the dotted red trace is given explicitly by V

⇤
4

(1� ��), where �� is determined as below (7).
The stability margin � is shown in dashed blue. When � > 1, �� becomes undefined and the corresponding
bound is no longer plotted.

As a second loading direction for testing, we maintain the direction of the base case, for which the

average power factor of loads is approximately 0.88. In this regime reactive power transfers will be

less prominent, and we expect the unmodeled coupling between active and reactive power flows to

induce voltage collapse at a loading level lower than expected from the simplified model (1). Again

as a function of �, Fig. 4 displays the desired traces. While the trace of V ⇤
4

(1���) continues to lower

bound the trace of the node voltage V

4

, we find in this case that � = 0.75 when voltage collapse

occurs for the coupled equations at �/�

collapse

= 1. As expected, in this regime the unmodeled

coupled power flow e↵ects become crucial and the simplified decoupled model (1), on which our
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analysis is based, becomes invalid. Said di↵erently, when reactive power demands in the network

are low, our analytic prediction of the point of voltage collapse based on the simplified model (1)

is overly optimistic. We comment further on extensions of our analysis to the coupled case in the

Discussion and in (Supplementary Note 5).
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Figure 4: Stress testing of voltage stability condition for high power factor loading. The horizontal voltage
axis is scaled by V

base

= 345 kV. The solid black trace is the numerically computed voltage magnitude at
node four, while the dotted red trace is given explicitly by V

⇤
4

(1� ��), where �� is determined as below (7).
The stability margin � is shown in dashed blue.

Our final study illustrates the use of our stability condition (7) for determining corrective actions,

with the goal of increasing grid stability margins. The New England grid in Fig. 5(a) is experiencing

peak loading conditions, and shunt capacitors have been switched in at all substations (red nodes) to

support voltage magnitudes, keeping the voltage profile (solid black in Fig. 5(b)) within operational

bounds (dotted gray). Node 8 is under particularly heavy loading with a poor power factor of 0.82,

and additional shunt capacitors at nodes 7 through 9 have been used to support the voltages in

this area. While all voltages are maintained within the operational bounds, we calculate using

the condition (7) that � = 0.64, indicating the network is actually under significant stress. This

stress is also apparent by numerically solving the lossy coupled power flow equations plotting
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the ratio V

i

/V

⇤
i

of the nodal voltage to the open-circuit voltage (solid red in Fig. 5(b)), as these

ratios take into account the e↵ects of shunt compensation; node 8 is experiencing the greatest

stress. Consider the possibility of control equipment being present at the ith node of the network,

capable of supplying an additional amount of reactive power q

i

to the grid. Our goal is to select

q = (q
1

, . . . , q

n

) to optimally increase grid stability margins. Such control could be realized actively

through power electronic devices, or passively by curtailing local power consumption; in either case

it is also desirable to minimize the total control action.

With this additional control capability, the stability metric (7) is modified to kQ�1

crit

(Q
L

+q)k < 1.

One immediately observes that the elements of Q�1

crit

are providing information on where control

action will be the most e↵ective. For example, suppose that control equipment is present only

at nodes seven and nine, but not at node eight (Fig. 5(a)). One finds for this example that

(Q�1

crit

)
87

/(Q�1

crit

)
89

= 1.98, indicating that control action at node seven will be nearly twice as

e↵ective in reducing stress as node eight as the same control action would be if applied at node nine.

From a purely topological viewpoint, this discrepancy in control sensitivity is surprising, as both

nodes are neighbors of node eight. The sti↵ness matrixQ
crit

incorporates not only the topology, but

also the strength of connections between nodes, the locations of shunt capacitors and the relative

proximity of generation (green nodes). Increasing q

7

and q

9

in this ratio provides the desired control

action, allowing capacitor banks to be switched out, and we find that � = 0.52 after control. A

simple heuristic control has therefore reduced network stress by (0.64� 0.52)/(0.52) ' 23%, while

the voltage profile of the grid (dotted black) is essentially unchanged.

In summary, the stability condition (7) can be simply and intuitively used to select control policies

which increase grid stability margins with minimal control e↵ort; additional details on eigenvector-

based control directions [40] and on the simulation setup are available in (Supplementary Note 5,

Remark 3) and (Supplementary Methods), respectively.
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Figure 5: Corrective action results for the reduced New England 39 node network. (a) Depiction of the
reduced New England grid. Load nodes {1, . . . , 30} are red circles, while generators {31, . . . , 39} are green
squares. Shunt capacitors are present at all load nodes, but shown explicitly at nodes 7, 8, and 9. (b) Results
of corrective action study. Voltage profile Vi (black) and scaled voltages Vi/V

⇤
i (red), before (solid) and after

(dashed) corrective action. All voltages were scaled by the grid’s base voltage V

base

= 345 kV. Horizontal
dashed lines are operational limits for Vi of ±5% from base voltage. For clarity only nodes {1, . . . , 20} are
plotted.
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Discussion

The stability condition (7) provides a long sought-after connection between network structure,

reactive loading, and the resulting voltage profile of the grid. As such, the condition (7) can be used

to identify weak network areas and trace geographical origins of voltage instability by examining the

entries of the vector Q�1

crit

Q
L

. This allows for the e↵ective placement of voltage control equipment,

and the automatic dispatch of generation to mitigate voltage fluctuations, creating a self-healing

network. The condition (7) can serve as a bridge between intuition-based heuristics for voltage

control and more computational optimization approaches, and the use of (7) for systematic control

design is currently under investigation.

The results reported here are a first step towards an analytic approach to assessing and strength-

ening the voltage stability of power grids. A limitation of the current work is that active power

demands are included only implicitly in the condition (7), through the sti↵ness matrix Q
crit

which

contains the e↵ective coupling weights B

ij

= b

ij

cos(✓
i

� ✓

j

). While our formal theoretical results

hold only for the approximate model, the results of Table 1 show that this approximation is ex-

tremely accurate under normal operating conditions, and the results of Figure 5 indicate that our

framework provides e↵ective control guidelines even when this assumption is violated. As can be

seen from Figure 4 however, this decoupling approximation tends to degrade near points of voltage

collapse, where second-order e↵ects due to active power flows become crucial, and the predictions

of the simplified decoupled model and the coupled active/reactive power flow model diverge (Sup-

plementary Note 5, Remark 5). The key direction for future work is therefore the development of a

more advanced analytic test which explicitly includes active power demands and does not require

that the sti↵ness matrix be updated as phase angle di↵erences ✓
i

�✓

j

change. This should allow for

the rigorous extension of our theoretical results to coupled active/reactive power flow. Another lim-

itation of model (1) is the assumption that resistances between nodes in the network are negligible.

While this assumption is quite reasonable in large high-voltage transmission networks, resistances

nonetheless generate additional voltage drops, and losses may become sizable due to large current

flows as the network becomes stressed. Extending the stability test (7) to lossy power flow models
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is therefore another key step toward an analytic understanding of power flow. These two extensions

are under investigation, and if completed will translate the new theoretical framework presented

here into a robust set of analysis and design tools for practical power grids. We expect that a

generalized sti↵ness matrix similar to (6) will play a key role in these more general problem setups.

An area where these results may have a major impact is in contingency screening, where system

operators computationally assess failure scenarios to determine if the grid remains stable. Due to

the low computational overhead of evaluating analytic conditions such as our stability condition (7),

further developments of the theory may allow for the fast assessment of many more contingencies

than is currently feasible, or a single condition could be derived which guarantees the stability

of the system under all contingencies within a certain class. Finally, we note that similar matrix

techniques for incorporating network structure should prove relevant in other complex networked

systems displaying polynomial nonlinearities, such as ecological population models, chemical reac-

tion networks, and viral epidemic spreading.

Methods

Main Result Derivation: The key step in deriving (7) is recognizing the physical significance of

the open-circuit voltages V⇤
L

in (5). Physically, V ⇤
i

is the voltage one would measure at the ith node

of the network when Q

1

= Q

2

= · · · = Q

n

= 0. The condition (7) was derived by reformulating

the power flow (1) as a fixed point equation of the form x = f(x), where x

i

= (V
i

� V

⇤
i

)/V ⇤
i

is a shifted and normalized voltage variable. With this notation, the power flow (1) takes the

dimensionless form x = f(x) , �1

4

Q�1

crit

diag(Q
L

) · r(x), where r(x) = ( 1

1+x1
, . . . ,

1

1+xn
). Imposing

invariance of the set {x : |x
i

|  � , i = 1, . . . , n} under the fixed point map f(·) leads to condition

(7). Existence and uniqueness of the equilibrium was shown by applying the contraction mapping

theorem. Finally, stability was confirmed by showing that the Hessian matrix of the energy function

is positive definite at the equilibrium; see (Supplementary Note 3) and (Supplementary Note 5) for

additional details.

Properties of Sti↵ness Matrix: In all publicly available test cases, the sub-matrix B
LL

is a
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nonsingular Metzler matrix. It follows that its inverse has nonpositive elements [41], that the

matrix �B�1

LL

B
LG

is nonnegative, and hence that the open-circuit voltages V⇤
L

= �B�1

LL

B
LG

V
G

as

defined in (5) are strictly positive. The sti↵ness matrix Q
crit

used in the condition (7) inherits this

Metzler property, and also posses an inverse with nonpositive elements. In particular, it holds that

(Q�1

crit

)
ij

< 0 with strictly inequality if and only if there exists a path in the network between load

node i and load node j which does not intersect any generator node. Thus, reactive loading at node

j influences the voltage at node i and vice-versa, even if nodes i and j are not one-hop neighbors.

When there are multiple groups of loads electrically isolated from one another by generators, the

stability test (7) therefore decouples into an identical test for each group.

Numerical Studies: Extensive details on the construction of our three numerical experiments

may be found in the (Supplementary Methods). All studies were implemented using the standard

power flow solution techniques from the MATPOWER package [39].
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Figure Legends

Figure 1: Mechanical and energy interpretations of power flow. (a) An example power network with two

generators (green) supplying power to three loads (red). Power demands (Q
1

, Q

2

, Q

3

) are placed on the load

nodes; (b) a mechanical analogy: a linear spring network placed in a potential field. The generator voltages

(green) are “pinned” at constant values, while the load voltages (red) are masses “hanging” o↵ the generators,
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their equilibrium values being determined by their weights (the power demands Q
L

= (Q
1

, Q

2

, Q

3

)), the

heights of the fixed generator voltages (V
4

, V

5

), and by the sti↵ness of the spring network (the susceptance

matrix B). Voltage collapse can occur when one of the masses crosses an appropriate collapse boundary

curve; (c) Contour plot of energy function when Q

3

= 0 and node 3 is eliminated via Kron reduction [13].

Since E(V
L

) contains logarithms, it tends to �1 as either axis is approached. In a normalized system of

units, the stable high-voltage equilibrium rests in a local minimum at (0.94, 0.94), while an unstable low-

voltage equilibrium sits at the saddle (0.68, 0.30). Voltage collapse occurs when these equilibria coalesce and

the system trajectory diverges.

Figure 2: Sparsity patterns of network matrices for 57 node test case. (a) the sti↵ness matrix Q
crit

representing the auxiliary network. (b) The inverse sti↵ness matrix Q�1

crit

. The 57 node network contains 50

loads and 7 generators. Nodes are sorted and grouped by connected components of the subgraph induced by

Q
crit

, with connected components ordered from largest to smallest; nodes {1, . . . , 48} are part of one large

connected component, while nodes {49, 50} each constitute their own component. Color scale represents

normalized values of the matrix elements, with dark blue being zero and red being one. Diagonal elements

of Q
crit

are displayed in absolute value for clarity.

Figure 3: Stress testing of voltage stability condition for low power factor loading. The horizontal voltage

axis is scaled by V

base

= 345 kV. The solid black trace is the numerically computed voltage magnitude at

node four, while the dotted red trace is given explicitly by V

⇤
4

(1� ��), where �� is determined as below (7).

