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Abstract— The so-called cutset voltage has previously been
proposed as a model-based circuit reduction technique, and as
a method to calculate an aggregate measure of grid stress from
wide-area synchrophasor measurements. Here we contribute
to the theory of the cutset voltage by showing that it can be
written as the difference between the mean voltage levels on
either side of the chosen cut, plus an accompanying error term.
We then show that this error vanishes under a simple graph-
theoretic condition on the weighted degrees of nodes adjacent
to the cutset. In this case, the model-based cutset voltage can be
computed in a model-free manner by taking wide-area voltage
measurements and averaging. We extend our results to the case
of a voltage defined across an entire area of the network.

I. INTRODUCTION

The maturity of phasor measurement unit (PMU) technol-
ogy has opened the door for ubiquitous wide-area monitoring
[1]–[3] of power systems, allowing the health of the grid to
be assessed in real time. As more PMU units are deployed,
the amount of available data also increases. New methods are
now needed to extract meaning from this data, and to draw
implications from the data to actionable grid control policies.
For monitoring purposes, a key problem is the development
of simple indicators which quantify the average stress level
across the system.

One common stress measure for AC power grids is the
difference in voltage phasor angles between adjacent buses.
In the linearized DC Power Flow approximation, the real
power pij which flows from bus i to bus j is given by

pij =
1

Xij
(θi − θj) ,

where Xij is the effective line reactance of the branch joining
i and j, and θi, θj are the voltage phasor angles. Large angle
differences indicate large power flows, weak transmission
lines, or both. The angular difference across a single line
however can be a misleading indicator of the health of the
total grid, as this angle difference is affected both negatively
and positively by changes in the power injections at all other
buses. Moreover, in meshed networks multiple transfer paths
through the network may exist between two buses, with the
direct path capturing only some of the interaction between
the buses. It therefore becomes more useful to think in terms
of areas (subsets of buses), and the power transfers between
areas. As PMUs deliver only bus-by-bus measurements,
techniques are needed to aggregate these measurements in
a useful way for the monitoring of areas.
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One technique for aggregating this information, put for-
ward by Dobson et al., is a weighted-average difference
of voltage differences between areas. The idea is to use
the impedances of inter-area transmission lines to construct
weights, and then take a weighted average of the voltage
differences using these coefficients. The so-called cutset
voltage was defined in [4], which summarizes the results
and some extensions. The method has since been applied for
line outage detection [5], [6] and voltage collapse monitoring
for transmission corridors [7]. We review the relevant defi-
nitions in Section II-C.∗ Two disadvantages of the proposed
procedure are (i) a relative lack of theoretical results and
(ii) its reliance on effective branch impedances, which are
sometimes known only imprecisely.

A. Contributions

Our goal here is to contribute to the theoretical foundations
of the cutset voltage. After reviewing some circuit theory and
recalling the definition of the cutset voltage in Section II, we
proceed in Section III to derive a linear relationship between
the cutset voltage and the difference between the (arithmetic)
average voltage levels on either side of the defining cut.
We show that these quantities are in fact equal, modulo a
physically meaningful error term. We then study two special
cases where this error term vanishes. First, we show that it
vanishes if the voltage profiles on either side of the cut are
flat; this result holds independent of the grid topology or
impedances. Second, we show that the error term vanishes if
the cutset induces an “almost equitable partition” [9] of the
weighted graph capturing the topology and impedances of
the grid. These partitions have also appeared in the context
of model reduction, controllability, and disturbance rejection
of consensus dynamics [10]–[12]. If either of these cases
hold — or if the error term is otherwise known to be small
— our result shows that the model-based cutset voltage
can be computed in a model-free way by averaging voltage
measurements. The analysis exploits tools from circuit and
graph theory, along with model reduction ideas [10].

Here we present our results in terms of classic resistive
circuits with DC voltages and currents, but the results apply
to any set of “through” and “across” variables satisfying
Kirchhoff’s Current Law (KCL), Kirchhoff’s Voltage Law
(KVL), and Ohm’s Law. In particular, the results apply to
the DC Power Flow approximation P = Bθ where P and
θ are vectors of active power injections and voltage phases,
and B is the susceptance matrix. The results can also be
applied to the AC current balance relations I = Y V , where

∗See also [8] for a related averaging procedure.



I and V are vectors of complex nodal currents and voltages
and Y is the complex admittance matrix.

B. Notation

For a set S, |S| denotes its cardinality. If T ⊂ S , then
S \ T = {x ∈ S : x /∈ T }. For A ∈ Rn×n, AT is its
transpose. The n × n identity matrix is In, 0 is a matrix
of zeros of appropriate dimension, while 1n (resp. 0n) are
n-vectors of all ones and all zeros, respectively. For a matrix
or vector X , imX denotes its image.