The stability margin � is shown in dashed blue. When � > 1, �� becomes undefined and the corresponding

bound is no longer plotted.

Figure 4: Stress testing of voltage stability condition for high power factor loading. The horizontal voltage

axis is scaled by V

base

= 345 kV. The solid black trace is the numerically computed voltage magnitude at

node four, while the dotted red trace is given explicitly by V

⇤
4

(1� ��), where �� is determined as below (7).

The stability margin � is shown in dashed blue.

Figure 5: Corrective action results for the reduced New England 39 node network. (a) Depiction of the

reduced New England grid. Load nodes {1, . . . , 30} are red circles, while generators {31, . . . , 39} are green

squares. Shunt capacitors are present at all load nodes, but shown explicitly at nodes 7, 8, and 9. (b) Results

of corrective action study. Voltage profile Vi (black) and scaled voltages Vi/V
⇤
i (red), before (solid) and after

(dashed) corrective action. All voltages were scaled by the grid’s base voltage V

base

= 345 kV. Horizontal

dashed lines are operational limits for Vi of ±5% from base voltage. For clarity only nodes {1, . . . , 20} are
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plotted.

Numerical Testing of Theoretical Predictions

Test case Condition Exact Deviation Predicted Deviation Condition

(1000 instances) Correctness (�
exact

) (��) Accuracy

9 bus system true 5.50 · 10�2 5.52 · 10�2 3.56 · 10�3

14 bus system true 2.50 · 10�2 2.51 · 10�2 1.96 · 10�3

RTS 24 true 3.28 · 10�2 3.29 · 10�2 3.28 · 10�3

30 bus system true 4.72 · 10�2 4.75 · 10�2 7.64 · 10�3

New England 39 true 5.95 · 10�2 5.99 · 10�2 5.97 · 10�3

RTS ’96 (2 area) true 3.44 · 10�2 3.45 · 10�2 3.81 · 10�3

57 bus system true 0.97 · 10�1 0.99 · 10�1 2.97 · 10�2

RTS ’96 (3 area) true 3.57 · 10�2 3.58 · 10�2 3.94 · 10�3

118 bus system true 2.68 · 10�2 2.69 · 10�2 3.63 · 10�3

300 bus system true 1.32 · 10�1 1.36 · 10�1 3.03 · 10�2

Polish 2383 system true 4.03 · 10�2 4.06 · 10�2 8.55 · 10�3

Table 1: Voltage stability condition applied to 11 test networks. Condition correctness is whether the
implication � = kQ�1

crit

Q
L

k1 < 1 =) �

exact

 �� holds for every network realization, where �� =
1

2

(1 �
p
1��) and �

exact

is determined numerically. Exact and predicted deviations are averaged values
of the respective quantities over all realizations. Condition accuracy is calculated as (�� � �

exact

)/�
exact

,
and averaged over 1000 randomized instances for each network, with 30% of generation (resp. 30% of load)
randomized by 30% (resp. 50%) using a normal distribution centered around base conditions.
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Supplementary Information

Supplementary Figures

Supplementary Fig. 1: Example of original and induced networks. (a) An example network with one gener-
ator (green square) and five loads (red circles); (b) The subgraph induced by the load nodes VL. Generator
buses separate the induced load subgraph into disconnected components in which voltage stability can be
assessed independently.

Supplementary Fig. 2: Locus of solutions to the one-dimensional power flow equation (20). The stable
solution v+ lies on the top portion of the curve, deviating from the open-circuit voltage v⇤ by a small
percentage ��. The unstable solution lies on the bottom portion of the curve, deviating from v⇤ by a large
percentage �+.
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Supplementary Fig. 3: Illustration of the construction leading to the parametric condition (31).

(a) (b)

Supplementary Fig. 4: Visualization of Supplementary Theorem 1 when � 2 ]0, 1[. (a) The partitioning of
load-space. The critical load profile which lies on the existence boundary is marked with a red star in (a),
and leads to the voltage solution marked with a star in (b). The light shaded region above the diagonal line
corresponds to the necessary solvability condition in Proposition 2. The dark shaded region is the convex
hull of load profiles which satisfy � = 4�±(1 � �±). (b) The partitioning of voltage-space. Red crosses (x)
denote unstable power flow equilibria, while the green cross (x) indicates the stable equilibrium. The dark
shaded region is the stability set S(��) in which the unique voltage-stable solution is guaranteed to exist,
while the light shaded region is the open set of Supplementary Theorem 1 2), where solutions are forbidden.
The Venikov index KV =

p
1�� provides a guaranteed bound between stable and unstable equilibria in

voltage-space.
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Supplementary Notes

Supplementary Note 1 – Organization and Preliminaries

This supplementary information is organized as follows.

Supplementary Note 1 — Organization and Preliminaries — provides a table of contents for this
supplementary information and establishes some mathematical notation.

Supplementary Note 2 — Review of Explicit Voltage Stability Conditions — reviews the parametric
voltage stability conditions available in the literature.

Supplementary Note 3 — Mathematical Models — provides a detailed description of the considered
power network models, including transmission grid, generator, and load modeling. We also describe
the approximations which lead to the reactive power flow model considered in the main article.

Supplementary Note 4 — Energy, Voltage Stability & The Power Flow Jacobian — formally defines
the concept of long-term voltage stability, and relates voltage stability of an operating point to the
local minima of the energy function and to the non-singularity of the power flow Jacobian.

Supplementary Note 5 — Voltage Stability in Complex Power Networks — contains the mathe-
matical analysis leading to the main result presented in the article. We o↵er interpretations and
comments throughout along with several corollaries.

Supplementary Note 6 — Monotonicity of Stability Margins With Respect to Parameters: Results
and Counterexamples — examines how variations in grid parameters influence the proposed stability
margin of the grid.

Supplementary Note 7 — Voltage Stability Condition Incorporating Generator Injection Limits —
presents a generalized version of our main result which accounts for generator reactive power limits.

Finally, Supplementary Methods provides additional details regarding the extensive numerical sim-
ulations presented in the main article.

Sets, vectors and matrices: Given a finite set V, let |V| denote its cardinality. The set R (resp. R�0

,
R
>0

) is the field of real (resp. nonnegative real, strictly positive real) numbers, and C is the field
of complex numbers. For x 2 Rn, [x] 2 Rn⇥n is the associated diagonal matrix. Given x, y 2 Rn,
we write x � y if x

i

� y
i

for each i 2 {1, . . . , n}, and will occasionally write z 2 [x, y] if x  z  y.
Similarly we define x > y and z 2 ]x, y[ in the obvious ways. We let 1

n

and 0
n

be the n-dimensional
column vectors of unit and zero entries, with I

n

the n⇥ n identity matrix. For nonempty sets K
1

and K
2

, K
1

\ K
2

= {x 2 K
1

| x /2 K
2

} is the set of elements in K
1

which do not also belong to K
2

.

M -Matrices: A matrix A 2 Rn⇥n is a Z-matrix if A
ij

 0 for all i 6= j. The spectral radius
⇢(A) of a real-valued matrix A 2 Rn⇥n is ⇢(A) = max{|�|C | det (�I

n

�A) = 0}, where |x|C is the
magnitude of x 2 C. A Z-matrix A 2 Rn⇥n is an M -matrix if it can be expressed as A = sI

n

�B,
where B 2 Rn⇥n has nonnegative elements and s � ⇢(B). If A is a nonsingular M -matrix, then
the elements of A�1 are nonnegative [1]. Moreover, if the directed graph induced by the sparsity
pattern of A is strongly connected, then A is irreducible and the elements of A�1 are all strictly
positive [2, 1].

Geometry on the circle: The set S1 is the unit circle, an angle is a point ✓ 2 S1, and an arc is a
connected subset of S1. The geodesic distance between two angles ✓

1

, ✓
2

2 S1, denoted by |✓
1

� ✓
2

|,
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is the minimum length of the counter-clockwise and clockwise arcs connecting ✓
1

and ✓
2

.

The 1-Norm and Unit Balls: The 1-norm of x 2 Rn is given by kxk1 = max
i2{1,...,n} |xi|,

and the induced norm of a matrix A 2 Rn⇥n is kAk1 = max
i2{1,...,n}

P
n

j=1

|A
ij

|. It holds that

⇢(A)  kAk1. The associated closed unit ball is defined by B1(�) , {x 2 Rn | kxk1  �}, with
B1(�) being its interior.

Nonlinear Equations: For a smooth map f : Rn ! Rn, a solution x⇤ 2 Rn of f(x) = 0
n

is a regular
solution if the Jacobian matrix @f

@x

(x⇤) is nonsingular. For a compact set X ⇢ Rn, a map f : X ! X
is a contraction map on X if there exists an ↵ 2 [0, 1[ (the contraction rate) and a norm k · k such
that for any x, y 2 X, kf(x)� f(y)k  ↵kx� yk. If in addition X is convex and f is continuously
di↵erentiable, then f is a contraction map on X with contraction rate ↵ if k@f

@x

(x)k
ind

< ↵ for each
x 2 X, where k · k

ind

is the matrix norm induced by the vector norm k · k.

Supplementary Note 2 – Review of Explicit Voltage Stability Conditions

In [3, 4, 5] the completely decoupled (� = 0 in Assumption 3) power flow equations were analyzed
using fixed point techniques, resulting in vector-valued su�cient conditions of the form h

i

(V min) 
Q

i

 h
i

(V max) for all i 2 L, where V min and V max are upper and lower bounds on the nodal load
voltages. No guarantees are given on uniqueness of the stable equilibrium, the analysis is not clearly
related to the network structure, and the Jacobian must satisfy a diagonal dominance condition,
which is known to be restrictive and often violated when including line charging capacitors and
capacitive shunts [6]. Moreover, [3] requires an unrealistic tiering assumption on the network
structure, where all load (PQ) buses are at most once-removed from a generator (PV) bus. In
[6] the network sti↵ness was quantified by the product of the smallest eigenvalue (in magnitude)
of the admittance matrix |�

1

(B
LL

)| and a desired lower bound on the voltage at any load bus,
with the severity of loading captured by the largest load kQ

L

k1 = max
i2L |Q

i

|. This conservative
su�cient condition heavily underestimates the network sti↵ness while overestimating the severity of
loading, and does not take into account the interaction between network structure and the spatial
distribution of load. The recent work [7] shows that a similar condition su�ces for solvability
of the coupled active/reactive power flow equations, but in distribution networks with a single
generator. Other results on power flow solvability and security [8, 9, 10, 11] provide only necessary
solvability conditions, or use constant-impedance/current load models, and are therefore unable to
assess voltage collapse.

The papers [12, 13] provide branch-wise necessary conditions for voltage collapse, showing that
voltage collapse can occur only after at least one branch of the network is saturated past a limit,
termed the static transfer stability limit. While this is an insightful analysis framework, evaluating
the transfer limit conditions requires knowledge of branch-wise power flows and voltage magnitudes,
that is, the conditions are checked based on the output of a power flow program. In contrast, our
goal is to work directly from the given data of the problem (topology, impedances, loading, and
generator voltages) and develop conditions which guarantee the existence of a power flow solution
and characterize its robustness margins.
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Supplementary Note 3 – Mathematical Models

In this section we introduce the relevant power network models for the transmission network,
generators, and loads. Our focus is on high-voltage power transmission networks.

Transmission Network Modeling

Throughout this work we consider a connected, phase-balanced power network operating in sinu-
soidal quasisteady-state. The network is modeled as a weighted and undirected graph G(V, E , Y )
with nodes (or buses) V, edges (or branches) E ⇢ V ⇥ V , and complex edge weights (or admit-
tances) y

ij

2 C. The network has two distinct types of buses: loads L and generators G, such that
V = L [ G. For notational simplicity, we set n , |L|, m , |G| and assume n,m � 1. To each bus
we associate a phasor voltage U

i

= V
i

ej✓i 2 C where V
i

� 0 is the voltage magnitude and ✓
i

2 S1 is
the voltage angle, and a complex power injection S

i

= P
i

+ jQ
i

.

Transmission lines are represented using the standard lumped parameter ⇧ -model, which allows for
the inclusion of inductive/capactive shunts, tap-changing transformers, and line charging capacitors
[14]. We encode the weights and topology in the bus admittance matrix Y 2 C(n+m)⇥(n+m), with
elements Y

ij

= �y
ij

and Y
ii

= �
P

n+m

j=1

y
ij

+ y
shunt,i

, where y
shunt,i

is the shunt element at bus i.
The conductance matrix G and susceptance matrix B are defined by G = Re(Y ) and B = Im(Y ).
For the 100+ kV transmission-level networks we consider, the admittances of the transmission lines
are dominantly inductive. The real part of the bus admittance matrix is therefore negligible, and
Y ' jB [14]; see [15, 16] for studies concerning lossy models.

For later use we summarize for properties of the susceptance matrix.

Fact 1 (Properties of Susceptance Matrix [5]). If the network contains no phase-shifting transform-
ers and the transmission lines are not overcompensated by series capacitors, then for all i, j 2 V

(i) Symmetry: B
ij

= B
ji

;

(ii) Sign Structure: B
ij

� 0, with B
ij

> 0 if and only if {i, j} 2 E;

(iii) Self-susceptances: B
ii

= �
P

n+m

j=1,j 6=i

B
ij

+ B
i,shunt

for all i 2 V, where B
i,shunt

is the
shunt element at node i. The shunt at node i is capacitive if B

i,shunt

> 0, and inductive if
B

i,shunt

< 0.

Partitioning the susceptance matrix according to load and generators as

B =

✓
B

LL

B
LG

B
GL

B
GG

◆
, (1)

our results to follow require the following weak assumptions on the sub-matrix B
LL

(sometimes
referred to as a grounded susceptance matrix) and the network topology.

Assumption 1 (Susceptance Matrix). The (negative) grounded susceptance matrix �B
LL

2 Rn⇥n

is a nonsingular M -matrix.

Assumption 2 (Connected Subgraph). The subgraph of G(V, E , B) induced by the load nodes L
is connected.
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Assumption 1 is universally satisfied in practical networks [6, Section III], and always satisfied in
the absence of line charging and shunt capacitors due to diagonal dominance [17]. Assumption 2
may be taken without loss of generality when studying the fundamental physics of reactive power
flow in transmission networks, as the voltage-regulated generator buses electrically isolate groups
of load buses from one another (Supplementary Fig. 1). Note that under Assumptions 1 and
2, �B

LL

is a symmetric, irreducible nonsingular M -matrix, and hence all elements of �B�1

LL

are
strictly positive [2, 1].

Applying Kircho↵’s and Ohm’s Laws to the network, the vector of nodal complex power injections
S = (S

1

, . . . , S
n+m

) is related to the susceptance matrix B and the vector of nodal complex voltages
U = (U

1

, . . . , U
n+m

) by S = [U ] · conj(Y U) = [U ] · conj(jBU), where conj(x) is the element-wise
complex conjugation of the vector x 2 Cn+m. In components, the real and imaginary parts of the
product [U ] · conj(jBU) define the power flow functions g

i

, h
i

: Rn+m ⇥ Tn+m ! R, which can be
quickly calculated to be

g
i

(V, ✓) ,
X

n+m

j=1

V
i

V
j

B
ij

sin(✓
i

� ✓
j

) , (2a)

h
i

(V, ✓) , �
X

n+m

j=1

V
i

V
j

B
ij

cos(✓
i

� ✓
j

) . (2b)

Physically, g
i

and h
i

are the active power and reactive power injected at node i 2 V when the
voltage magnitudes and angles are V = (V

1

, . . . , V
n+m

) and ✓ = (✓
1

, . . . , ✓
n+m

).

Generator Modeling

As standard in power flow analysis, the synchronous generators at nodes G are modeled as PV buses,
at which the active power injections P

i

2 R are fixed by the prime movers and voltage magnitudes
V
i

> 0 are tightly regulated by Automatic Voltage Regulators (AVR). This regulation is always
achieved under normal operating conditions, when field and stator currents have not reached their
operational limits [18, Chapter 3.3.5]. In the saturated case, the generator reaches its operational
reactive power limit. One approach to handling this saturation is to change the generator model
– reactive power output is held fixed at the operational maximum, and the terminal voltage is
allowed to float. In this modeling framework, the generator behaves as a negative constant-power
load [19, 20]. A downside of this approach is that the specific limits encountered depend on the
direction of the loading vector in the space of parameters. In Supplementary Note 6 we take
a di↵erent approach and instead present a condition under which generators meet their reactive
power overexcitation limits, thereby avoiding this issue. Our results can also be extended to include
distributed generation interfaced through power inverters with voltage-droop controllers [21, 22] or
microgenerators which inject constant amounts of current or power (modeled as negative loads).
Moreover, our results are not dependent on the inclusion of generator dynamics due to time-scale
separation: the transient instabilities associated with generator swing and flux decay dynamics
occur on the order of seconds [14], while the voltage collapse phenomena we consider occur over
minutes [23].
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Load Modeling

Load models characterize the power consumed by individual or aggregate loads, while taking into
account relevant voltage and frequency-dependent behavior and/or dynamic phenomena. For study-
ing voltage collapse, we are concerned only with the long-term feasibility of the network operating
point, and therefore with no loss of generality may restrict ourselves to static load models [24, 25].
As such, the load models we consider have no internal state variable, and the active and reactive
power demands P

i

, Q
i

2 R at load node i 2 L are expressed as static functions P
i

(V
i

) and Q
i

(V
i

)
of the local bus voltage magnitude. Kirchho↵’s Current Law requires that power injections given
by (2a)–(2b) equal the power demands P

i

(V
i

) and Q
i

(V
i

) at each node, yielding the power flow
equations

P
i

(V
i

) = g
i

(V, ✓) , i 2 L [ G , (3a)

Q
i

(V
i

) = h
i

(V, ✓) , i 2 L . (3b)

We focus on the n reactive power flow equations (RPFE) (3b); see [26, 27] and the references
therein for detailed analyses of the active power flow equations (3a). While in the main article we
considered constant power loads Q

i

(V
i

) = Q
i

, here we consider the more general “ZIP” load model
[14]

Q
i

(V
i

) = b
shunt,i

V 2

i

+ I
shunt,i

V
i

+Q
i

, i 2 L , (4)

which approximates the steady-state behavior of a wide class of practical loads. The model (4) is
a concatenation of three separate loads:

(a) “Z”-load: a shunt connection to ground through a susceptance b
shunt,i

2 R.

(b) “I”-load: a constant current device injecting a reactive current I
shunt,i

2 R. The current is
leading if I

shunt,i

> 0 and lagging if I
shunt,i

< 0;

(c) “P”-load: a constant power device, injecting fixed reactive power Q
i

2 R. The load is called
capacitive if Q

i

> 0, and inductive if Q
i

< 0.

As we have already allowed for shunt loads in the admittance matrix B, we will without loss of
generality set b

shunt,i

= 0 in (4) for all i 2 L. In practice, the literature has established that the
constant-power load model (c) is the most relevant one for steady-state security analysis [28], and
the one most relevant from the perspective of both classic [18] and modern [11, 29] power system
operation. This “sti↵” (i.e., voltage independent) behavior may arise due to on-load tap-changing
transformers maintaining a constant voltage at the load supply point, or as an estimate of aggregate
load as in utility forecasts [28]. It can be shown that when the constant-power portion of the load
model (4) is zero, the reactive power balance (3b) degenerates into a system of linear equations in
the voltage magnitudes [30, 9, 10]. Moreover, it has been noted that constant power load modeling
is generic for feasibility studies in the sense that it tightly captures the transfer limitations of the
network, and allows the study of whether an operating point exists for any static or dynamic load
model, when the load consumes a specified amount of power [31]. If a feasible operating point can
be determined, it can then be used as part of the initial conditions for further numerical dynamic
stability studies. See [32, 33, 9, 21] for additional information and analysis.
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Power Angle Decoupling

In practice, typical solutions to the power flow equations (3a)–(3b) have the property that |✓
i

�✓
j

| 
� for each edge {i, j} 2 E and some small value of � > 0, and that load voltage magnitudes V

i

are
roughly equal to the generator voltage level. This leads to an important (in)sensitivity relationship
for reactive power flow, which we now describe. Evaluating the derivative of the reactive power
injection (2b) around such a solution, we find that

���
@h

i

@✓
k

��� = V
i

V
k

B
ik

| sin(✓
i

� ✓
k

)|  V
i

V
j

B
ij

sin(�) ' 0 , k 6= i , (5a)

���
@h

i

@V
k

��� = V
i

B
ij

| cos(✓
i

� ✓
k

)| � V
i

B
ik

cos(�) ' V
i

B
ik

, k 6= i . (5b)

with similar formulas holding for the diagonal elements. It follows that the reactive power injections
(2b) are insensitive to changes in the power angles ✓

i

� ✓
j

around such solutions, and that active
power enters through second order e↵ects. It is therefore common to study (3b) under a decoupling
assumption, in which the power angles are treated as parameters [6, 30], or even assumed to be
negligible [4, 5]. We formalize these qualitative statements into the following technical assumption.

Assumption 3 (Power Angle Decoupling). The power angles are constant and such that |✓
i

�✓
j

| 
� for some value � 2 [0,⇡/2[ and for all branches {i, j} 2 E of the network. ⇤

See [5] and Ref. 14 of [30] for analysis on the error introduced by total decoupling, that is, the
extreme case � = 0 in Assumption 3. In practical networks, a typical value of � in Assumption 3
would be 5�. Under Assumption 3, from the form of (2b) it is clear that we can define an e↵ective
susceptance matrix by grouping the original line susceptances B

ij

and the power angle terms cos(✓
i

�
✓
j

). The properties of the original susceptance matrix from Fact 1 also hold for the e↵ective
susceptance matrix, and one may verify that if Assumption 1 holds, then the corresponding sub-
matrix of the e↵ective susceptance matrix is also a nonsingular M -matrix. To keep notation simple,
in what follows we will denote by B the e↵ective susceptance matrix with elements B

ij

cos(✓
i

� ✓
j

)
for i, j 2 V. With this notation, the power flow equation (3b) becomes

Q
i

+ V
i

I
shunt,i

= �
X

n+m

j=1

V
i

B
ij

V
j

, i 2 L . (6)

The Reactive Power Flow Equations

In vector notation, the reactive power flow equation (6) can be written as

Q
L

+ [V
L

]I
shunt

= �[V
L

] (B
LL

V
L

+B
LG

V
G

) , (7)

whereQ
L

= (Q
1

, . . . , Q
n

) is the vector of constant power load demands, I
shunt

= (I
shunt,1

, . . . , I
shunt,n

)
is the vector of constant current load demands, V

L

= (V
1

, . . . , V
n

) > 0
n

is the vector of load voltage
magnitudes, V

G

= (V
n+1

, . . . , V
n+m

) > 0
m

is the vector of constant generator voltage magnitudes,
[V

L

] is the diagonal matrix of load voltages. Equivalently, we may write

Q
L

= �[V
L

]B
LL

(V
L

� V ⇤
L

) , (8)

8



where we have defined the open-circuit load voltages V ⇤
L

2 Rn by

V ⇤
L

, �B�1

LL

(B
LG

V
G

+ I
shunt

) . (9)

The terminology open-circuit means that V ⇤
i

is the voltage measured at load bus i 2 L when the
constant-power loads are open-circuited, that is, Q

1

= Q
2

= · · · = Q
n

= 0. We make the following
standing assumption regarding the constant current portion I

shunt

of the load.

Assumption 4 (Shunt Current Restriction). The shunt currents are not overly inductive. In
particular, B

LG

V
G

+ I
shunt

> 0
n

.

Assumption 4 always holds if the loads draw capacitive currents (I
shunt

� 0
n

), and is always met
in practical networks. This assumption leads to positive open-circuit voltages.

Lemma 1 (Open-Circuit Voltages). Under Assumption 4, the open-circuit load voltages are strictly
positive. That is, V ⇤

L

> 0
n

.

Proof: By Assumptions 1 and 2, the open-circuit voltages (9) are well defined and each element
of �B�1

LL

is positive. Since B
LG

V
G

+ I
shunt

> 0
n

, every element of (9) is therefore strictly positive.
⇤

Equation (8) is our preferred formulation of the RPFE (3b)–(4) since it highlights the tendency of
the load voltages V

L

to align with their open-circuit values V ⇤
L

.

Supplementary Note 4 – Energy, Voltage Stability & The Power Flow Jacobian

The term voltage stability has been appropriated over decades of research to refer to many di↵erent
static and/or dynamic stability concepts, ranging orders of magnitude in time-scales. Herein we
make use of the long-term quasi static notion of voltage stability [34, 35], which corresponds to the
way the high-voltage solution of a power network should change under small load perturbations
during regular operation. This is the notion of stability most relevant for guarding against static
voltage instability collapse.

Definition 1 (Local Voltage Stability). A regular solution V
L

2 Rn of the RPFE (8) is

(i) locally voltage-stable if for each pair of load buses i, j 2 L,

@V
i

@Q
j

> 0 , (10)

(ii) voltage-unstable if it is not locally voltage-stable.

Since a decreasing value of Q
j

in (10) corresponds to an increasing inductive load, voltage stability is
an “increasing load, decreasing voltage” condition. Definition 1 is the stability definition implicitly
used when discussing stability margins derived from Jacobian-based voltage stability indices, and is
the relevant stability concept at long time-scales on the order of minutes [23, 36]. Long-term voltage
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stability is time-scale separated from instabilities induced by fast generator or load dynamics, and
can therefore be studied separately [28].

The energy function introduced in the main article is particularly useful for understanding voltage
stability as in Definition 1. The following result relates the energy function, voltage stability, and
the Jacobian matrix of the power flow equation.

Lemma 2 (Energy, Stability, & The Power Flow Jacobian). Consider the reactive power flow
equation (6), its Jacobian matrix J(V

L

) 2 Rn⇥n being given by

J(V
L

) = [V
L

]B
LL

+ [B
LL

(V
L

� V ⇤
L

)] , (11)

and the energy function E : Rn

>0

! R defined by

E(V
L

) =
1

2

nX

i=1

n+mX

j=i+1

B
ij

(V
i

� V
j

)2 �
nX

i=1

✓
1

2

i

V 2

i

+ I
shunt,i

V
i

+Q
i

ln(V
i

)

◆
, (12)

where 
i

, P
n+m

j=1

B
ij

. Suppose V
L

> 0
n

is a regular solution of the RPFE (6). Then the following
statements are equivalent:

(i) V
L

is a local minimum of the energy function (12);

(ii) V
L

is locally voltage-stable in the sense of Definition 1;

(iii) the Jacobian J(V
L

) given by (11) is Hurwitz.

Proof: (i) ()(iii) : The critical points of E(V
L

) satisfy @E/@V
L

= 0T

n

, or in components for
k 2 L

@E

@V
k

= 0 =
n+mX

j=1

B
kj

(V
k

� V
j

)� 
k

V
k

� I
shunt,k

� Q
k

V
k

. (13)

After substituting for 
k

and simplifying, this becomes

0 = �Q
k

� I
shunt,k

V
k

� V
k

X
n+m

j=1

B
kj

V
j

, (14)

which is the RPFE (6). It follows that the critical points of (12) are in one-to-one correspondence
with the solutions of (6). Some simple calculations show that the components of the Hessian matrix
H(V

L

) of E(V
L

) are given by

H
k`

(V
L

) =
@2E

@V
k

@V
`

= �B
k`

� �
k`

Q
k

V 2

k

, k, ` 2 L , (15)

where �
k`

= 1 if k = `, and is zero otherwise. Substituting for Q
k

from the power flow equation
(6), we arrive at

H
k`

(V
L

) = �B
k`

� �
k`

1

V
k

⇣
I
shunt,k

+
X

n+m

j=1

B
kj

V
j

⌘
, (16)
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which in matrix notation reads as

H(V
L

) = �B
LL

� [V
L

]�1[B
LL

V
L

+B
LG

V
G

+ I
shunt

] (17a)

= �B
LL

� [V
L

]�1[B
LL

(V
L

� V ⇤
L

)] , (17b)

where we have used (9). By comparison, we see that the Hessian H(V
L

) is exactly �[V
L

]�1 times
the Jacobian matrix (11) of the RPFE (8). It follows that the Hessian matrix is positive definite if
and only if the Jacobian (11) is Hurwitz.

(iii) =)(ii) : By definition the Jacobian matrix J(V
L

) relates infinitesimal changes in nodal
voltage to corresponding changes power injections via

@Q
L

@V
L

= �J(V
L

) . (18)

The matrix representation (11) can be obtained from (8), either by a calculation in components or
via standard matrix identities. Note from (11) that for i, j 2 L, J

ij

(V
L

) = V
i

B
ij

� 0. Thus, �J(V
L

)
is a Z-matrix. Defining the symmetric matrix M , B

LL

+[V
L

]�1[B
LL

(V
L

�V ⇤
L

)], note that we may
write J(V

L

) = [V
L

]M . Since V
L

> 0
n

, the generalized Courant-Fischer Theorem [37] then implies
that all eigenvalues of J(V

L

) are real. So �J(V
L

) is a Z-matrix with real eigenvalues, and it follows
then from [2, Item C

9

] that J(V
L

) is Hurwitz if and only if �J(V
L

) is a nonsingular M -matrix.
Moreover, these equivalent conditions hold true if and only if the inverse matrix �J(V

L

)�1 exists
and has nonnegative elements [2, Item F

15

]. By Assumption 2 it holds that J(V
L

) is irreducible,
so J(V

L

) is in fact Hurwitz if and only if �J(V
L

)�1 exists and has strictly positive elements [1].
Since V

L

is a regular solution, the Inverse Function Theorem [38, Chapter 9] states that there exists
an open neighborhood U around V

L

(resp. an open neighborhood W around Q
L

) and a smooth
function G : W ! U such that V

L

= G(Q
L

) for all Q
L

2 W. Moreover, the Jacobian of G satisfies

@G

@Q
L

=
@V

L

@Q
L

= �J(V
L

)�1 , (19)

where in the last equality we used the fact that Q
L

appears linearly in (8). Since J(V
L

) is Hurwitz,
each element of �J(V

L

)�1 is strictly positive, and we conclude that V
L

is locally voltage-stable.

(ii) =)(iii) : Proceed by contraposition and suppose that J(V
L

) is not Hurwitz. Then by the
set of implications preceding su�ciency, either a) there exists i, j 2 L such that the ijth element of
�J(V

L

)�1 is nonpositive, or b) J(V
L

)�1 does not exist. In the first case, this means precisely that
@V

i

/@Q
j

 0, so V
L

is by definition voltage-unstable. The second case in which J(V
L

) is singular
cannot occur, because V

L

is a regular solution. ⇤

Remark 1 (The Energy Function & Dynamic Stability). Voltage stability as considered in Def-
inition 1 is consistent with local exponential stability of any dynamic load model which attempts
to regulate power consumption to a constant value by demanding additional current under a drop
in terminal voltage [28]. A simple example of this is the dynamic shunt susceptance model [33]
ḃ
shunt,i

= Q
i

� b
shunt,i

V 2

i

, where the shunt susceptance b
shunt,i

at node i 2 L is dynamically adjusted
to achieve a constant power injection Q

i

. More generally, such models include induction motors,
load tap changers, and thermostatically controlled loads [33]. The local minimum of the energy
function is clearly locally exponentially stable for an assortment of associated load dynamics, such

11



as gradient �V̇
L

= �rE(V
L

), or damped second-order dynamics ↵V̈
L

= ��V̇
L

� rE(V
L

) [39].
Static voltage stability is also relevant for slowly changing load profiles, where the fast stable load
dynamics adiabatically track the network operating point (should it exist). Indeed, as Pal notes in
[24], “For loads with slow dynamics, the stability limit will occur at the same point as the max-
imum power [transmission capacity] determined from a power flow analysis.” For more general
dynamic load models, our results can be interpreted as necessary for local dynamic stability, as the
existence of a network operating point is an obvious prerequisite [40]. ⇤

Supplementary Note 5 – Voltage Stability in Complex Power Networks

Single Load Example

To build intuition for our analysis in the case of complex networks, we present the results for the
classic problem of a single generator feeding a single constant power load. For n = 1, the RPFE
(8) is a single quadratic equation, and the necessary and su�cient condition for the existence of a
solution follows immediately [33, Section 2.2.3].

Proposition 1 (Condition for Single Load). Consider the RPFE (8) for a single load (n=1)

0 = q + bv(v � v⇤) , (20)

where b < 0, v⇤ > 0, and let q
crit

, 1

4

b(v⇤)2 < 0. The following statements are equivalent:

(i) Small Loading: � = q/q
crit

< 1;

(ii) High-Voltage Solution: There exists a unique voltage-stable solution v+ to the RPFE (20)
such that

|v+ � v⇤|
v⇤

= �� <
1

2
; (21)

(ii) Low-Voltage Solution: There exists a unique voltage-unstable solution v� to the RPFE
(20) such that

|v� � v⇤|
v⇤

= �
+

>
1

2
. (22)

Moreover, if any of the above statements are true, then ��, �+, and � are related by

�± =
⇣
1±

p
1��

⌘
/2 . (23)

Proposition 1 shows that a stable high-voltage solution exists only for loads which are less inductive
than the critical inductive load q

crit

. Graphically, the situation is illustrated in Supplementary Fig.
2. Note that even in this simple scenario, the solution space of the RPFE is multi-valued. When
q = q

crit

, the solutions v+ and v� coalesce at v⇤/2 and vanish via saddle-node bifurcation [25]. In
this simple one-dimensional case, we can derive a parametric formula for the Venikov index, given
by [41, 42, 18]

k
V

, v+ � v⇤/2

v⇤/2
=

p
1� |�| . (24)
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As one may deduce from examining Supplementary Fig. 2, the Venikov index k
V

measures the
distance between the high-voltage solution v+

L

and the low-voltage solution v�
L

, and thus gives an
analytic measure of proximity to collapse.

Proof of Main Result for Complex Networks

The following simple necessary condition for solvability of (8) is inspired by the observations from
Proposition 1.

Proposition 2 (Necessary Feasibility Condition). Consider the decoupled reactive power flow equa-
tion (8), and define the critical load matrix Q

crit

2 Rn⇥n by

Q
crit

, 1

4
[V ⇤

L

]B
LL

[V ⇤
L

] . (25)

If a solution to (8) exists, then
1T

n

Q
L

1T

n

Q
crit

1
n

 1 . (26)

Proof: Defining a new variable z , V
L

� 1

2

V ⇤
L

and substituting for V
L

in (8), we obtain the
equivalent reformulation

Q
L

= Q
crit

1
n

� 1

2
[V ⇤

L

]B
LL

z +
1

2
[z]B

LL

V ⇤
L

� [z]B
LL

z . (27)

A necessary condition for the power flow equation(27) to hold true is that the sum over all equations
holds true. Performing the sum (equivalently, left-multiplying by 1T

n

), the cross terms cancel and
we obtain

1T

n

Q
L

= 1T

n

Q
crit

1
n

� zTB
LL

z . (28)

Since �B
LL

is a symmetic nonsingular M -matrix (Assumption 1), B
LL

is negative definite. Hence
zTB

LL

z  0 for all z 2 Rn and the result follows. ⇤

We refer to [11] for an alternative proof of Proposition 2. We note that the necessary voltage
stability condition (26) is also tight, as it holds with equality when Q

L

= Q
crit

1
n

, and a comparison
with Proposition 1 shows that (26) is necessary and su�cient for a single load. Geometrically, the
necessary condition of Proposition 2 restricts the vector of loads Q

L

to a half-space. A downside of
this necessary condition is that it provides only an aggregate bound on the load, and does not take
into account how the load is distributed throughout the network in relation to voltage-regulated
points, shunt capacitors, and so forth.

The following closed subset of voltage-space will help us quantify the area where desirable solutions
to (8) should exist. Using the open-circuit voltages V ⇤

L

defined in (9), for � 2 [0, 1], define the
compact, convex and partially-ordered stability set by

S(�) , {V
L

2 Rn

�0

| (1� �)V ⇤
L

 V
L

 (1 + �)V ⇤
L

} , (29)

with S(�) being its interior. If V
L

2 S(�), then |V
i

� V ⇤
i

|/V ⇤
i

 � for each component i, and thus �
is simply a percentage deviation from the open-circuit voltage level.

13



Remark 2 (The Stability set & The Per-Unit System). From the definition of our stability set in
(29), the reader may be tempted to draw a one-to-one correspondence between the scaled voltages
V
i

/V ⇤
i

(i 2 L) and the classic per-unit measurement system used by power engineers, where all
voltage values in the network are scaled by uniform base voltage V

i

/V
base

. We strongly caution
against drawing this equivalence. While the base voltage V

base

is constant and uniform, the open-
circuit voltages V ⇤

i

defined in (9) vary bus-to-bus, and take into account non-uniform generator
voltages, network topology, shunt compensation, constant current demands, and active power trans-
fers through the power angles embedded in the e↵ective susceptances B

ij

. The discrepancy between
V
i

/V
base

and V
i

/V ⇤
i

can be quite extreme in heavily shunt-compensated networks, and it has been
frequently noted in the literature that per unit voltages are poor indicators of proximity to voltage
collapse. Our results to follow suggest that the ratios V

i

/V ⇤
i

of the voltage magnitudes to their
open-circuit values are more appropriate indicators of voltage stability margins.

Finally, we note that that explicit upper and lower bounds V lower  V
L

 V upper on the nodal
voltage magnitudes may be present due to operational constraints. In general however, these upper
and lower bounds may be asymmetric around the open circuit voltages, while the security set (29) is
defined symmetrically. To conservatively formulate these bounds in terms of the stability set (29),
one may assume that V lower  V ⇤

L

 V upper and select � as

�up
low

= min

⇢
�max

i2L

✓
V lower

i

V ⇤
i

� 1

◆
, min

i2L

✓
V upper

i

V ⇤
i

� 1

◆�
2 [0, 1] . (30)

With this choice, it holds that S(�up
low

) ✓ {V
L

| V lower  V
L

 V upper}, and thus any solutions which
exist inside the set S(�up

low

) will also satisfy the explicit constraints. ⇤

The main result from the article is more formally stated as follows.

Supplementary Theorem 1 (Voltage Stability Condition for Complex Power Networks). For the
RPFE (8), define the sti↵ness matrix Q

crit

2 Rn⇥n as in (25). Assume that the network parameters
and loads satisfy

� , kQ�1

crit

Q
L

k1 < 1 , (31)

and accordingly define the percentage deviations �� 2 [0, 1
2

[ and �
+

2 ]1
2

, 1] as the unique solutions
to � = 4�±(1� �±). The following statements hold:

1) Secure Solution: There exists a unique locally voltage-stable solution V
L

2 S(��) of the
RPFE (8);

2) Solutionless Region: There exist no solutions of the RPFE (8) in the open set

{V
L

2 Rn | V
L

> (1� �
+

)V ⇤
L

and V
L

/2 S(��)} . (32)

Moreover, the condition (31) is tight: there exists a critical load profile Q
L

= Q
crit

1
n

for which 1)
there exists no locally voltage-stable solution V

L

2 S(��) for any �� 2 [0, 1
2

[, and 2) there exists a
solution of the RPFE (8) in the open set (32) for any �� 2 [0, 1

2

[ and any �
+

2 ]1
2

, 1].
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Proof: Statements 1 and 2): Assuming for the moment that no component of V
L

is zero, we
may rearrange the RPFE (8) to obtain

V
L

= V ⇤
L

�B�1

LL

[V
L

]�1Q
L

. (33)

Consider the bijective change of variable x , [V ⇤
L

]�1V
L

� 1
n

. The new variable x can be thought
of as a percentage deviation of V

L

from the open-circuit voltage V ⇤
L

. Note that from the definition
of the stability set in (29), V

L

2 S(�) (resp. S(�)) if and only if x 2 B1(�) (resp. B1(�)). Writing
(33) in terms of the new percentage deviation variable x, we obtain the equivalent representation

x = f(x) , �[V ⇤
L

]�1B�1

LL

[V ⇤
L

]�1[Q
L

]r(x) (34a)

= �1

4
Q�1

crit

[Q
L

]r(x) , (34b)

where Q
crit

is as in (25) and r(x) , ( 1

1+x1
, . . . , 1

1+xn
). Having transformed the RPFE (8) into (34b),

we now apply contraction mapping arguments to (34b). This procedure consists of two steps:

Step 1: First, we regard (34b) as the equilibrium equation of the discrete-time dynamical
system

x(k + 1) = f(x(k)) , k 2 {1, 2, . . .} , (35)

and, under the parametric condition (31), show that there exists a � 2 [0, 1[ such that the
1-norm ball B1(�) is forward-invariant for the dynamics (35). In particular, we will show
that there exists a �� 2 [0, 1

2

[ and a �
+

2 ]1
2

, 1] such that B1(�) is forward-invariant for
each � 2 [��, �+], and that the iterates of (35) originating in ]� �

+

,1[n eventually reach the
forward-invariant set B1(��).

Step 2: Second, we show that f is a contraction mapping on the forward-invariant set
B1(��), and apply the Banach Fixed Point Theorem [38, Chapter 9].

Step 1: Suppose x(k) 2 B1(1) for some k 2 {1, 2, . . .}. Then there exists a � 2 [0, 1[ such that
x(k) 2 B1(�), with kx(k)k1 = �. We will first bound kx(k+1)k1, and look for a condition under
which kx(k + 1)k1  kx(k)k1. We compute using (35) and (34b) that

kx(k + 1)k1 =
1

4
kQ�1

crit

[Q
L

]r(x(k))k1 . (36)

Using Assumptions 1 and 2 and Lemma 1, it holds that �Q�1

crit

= �4[V ⇤
L

]�1B�1

LL

[V ⇤
L

]�1 has positive
elements. Moreover, Q

L

has nonpositive elements, and each component of r(x(k)) is strictly positive
as kx(k)k1 = � < 1. We therefore compute

1

4
kQ�1

crit

[Q
L

]r(x(k))k1 
kQ�1

crit

[Q
L

]k1
4

kr(x(k))k1 (37a)

=
kQ�1

crit

[Q
L

]k1
4

kr(x(k))k1 (37b)

=
�

4

1

1� �
. (37c)
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Using this result and the fact that kx(k)k1 = �, it follows that kx(k+1)k1  kx(k)k1 if �

4

1

1��

 �,
or equivalently

�  4�(1� �) . (38)

The right-hand side of (38) is a nonnegative and concave function of � 2 [0, 1[, which achieves
its global maximum of one at �⇤ = 1

2

. Thus, there exists a set of values for � 2 [0, 1[ with
non-empty interior satisfying the inequality (38) if and only if (38) is true with strict inequality
sign when � = �⇤ = 1

2

. This corresponds exactly to the parametric condition (31). If these
equivalent conditions are true, there exist two unique values �� 2 [0, 1

2

[ and �
+

2 [1
2

, 1] satisfying
(38) with equality sign, given by �± = 1

2

(1±
p
1��). These arguments are shown graphically in

Supplementary Fig. 3. The preceding calculations show that for each � 2 [��, �+], the set B1(�) is
forward-invariant for the discrete-time dynamics (35), since x(k) 2 B1(�) leads to x(k+1) 2 B1(�).
Moreover, for each � 2 [��, �+] (resp. � 2 ]��, �+[), we have that kx(k + 1)k1  kx(k)k1 (resp.
kx(k + 1)k1 < kx(k)k1) if kx(k)k1 = �. That is, the norm of iterates is non-increasing (resp.
strictly decreasing). It follows that iterates of (35) originating in B1(�

+

) eventually reach the
forward-invariant set B1(��).

To complete this step, note that since every component r
i

(x
i

) = 1/(1 + x
i

) of r(x) is a monotone
decreasing function of x

i

, for x(k) 2 ]� �
+

,+1[n, it follows that kr(x(k))k1 < 1/(1 � �
+

), and
hence, by the previous result, that kx(k+1)k1 < �

4

1

1��+
= �

+

; that is, we have x(k+1) 2 B1(�
+

).

Since f is continuous on ]� �
+

,+1[n, it follows by combining the above results that all iterates
of (35) originating in ]� �

+

,1[n reach B1(��). The discrete-time dynamics (35) therefore have
no equilibria within the set ]� �

+

,1[n \ B1(��), and thus (34b) has no solutions within the same
set. This completes the proof of statement 2).

Step 2: Let � 2 [0, ��], and let x 2 B1(�). Using (34b), we calculate the Jacobian of f to be

@f

@x
(x) =

1

4
Q�1

crit

[Q
L

][r(x)]2 (39)

and as before, bound it for x 2 B1(�) as

����
@f

@x
(x)

����
1

 �

4

��[r(x)]2
��
1  �

4

1

(1� �)2
. (40)

The map f is a contraction mapping on B1(�) if we have

�

4

1

(1� �)2
 ↵ (41)

for some ↵ 2 [0, 1[ called the contraction rate. Selecting ↵ , �/(1��) < 1, the contraction condition
(41) is quickly seen to be equivalent to (38). We therefore once again have a set of values for �
such that f is a contraction map if and only if (31) holds, with �� being the limiting case of strict
equality, yielding the contraction rate ↵ = ��/(1 � ��) < 1. Thus, f is a contraction mapping on
the invariant set B1(��). It now follows from the Banach Fixed-Point Theorem [38] that f has
a unique fixed-point x⇤ 2 B1(��), and therefore that the power flow (8) has a unique solution
V
L

2 S(��).
To complete the proof of statement 1), it remains only to show that the unique solution V

L

2 S(��)
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is locally voltage-stable. From Lemma 2 this occurs if and only if the Hessian H(V
L

) in (17b) of
the energy function (12) is positive definite. Inserting (33) into the second term of H(V

L

), we find
that

H(V
L

) = �B
LL

+ [V
L

]�2[Q
L

] . (42)

Substituting V
L

= [V ⇤
L

](1
n

+x), left and right-multiplying by [V ⇤
L

]/2 and simplifying using (25), we
obtain

M
1

=
1

4
[V ⇤

L

]H(V
L

)[V ⇤
L

] = �1

4
[V ⇤

L

]B
LL

[V ⇤
L

] +
1

4
[Q

L

][1
n

+ x]�2 (43a)

= �Q
crit

+
1

4
[Q

L

][1
n

+ x]�2 . (43b)

According to Sylvester’s Inertia Theorem [43], M
1

has the same number of positive eigenvalues as
M

2

, �Q�1

crit

M
1

, and thus M
1

is positive definite if and only if

I
n

� 1

4
Q�1

crit

[Q
L

][1
n

+ x]�2 (44)

is anti-Hurwitz. Since �Q
crit

is an irreducible M -matrix, the inverse Q�1

crit

has strictly negative
elements. As it also holds that Q

L

 0
n

, we conclude that 1

4

Q�1

crit

[Q
L

][1
n

+ x]�2 is a nonnegative
matrix. The Gershgorin Circle Theorem [37] then implies that all eigenvalues of 1

4

Q�1

crit

[Q
L

][1
n

+x]�2

are contained within a disc centered at the origin of radius equal to the maximum row sum of the
matrix, or equivalently, its 1-norm. We compute that

1

4
kQ�1

crit

[Q
L

][1
n

+ x]�2k1  �

4

1

(1� ��)2
 ↵ < 1 . (45)

It follows that all eigenvalues of 1

4

Q�1

crit

[Q
L

][1
n

+ x]�2 are less than one, which shows the desired
result.

Tightness: To show the moreover statement we proceed by contraposition, and construct a load
profile Q

L

for which � � 1 and statements 1) and 2) fail. Consider the family of load profiles
parameterized by ↵ 2 [0, 1] defined by Q

L

(↵) = ↵ · Q
crit

1
n

. Using (25) and (9) we compute that
that

Q
crit

1
n

=
1

4
[V ⇤

L

]B
LL

[V ⇤
L

]1
n

=
1

4
[V ⇤

L

]B
LL

V ⇤
L

(46a)

= �1

4
[V ⇤

L

]B
LL

B�1

LL

(B
LG

V
G

+ I
shunt

) (46b)

= �1

4
[V ⇤

L

](B
LG

V
G

+ I
shunt

) . (46c)

From Assumption 4 and Lemma 1, we therefore have that Q
crit

1
n

 0
n

. Hence, for every ↵ 2 [0, 1],
Q

L

(↵)  0
n

, and (31) yields � = kQ�1

crit

Q
L

(↵)k1 = k↵Q�1

crit

Q
crit

1
n

k1 = ↵k1
n

k1 = ↵.

Defining �±(↵) , 1

2

(1±
p
1� ↵), one may verify by direct substitution that V +

L

(↵) = (1���(↵))V ⇤
L

and V �
L

(↵) = (1 � �
+

(↵))V ⇤
L

are both particular solutions of (8). Moreover, for each ↵ 2 [0, 1[,
it holds that V +

L

(↵) is the unique locally voltage-stable solution, located exactly at the vertex of
S(��(↵)) closest to the origin, while V �

L

can be verified to be voltage-unstable, similarly located
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at the vertex of S(�
+

(↵)) closest to the origin. It follows that for ↵ 2 [0, 1[, V +

L

(↵) is the unique
solution in S(1/2), and that for ↵ = 1, V +

L

(↵) = V �
L

(↵) = V ⇤
L

/2 and the two solutions coalesce at a
point of saddle-node bifurcation [25]. By continuity, we therefore have that no solutions can cross
the boundary of S(1/2) from exterior to interior (that is, from Rn \ S(1/2) to S(1/2)) as ↵ ! 1.
Said di↵erently, no previously existing solutions now belong to S(1/2). The only remaining option
is that at ↵ = 1, a solution appears in S(1/2) via a codimension one bifurcation [25]. However,
the sudden appearance of such a solution precludes the existence of a continuously di↵erentiable
function G : R ! Rn defined on an open interval A of ↵ = 1 such G(↵) solves the RPFE (8) with
load profile Q

L

(↵) for each ↵ 2 A. It follows from the Implicit Function Theorem that the RPFE
Jacobian (11) evaluated at this solution is singular [38]. Lemma 2 then precludes this new solution
from being locally voltage-stable. Thus, there exists no value � 2 [0, 1

2

[ such that a unique, locally
voltage-stable solution exists in S(�). This shows that statement 1) fails. To show that statement
2) fails as well, proceed by contradiction and assume that it holds. Then we expect there to exist
values �� 2 [0, 1

2

[ and �
+

2 ]1
2

, 1] such that the RPFE (8) possesses no solutions in the open set of
(32). However, inspection shows that for any such values �� and �

+

, V
L

= V ⇤
L

/2 belongs to this
set. This is a contradiction, completing the proof of the converse. ⇤

Remark 3 (Interpretations of Supplementary Theorem 1). Supplementary Theorem 1 generalizes
the one-dimensional result of Proposition 1 and Supplementary Fig. 2 to complex networks by
taking into account the coupling between nodes of the network. Under the equivalent conditions of
Supplementary Theorem 1, the positive orthant in the space of voltages is partitioned into three
disjoint sets: the stability set S(��) where the locally voltage-stable solution exists, a region sur-
rounding the stability set where all solutions are forbidden, and a low-voltage regime which may
or may not contain additional power flow equilibria. For the case of two loads, this partitioning is
shown in Supplementary Fig. 4(b), with the corresponding partitioning of parameter-space shown
in Supplementary Fig. 4(a). The inverse Q�1

crit

can be interpreted as the sensitivity matrix relating
variations in load to variations in nodal voltage deviation (see (50) in “Power Network Perspective”
below). The eigenvector corresponding to the largest eigenvalue of �Q�1

crit

determines the most sen-
sitive directions in load-space [44, 45, 46]. An interesting contrast to the seminal works [44, 45, 46]
is that Q�1

crit

is symmetric, indicating that the same eigenvector describes both the most sensitive
direction in load-space as well as the most sensitive direction in scaled (V

i

/V ⇤
i

) voltage-space. ⇤

Remark 4 (Necessity of Stability Condition). While in general only a su�cient condition for the
existence of a high-voltage solution, the condition (31) is tight for the critical loading profile Q

L

=
Q

crit

1
n

, for which � = 1 and �� = �
+

= 1/2, in agreement with the necessary and tight condition of
Proposition 2, that is, for this direction in load space, the condition is both necessary and su�cient.
To understand what this loading profile looks like, consider (46c) with I

shunt

= 0
n

for simplicity.
Then the ith element of Q

crit

1
n

is nonzero if and only if load bus i 2 L is attached directly to a
generator. Thus, this critical load profile corresponds to loading only at the most well-supported
buses in the network, the load buses adjacent to generators. ⇤

Complex Networks Interpretation: Defining V
min

, min
i2L(V ⇤

L

)
i

, a su�cient condition for
(31) is that

kQ
L

k1 <
1

4
|�

1

(B
LL

)|V 2

min

, (47)
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where |�
1

(B
LL

)| is the smallest eigenvalue (in magnitude) of B
LL

. This spectral condition, similar
to the ones in [6, 7], uses only the first eigenvalue of the admittance matrix B

LL

as a measure of
network connectivity, while our more precise condition (31) implicitly uses all n network eigenvalues.

Power Network Perspective: In power system engineering, the nonlinear active power flow
equations (3a) are often approximated by a heuristic called the “DC” power flow [26]. In the DC
power flow, phase angles ✓

i

�✓
j

are assumed to be su�ciently small such that sin(✓
i

�✓
j

) ' ✓
i

�✓
j

,
and voltage magnitudes V

i

are approximated as V
i

= 1 p.u. The active power balance (3a) then
becomes a linear equation relating active power injections to phase angle di↵erences. We now define
a voltage/reactive power counterpart to this DC power flow approximation, and explain how its
solution can be used to interpret the nonlinear voltage stability condition (31). Linearizing the
right-hand side of (8) around the open-circuit solution V ⇤

L

, we obtain [22, 7]

Q
L

= �diag(V ⇤
L

)B
LL

(V
approx

� V ⇤
L

) . (48)

Performing the change of variables to the percentage deviation vector x
approx

via

V
approx

= diag(V ⇤
L

)(1
n

+ x
approx

) (49)

and solving, we obtain the solution

x
approx

= �1

4
Q�1

crit

Q
L

. (50)

Hence, the voltage stability condition (31) reads simply as kx
approx

k1 < 1/4, and can be interpreted
as follows: the nonlinear power flow equations (8) have a unique, stable solution satisfying |V

i

�
V ⇤
i

|/V ⇤
i

< 1/2 if the percentage deviation calculated from the linear power flow (48) is less than
25% at each bus.

Resistive Circuit Interpretation: The voltage stability condition (31) can be interpreted as a
restriction on the solution of a linear resistive circuit, defined on a new graph. Consider the original
graph G(V, E) and construct a new graph G

L

(L, E
L

) by 1) removing all generator buses G, and 2)
removing each weighted edge {i, j} 2 E between generator i and load j, and replacing it with a
shunt connection to ground of equal weight at node j; see Supplementary Fig. 1. For the nodal
current injections I , diag(V ⇤

L

)�1Q
L

, and letting v = (v
1

, . . . , v
n

) be the vector of nodal voltages,
the linear current balance relations are [14]

I = �B
LL

v () v = RI , (51)

where R , �B�1

LL

is the resistance matrix. Our voltage stability condition (31) then reads that
kdiag(V ⇤

L

)�1RIk1 = kdiag(V ⇤
L

)�1vk1  �(1 � �). That is, the normalized solution of this linear
resistive circuit must have no node with voltage greater than �(1 � �). The elements R

ij

� 0 of
the resistance matrix quantify the resistive distance between load nodes, accounting for all current-
carrying paths through the original circuit. The “driving point impedances” R

ii

satisfy R
ii

� R
ij

for all i, j 2 L [4], and for distinct nodes i, j 2 L, R
ij

> 0 if and only if there exists a path between
i and j in the new graph G

L

(L, E
L

). It follows from (51) that the voltage at node i 2 L is most
sensitive to changes in its local load demand Q

i

, and decreasingly sensitive to load nodes that are
more electrically distant. This captures the classic power systems intuition that reactive power

19



flows are localized in a network.

Supplementary Theorem 1 implies a useful voltage-space proximity index, which the reader may
have inferred from Supplementary Fig. 4.

Corollary 1 (Proximity to Low-Voltage Solution). Define the parametric Venikov index

K
V

,
p
1�� , (52)

and let V other

L

2 Rn be any solution of the RPFE (8) other than the secure solution of Supplementary
Theorem 1 statement 1). Then

|V
i

� V other

i

|
V ⇤
i

� K
V

, i 2 L . (53)

Proof: While from Supplementary Theorem 1 statement 1) the secure solution belongs to the
set S(��), from Supplementary Theorem 1 statement 2) we have that all other solutions must lie
outside the set ](1��

+

)V ⇤
L

,1
n

[, and therefore in particular outside the set S(�
+

). We may therefore
write V

L

= [V ⇤
L

](1
n

+ x) and V other

L

= [V ⇤
L

](1
n

+ xother) for x 2 B1(��) and xother 2 Rn \ S(�
+

).
We compute that

k[V ⇤
L

]�1(V
L

� V other

L

)k1 = kx� xotherk1 � �
+

� �� . (54)

From Supplementary Theorem 1 it holds that � = 4�±(1 � �±), and therefore that �± = 1

2

(1 ±p
1��). We therefore compute that

�
+

� �� =
1

2

⇣
1 +

p
1��

⌘
� 1

2

⇣
1�

p
1��

⌘
(55a)

=
p
1�� = K

V

, (55b)

which completes the proof. ⇤

By direct comparison, the index (52) is seen to be an appropriate multi-dimensional generalization
of the parametric Venikov index (24). To the authors knowledge, this is the first such parametric
result available in the literature. In terms of the energy function (12),

p
1�� can be understood

as a lower bound on the distance between the stable and unstable equilibria; c.f. Figure 1(c) of the
main article.

Remark 5 (The E↵ects of Power Angles and Decoupling). As can be seen by examining (2b), the
voltage phase angles ✓

i

�✓
j

enter the reactive power flow equations as a product B
ij

cos(✓
i

�✓
j

) with
the o↵-diagonal elements of the admittance matrix B. It follows that any deviation of the phase
angle di↵erences from zero tends to weaken the e↵ective coupling term B

ij

cos(✓
i

� ✓
j

) between
buses i, j 2 L. This is particularly clear for the two node system of (20). In this case, one may
verify that v⇤ = V

G

cos(✓), that q
crit

= 1

4

bV 2

G

cos2 ✓, and that � = q
L

/q
crit

, where ✓ is the angular
di↵erence between the two nodes. As |✓| increases, the reactive power limit q

crit

decreases, and
tends to zero as |✓| ! ⇡/2. Moreover, 1/q

crit

is exactly the sensitivity of the loading margin �
with respect to changes in reactive power demands, and this sensitivity increases as active power
flows increase. This is elegantly expressed by Van Cutsem in [47], where he writes “. . . the reactive
power margin implicitly reflects the system stress imposed by the active power transfers, since the
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margin is a reserve after imposing the active load to be satisfied. As an example, if one would
(fictitiously) approach collapse through only active load increases, the reactive margin would tend
to zero as well.”

In terms of the vector formulation (7), the above observations translate to a reduction in the o↵-
diagonal elements of the sub-block B

LL

as well as a reduction in the non-zero elements of B
GL

.
Accordingly, this active/reactive power coupling tends to weaken the sti↵ness matrix Q

crit

, thereby
increasing the network stress �. To summarize, increasing active power flows appear in our formu-
lation through the sti↵ness matrix Q

crit

, and lead to increasing sensitivity of voltage deviations with
respect to changes in reactive power demands. While not a full description of the nonlinear cross-
coupling between active and reactive power flow, this behavior is consistent with the knowledge that
increasing active power demands compromise voltage stability and push the system towards voltage
collapse [47, 18, 48].

While active/reactive power coupling is mostly negligible in normal transmission system operation
and under light loading conditions, it can become the dominant e↵ect as voltage collapse is ap-
proached. There are two factors to consider here. Firstly, using any fixed set of phase angles in the
e↵ective susceptance matrix will underestimate the phase angles that occur as one moves closer to
voltage collapse; the sti↵ness of the e↵ective sti↵ness matrix Q

crit

will therefore be overestimated.
The second factor is less important and more subtle: solvability of the coupled power flow equations
is not equivalent to individual solvability of decoupled active and reactive power flow. We therefore
expect the analytic stability condition derived for the simplified decoupled reactive power flow (8) to
be optimistic near the point of collapse, unless power factors are low. Our voltage collapse simula-
tion study in the main article (see Experiment 2 in Supplementary Methods for details) confirms
this intuition. ⇤

Supplementary Note 6 – Monotonicity of Stability Margins With Respect to
Parameters: Results and Counterexamples

We now briefly explore how perturbations in the network parameters influence the value of the
loading margin � defined in (31). From the spring network analogy of Figure 1(b) in the main
article and from general intuition, one would expect the following monotonicity results:

(a) strengthening the connection between any generator and any load should decrease the value
of �;

(b) increasing generator voltage levels should decrease �;

(c) increasing shunt compensation should decrease �.

It turns out that statement (a) is false in general, while statements (b) and (c) are true.

Example 1 (Counterexample to (a)). Consider two generators at voltages V
1

and V
2

connected to
a single load at voltage V

0

through susceptances �b
1

and �b
2

, with a shunt capacitor of susceptance
b
s

present at the load. Assumption 1 in this case becomes b
1

+ b
2

� b
s

> 0, and we assume for
simplicity that no constant current load is present at the load. Then the reactive power balance
equation (7) becomes

Q
L

= V
0

((b
1

+ b
2

� b
s

)V
0

� b
1

V
1

� b
2

V
2

) . (56)
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One may verify explicitly that Q
crit

in this case is given by

|Q
crit

| = (V
1

b
1

+ V
2

b
2

)2

4(b
1

+ b
2

� b
s

)
. (57)

Since there is only a single load, monotonicity of � = Q
L

/Q
crit

with respect to changes in b
1

or
b
2

is equivalent to monotonicity of Q
crit

. In particular, conventional engineering wisdom suggests
that |Q

crit

| should be an increasing function of either parameter, that is, strengthening the network
should reduce the risk of collapse. An easy calculation gives that

d

db
2

|Q
crit

| = V
2

4

(V
1

b
1

+ V
2

b
2

)

b
1

+ b
2

� b
s

✓
b
2

� 2b
s

+ 2b
1

⇣
1� 1

2

V
1

V
2

⌘◆
. (58)

When b
2

> 2b
bs

�2b
1

(1�V
1

/2V
2

), |Q
crit

| is a monotone increasing function of b
2

as expected. When
this inequality is violated however we find that strengthening the second transmission line decreases
stability margins. In the case b

s

= 0, this turning point will exist if and only if V
1

> 2V
2

, while if
V
1

= V
2

= V , this turning point exists if and only if b
s

> b
1

/2. While these parametric conditions
are extreme and would not occur in real-world networks, this example highlights the theoretical issue
with claim (a), and nonetheless suggests that one should be cautious when upgrading transmission
infrastructure. ⇤

In this example we observe that either strong heterogeneity of generator voltages, the presence of
large shunts, or both can cause a lack of monotonicity. We will show that when these factors are
absent, the original intuition is correct. Consider a nominal network, and let b

LG

2 Rn⇥m

�0

be a
nonnegative matrix where the ijth element is the desired increase in coupling between generator
i 2 G and load j 2 L. To avoid the trivial case where the original and modified networks are
identical, we assume that at least one element of b

LG

is strictly positive. The modified network is
represented by the new network matrices B

LG

= B
LG

+b
LG

, and B
LL

= B
LL

�diag(b
LG

1
m

), along

with the new open-circuit voltages V ⇤
L

= �B
�1

LL

B
LG

V
G

. For simplicity, we ignore constant current
loads in the following proposition.

Proposition 3 (E↵ects of Load-Generator Coupling Increases). Consider the nominal network
and the modified network as described above, with sti↵ness matrices Q

crit

= 1

4

[V ⇤
L

]B
LL

[V ⇤
L

] and
Q

crit

= 1

4

[V ⇤
L

]B
LL

[V ⇤
L

] respectively. Assume that there are no shunt susceptances present, and that
all generator voltages are equal to the same constant V

g

> 0. Then it holds element-wise that

Q
�1

crit

> Q�1

crit

.

Since Q�1

crit

and Q
�1

crit

are strictly negative matrices (Assumptions 1–2), the inequality Q
�1

crit

> Q�1

crit

indicates that the elements of Q
�1

crit

are smaller in magnitude than those of Q�1

crit

. It follows imme-
diately that � < �; the network stress has decreased. Comparing Proposition 3 to the results of
Example 1, we note that the assumptions of no shunt susceptances and uniform generator volt-
ages are only su�cient for monotonicity, and not necessary. Nonetheless, the parametric setting in
Proposition 3 is much closer to reality than the exotic parameters required in Example 1.

Proof. Under the assuption of no shunt susceptances, the matrices �B�1

LL

B
LG

and �B
�1

LL

B
LG

are
both row-stochastic [49, Lemma II.1]. Since V

G

= V
g

1
m

, it follows that V ⇤
L

= V ⇤
L

= V
g

1
n

, and
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hence that Q
crit

= V 2

g

B
LL

/4 and Q
crit

= V 2

g

B
LL

/4. By Assumptions 1–2, it holds that �B
LL

is an

irreducible M -matrix, and since b
LG

is nonnegative, it follows that �B
LL

= �B
LL

+ diag(b
LG

1
m

)
is also an irreducible M -matrix. We conclude that �B

LL

+ B
LL

is positive definite. It follows

immediately by properties of irreducible M -matrices [50] that �B
�1

LL

< �B�1

LL

element-wise, and
the result follows.

To study changes in generator voltages, we again consider a nominal network and a modified
network, where now the modified network is constructed by changing the generator voltage setpoints
to V

G

= V
G

+ v
G

, where v
G

� 0
n

with at least one strictly positive element. The open-circuit
voltages in the modified network are given by V ⇤

L

= �B�1

LL

B
LG

V
G

. In this case, we observe, as
expected, that raising the generator voltages improves the distance to voltage collapse.

Proposition 4 (E↵ects of Generator Voltage Increases). Consider the nominal network and the
modified network as described above, with sti↵ness matrices Q

crit

= 1

4

[V ⇤
L

]B
LL

[V ⇤
L

] and Q
crit

=
1

4

[V ⇤
L

]B
LL

[V ⇤
L

]. Then it holds element-wise that Q
�1

crit

> Q�1

crit

.

Proof. Note that V ⇤
L

= �B�1

LL

B
LG

V
G

= �B�1

LL

B
LG

(V
G

+ v
G

) = V ⇤
L

+ v⇤
L

, where v⇤
L

= �B�1

LL

B
LG

v
G

.
From Assumptions 1–2, it follows that �B�1

LL

B
LG

is a positive matrix, consequently v⇤
L

> 0
n

component-wise, and hence that V ⇤
L

> V ⇤
L

component-wise as well. Note then that for any i, j 2 L,

�(Q
�1

crit

)
ij

=
�4(B�1

LL

)
ij

V ⇤
i

· V ⇤
j

<
�4(B�1

LL

)
ij

V ⇤
i

· V ⇤
j

= �(Q�1

crit

)
ij

, (59)

which shows the desired result.

Finally, to study changes in shunt compensation we again consider a nominal network and a modified
network. We let B

s

= diag(b
s,1

, . . . , b
s,n

) � 0
n

denote the diagonal matrix of additional shunt
capacitors a�xed at the load nodes, and we assume that at least one element of B

s

is strictly
positive. The grounded susceptance matrix for the modified network is given by B

LL

= B
LL

+B
s

,
which we assume is also a (negative) M -matrix. The modified open-circuit voltages are V ⇤

L

=

�B
�1

LL

B
LG

V
G

. We omit the proof of the following result, which can be shown similarly to the
previous two. The following result confirms the conventional practice that shunt compensation
improves the stability of the network. We omit the proof, which follows analogous arguments as
the proofs of Proposition 3 and 4.

Proposition 5 (E↵ects of Shunt Capacitor Increases). Consider the nominal network and the
modified network as described above, with sti↵ness matrices Q

crit

= 1

4

[V ⇤
L

]B
LL

[V ⇤
L

] and Q
crit

=
1

4

[V ⇤
L

]B
LL

[V ⇤
L

]. Then it holds element-wise that Q
�1

crit

> Q�1

crit

.

In summary, we find that the stability margin � defined in (31) can be leveraged to provide insight
into how the parameters of the original network influence voltage stability, and that the stability
margin may display a lack of monotonicity with respect to parameters.
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Supplementary Note 7 – Voltage Stability Condition Incorporating Generator
Injection Limits

As discussed in the generator modeling of Supplementary Note 2, synchronous generators are
typically subject to capability curve limits [18], which in the context of this paper correspond
to upper and lower limits on the reactive power Q

i

which can be injected at a generator i 2 G.
While the results of Supplementary Theorem 1 (or equivalently, Theorem 1 of the main article)
give su�cient conditions for the existence of a unique voltage-stable solution of (6), no a priori
constraints were placed on the resulting generator reactive power injections, which are determined
a posteriori by evaluating the right-hand side of (2b) at the system operating point. There may
be situations where the physical network is able to support the transfer of reactive power (that
is, (6) possess a voltage-stable solution), but the resulting generator limits are violated, meaning
that the operating point is infeasible in practice. Our goal now is to generalize the voltage stability
condition of Supplementary Theorem 1 to ensure the existence of a voltage-stable solution subject
to generator reactive power injections satisfying predetermined limits.

The generator reactive power injections Q
G

2 Rm, given by (2b) at nodes i 2 G, are written in
vector notation as

Q
G

= �[V
G

](B
GG

V
G

+B
GL

V
L

) , (60)

where B
GG

and B
GL

are the appropriate blocks of the e↵ective susceptance matrix (refer back
to the block partitioned matrix (1)). Here we will focus on generator injection upper bounds
Qupper

G

2 Rm (so-called overexcitation) since this is the most relevant case for voltage collapse;
analogous arguments can be made for underexcitation limits. We introduce two quantities related
to generator injections that will help us to succinctly state our results. We define the open-circuit
generator injections Q⇤

G

2 Rm and the auxiliary injections Q
aux

2 Rm

�0

by

Q⇤
G

, �[V
G

](B
GG

V
G

+B
GL

V ⇤
L

) , (61)

Q
aux

, [V
G

]B
GL

V ⇤
L

. (62)

The open-circuit injections Q⇤
G

are the generator injections one would observe when the con-
stant power loads Q

L

are set to zero, while the vector of auxiliary injections Q
aux

will serve
as useful scaling factors. We make the plausible and necessary assumption that Q⇤

G

< Qupper

G

component-wise; the open-circuit injections satisfy the generator limits. For convenience, let
Ḡ = {i 2 G | there exists j 2 L s.t. B

ij

6= 0} be the set of generators which are connected to
at least one load. It is straightforward to see that if i 2 Ḡ then the corresponding component of
Q

aux

as defined in (62) is non-zero.

The next result generalizes Supplementary Theorem 1 (and hence, Theorem 1 of the main article)
to account for generator limits.

Supplementary Theorem 2 (Voltage Stability Condition Including Generator Limits). Consider
the RPFE (8) and the generator injections (60). Let Qupper

G

2 Rm be desired upper bounds in the
generator injections, Q

G

< Qupper

G

, and let the open-circuit injections Q⇤
G

and the auxiliary injec-
tions Q

aux

be as defined as in (61)–(62). Consider the (normalized) minimum generator injection
slack

�
constr

, min
i2 ¯G

Qupper

G,i

�Q⇤
G,i

Q
aux,i

> 0 , (63)
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and let � > 0 be defined by

� ,
(
4�

constr

(1� �
constr

), if �
constr

< 1/2,

1, if �
constr

� 1/2.
(64)

Assume that
� , kQ�1

crit

Q
L

k1 < � , (65)

and accordingly define the percentage deviation �
unconstr

as the unique solution to � = 4�(1 � �)
belonging to the interval [0, 1

2

[. Finally, set �� = min(�
constr

, �
unconstr

) 2 [0, 1
2

[. Then the RPFE
(8) has a unique voltage-stable solution V

L

2 S(��) and the generator injections (60) satisfy the
constraints Q

G

< Qupper

G

.

Before proving Supplementary Theorem 2 we make several comments. First, note that � depends
only on �

constr

, which in turn depends only on fixed parameters of our problem setup, such as the
network topology/weights, generator voltage setpoints, and generator injection limits. Thus, like
the stability condition (31) in Supplementary Theorem 1, the stability condition (65) is purely
parametric.

Second, to see that the unconstrained case of Supplementary Theorem 1 is embedded in Supple-
mentary Theorem 2, consider what happens when the generator injections limits Qupper

G

are large.
Then the generator injection slack �

constr

in (63) is large, � in (64) evaluates to 1, and the stability
condition (65) reduces to the previous condition of Supplementary Theorem 1. In this regime, the
network is limited only by insolvability of the reactive power flow equations, and not by generator
limits; the same argument holds whenever �

constr

> �
unconstr

. Conversely, when �
constr

< �
unconstr

,
network stability is limited by generator limits, and � � � becomes the loading margin which
implicitly quantifies the remaining slack in parameter-space for which generation limits are guar-
anteed to be met. The conservativeness of this stability margin will vary from network to network
depending on the precise values of the generator limits Qupper

G

.

Proof: We first prove the statements regarding the unique solution of (8). First consider the case
where �

constr

� 1/2. It then holds that � = 1, the condition (65) reduces to the unconstrained
stability condition (31) of Supplementary Theorem 1, �� = �

unconstr

= (1 �
p
1��)/2, and all

the conclusions follow. In the case where �
constr

< 1/2, the inequality (65) takes the form � 
4�

constr

(1� �
constr

). Comparing this to (38) from the proof of Supplementary Theorem 1, it follows
that there exists a unique voltage-stable solution V

L

2 S(�
constr

) to the RPFE (8). Moreover,
since � < � < 1, �

unconstr

also remains well defined, so there exists a unique voltage-stable
solution V

L

2 S(�
unconstr

) as well. It follows that there exists a unique voltage-stable solution
V
L

2 S(�
constr

) \ S(�
unconstr

) = S(��) as claimed.

It remains only to show that the generator constraints are satisfied. Under the assumed conditions
we can write the load voltages as V

L

= [V ⇤
L

](1
n

+ x) where x belongs to the vector interval x 2
[���1

n

, ��1
n

]. Using this and (61), substitution shows that the generator injections (60) can be
written as

Q
G

= �[V
G

](B
GG

V
G

+B
GL

V
L

) = Q⇤
G

� [V
G

]B
GL

[V ⇤
L

]x = Q⇤
G

�Q
aux

x . (66)

Since [V
G

]B
GL

[V ⇤
L

] is a nonnegative matrix and V
L

2 S(��) (meaning that all x
i

2 [���, ��]), we
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may upper bound the right-hand side of (66) by inserting ���1
n

for x, resulting in the element-wise
vector inequality

Q
G

 Q⇤
G

+ �� ·Q
aux

 Q⇤
G

+ �
constr

·Q
aux

, (67)

where the second inequality follows since �
constr

� �� by definition. There are now two cases
to consider. If Q

aux,i

= 0, then the corresponding constraint is satisfied since Q⇤
G,i

< Qupper

G,i

by

assumption. If Q
aux,i

6= 0, then the corresponding constraint Q⇤
G,i

< Qupper

G,i

is satisfied if and only

if �
constr

 (Qupper

G,i

�Q⇤
G,i

)/Q
aux,i

at each generator i 2 G, which holds by the definition of �
constr

.
Thus the generator constraints are satisfied, completing the proof. ⇤

Supplementary Methods

Here we provide additional details regarding the numerical experiments presented in the main
article.

Experiment 1 – Voltage Stability Assessment for Test Networks

To establish the accuracy of the voltage stability condition (31) over a large set of power networks,
we consider a smart grid scenario in which both generation and demand are subject to fluctuations
due to a high penetration of renewable generation and controllable demand response. To generate
a large sample of randomized test cases, we modify the nominal simulation parameters [51, 52] as
follows. For each of the eleven test cases under consideration, we construct 1000 realizations by

(i) Fluctuating load: Through a uniform distribution over all buses, we first select 30% of
buses in the network for load randomization. The base case active/reactive power injections
(P

i

, Q
i

) at each selected bus are randomized as (1 + ↵
i

)P
i

and (1 + ↵
i

)Q
i

, where ↵
i

is pulled
from a Gaussian distribution with mean zero and standard deviation 0.5.

(ii) Fluctuating generation: Through a uniform distribution over all generator buses, we first
select 30% of the generators in the network for randomization. The base case active power
generation P

i

at each selected generator is randomized as (1 +↵
i

)P
i

, where ↵
i

is pulled from
a Gaussian distribution with mean zero and standard deviation 0.3.

(iii) Redispatch: Since the above randomization procedure can lead to a large imbalance between
total scheduled generation and total demand, we calculate the imbalance (neglecting losses)
and distribute the imbalance uniformly across the unrandomized generators.

For each realization, we numerically calculate using MATPOWER [51] the exact solution (✓, V
L

) 2
Tn+m⇥Rn

>0

to the lossless coupled power flow equations (3a) (if the Newton-Raphson solver diverges
while attempting to find the solution, we discard the trial and repeat it). We then compute the
maximum voltage deviation of the exact solution as

�
exact

, max
i2L

|V
i

� V ⇤
i

|
V ⇤
i

. (68)

26



To apply our theory, we use the calculated phase angles ✓ to build the e↵ective susceptance matrix
(Supplementary Note 2, Power Angle Decoupling), we compute the open-circuit voltages (9), the
sti↵ness matrix (25), compute � from (31) and finally compute our estimate �� = 1

2

(1�
p
1��)

of the worst case normalized voltage deviation. The first column of Table 1 in the main article
indicates that for all realizations constructed, it held that � < 1 and that �

exact

 �� as expected
from Supplementary Theorem 1. The second, third, and fourth columns of Table 1 list the average
values obtained for �

exact

, �� and (�� � �
exact

)/�
exact

over all realizations for each network.

Experiment 2 – � as an Indicator of Voltage Collapse

In this experiment the continuation power flow implemented in MATPOWER was used to drive
the New England 39 bus system towards voltage collapse, and test whether and how well the
metric � performs as a predictor of collapse. The direction in parameter space along which the
system is incrementally loaded is specified in terms of a baseline set of loads and a target set of
loads. The system is then loaded along the ray connecting the baseline configuration and the target
configuration, tracing out the top-half of the nose curves shown in Figures 3 and 4 of the main
article.

For our first study, the baseline profile was chosen as the default loading profile (P,Q
L

). The average
power factor for load buses in this baseline profile is 0.88. The target profile was constructed by
modifying the baseline profile as (P, 3.1⇥Q

L

), where the numerical value of 3.1 was selected such
that the average power factor of load buses in the target profile equaled 0.7. This corresponds to
a heavily reactive target profile, and hence as the system is loaded from the base profile through
the target profile, the power factors of loads decrease, as is often the case under stressed network
conditions.

For our second study, the baseline profile was again chosen as the default loading profile, and the
target profile was also chosen as the default loading profile. Thus, as the system was loaded towards
voltage collapse, all power injections were simply scaled up proportionally, with loads maintaining
their original power factors of 0.88 on average.

For both studies, V ⇤
L

and � were computed as described in Experiment 1 for the lossless coupled
power flow model (3a)–(3b). Bus four was selected for plotting purposes since it represented the
most stressed bus in the network, displaying both the lowest per unit voltage along with having
the highest component value from the vector Q�1

crit

Q
L

. This was therefore the bus at which our
theoretical bound V

i

� V ⇤
i

(1� ��) was most likely to be violated. As can be seen in Figures 3 and
4, the bound is quite tight near the base case and becomes looser as the system is progressively
loaded.

Experiment 3 – Corrective Action

In this case study, we illustrate the utility of our condition (31) for online network stability mon-
itoring and corrective action. First, we highlight how capacitive shunt compensation acts as a
double-edged sword: capacitor banks assist in supporting the voltage magnitudes at load buses of
the network, but simultaneously makes the true network stress unobservable through the network
voltage profile. We show that our condition (31) can be used to accurately assess this hidden danger
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by providing a quantitative estimate of network stress. Second, we show how the voltage stability
condition (31) suggests corrective action schemes to increase the stability margin of the network.

The stressed network case was created as follows, beginning from the base case data for the NE 39
bus system from MATPOWER. First, the network contained two capacitive loads, which we flipped
in sign to create a heavier inductive loading profile. Next, all power demands in the network were
scaled up uniformly by 70%, with their original power factors maintained. To avoid unrealistically
overloading the slack bus, the resulting imbalance was dispatched uniformly over all generators.
Loading at buses seven through nine was increased an additional 50%, again maintaining the
original power factors. The power factor of bus eight was then lowered to 0.82 by adding additional
reactive load. Shunt compensation was placed uniformly across the network to bring most of the
voltages back within operational limits, with additional shunt compensation being placed locally
at buses seven through nine to compensate for the additional loading present. The power flow was
then solved for the full coupled power flow model including branch conductances.

Control action was implemented by curtailing the reactive power demands at buses seven and
nine in the manner described in the main article. Accompanying this curtailment was an equal
reduction in shunt compensation across buses seven through nine. That is, the total MVAR which
would have been injected by the removed capacitors (at 1 p.u.) equaled the total reactive power
curtailment applied at buses seven and nine. This can also be seen from Figure 5; the per-unit
voltage profiles before and after are nearly identical, but stability margins (plotted as V

i

/V ⇤
i

) are
substantially improved by substituting sti↵ reactive power injections for shunt compensation, and
properly selecting the locations for reactive power injection.
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