II. REVIEW OF CIRCUITS AND THE CUTSET VOLTAGE

A. Graphs, Circuit Laws, and Associated Matrices

Throughout the paper we consider a resistive circuit de-
scribed by a connected graph G = (N , E) where N is the
set of nodes (or buses) and E is the set of directed edges
(or branches, or lines). For simplicity we set |N | = n and
|E| = `. To each edge e ∼ (i, j) ∈ E we associate a
branch conductance ge = gij > 0, quantifying the (inverse)
resistance of the edge. The incidence matrix A ∈ Rn×` of
G is defined component-wise as Ake = 1 if node k is the
source node of edge e ∼ (i, j) and as Ake = −1 if node k is
the sink node of edge e, with all other elements being zero.
It follows that for x ∈ Rn, ATx ∈ R` is the vector with
entries xi − xj for (i, j) ∈ E . It is sometimes convenient to
consider the branches as undirected as well, and in this case
we write {i, j} ∈ E .

To each node i ∈ N we associate a current injection
Ii ∈ R and a nodal voltage Vi ∈ R, while to each edge
e ∼ (i, j) ∈ E we associate an edge current ie ∈ R
and a voltage difference ve ∈ R. Let I = (I1, . . . , In),
V = (V1, . . . , Vn), i = (i1, . . . , i`) and v = (v1, . . . , v`) be
the associated vectors obtained by stacking the components.
Then KCL, KVL, and Ohm’s Law are written as [13]

I = Ai , (1a)

v = ATV , (1b)
i = Λv , (1c)

where Λ = diag({gij}) ∈ R`×` is the diagonal matrix of
branch conductances. Eliminating the branch variables i and
v from (1), we obtain the nodal equations

I = GV , (2)

where G = GT = AΛAT is the conductance (Laplacian)
matrix of the graph G, with elements Gij = −gij for {i, j} ∈
E , Gii =

∑
{i,j}∈E gij , and zero otherwise.† In particular, it

holds that 0 is a simple eigenvalue of G with G1n = 0n.

B. Specialization to a Two-Area Circuit

Consider now a cutset‡ of the circuit, which induces a
partitioning of the nodes into two areas N = Na ∪ Nb

representing the nodes on either side of the cutset, with

†For notational simplicity we ignore shunt elements, but they can be
included with relatively few modifications, see [4, Appendix B].
‡A cutset of a connected graph G is a set of edges Ecut ⊂ E such that the

graph (N , E \Ecut) obtained by removing the cutset edges is disconnected.

Na∩Nb = ∅. For notational simplicity, we sometimes denote
in short the cardinality of Na by a, and that of Nb by b.
The cutset also induces a partitioning of the edge set as
E = Eaa ∪ Eab ∪ Ebb, where Eaa (resp. Ebb) are the edges
interior to Na (resp. Nb) and Eab are the edges of the cutset
between Na and Nb. Without loss of generality, we assume
that each directed edge (i, j) ∈ Eab originates from Na,
so that edges are oriented from Na to Nb. With this, the
incidence matrix A ∈ Rn×` may be partitioned as

A =

[
Aaa

a Aab
a 0

0 Aab
b Abb

b

]
, (3)

where the lower (resp. upper) indices indicate the number of
rows (resp. columns) of the submatrix. For example, Aaa

a ∈
R|Na|×|Eaa| describes the interior connections between nodes
in Na, while Aab

a and Aab
b describe inter-area connections for

the source and sink ends, respectively. We will use a similar
labeling convention for vectors in what follows. With this
partitioning and notation, we have that

I =

[
Ia
Ib

]
, V =

[
Va
Vb

]
, i =

iaaiab
ibb

 , v =

vaavab
vbb

 ,
along with Λ = blkdiag(Λaa,Λab,Λbb), where all subvec-
tors and submatrices are defined in the obvious way by areas
and edge types. The conductance matrix takes the form

G =

[
Gaa Gab

Gba Gbb

]
, (4)

where the various submatrices are given in Lemma A.2, and
the nodal equations (2) become[

Ia
Ib

]
=

[
Gaa Gab

Gba Gbb

] [
Va
Vb

]
. (5)

C. Definition of the Cutset Voltage

With the previous notations, the cutset voltage from [4]
becomes extremely simple to define. The net current icut
which flows across the cutset from Na to Nb is given by

icut = 1T
abiab =

∑
e∼(i,j)∈Eab

ie . (6)

where 1ab stands for 1|Eab|. We define the cutset conductance
gcut by

gcut , 1T
abΛab1ab =

∑
(i,j)∈Eab

gij , (7)

and finally define the cutset voltage as the ratio

vcut , icut/gcut . (8)

Note that by definition, the cutset voltage satisfies the Ohm’s
Law-type relationship (8). Ostensibly then, vcut will change
in a manner consistent with the intuition of system operators:
as the net current flow from Na to Nb increases, or as
the total “parallel” conductance between the areas decreases,
the cutset voltage increases. The cutset voltage is a model-
based indicator, in that it requires values for the branch
conductances. These branch conductances (or in the AC case,
susceptances) are sometimes poorly known however, which



will tend to introduce error into the calculation of vcut; we
will return to this point in Section III.

Finally, from (1b)–(1c) it holds for any e ∼ (i, j) ∈ E that
ie = ge(Vi − Vj). It follows that (8) equals

vcut =
∑

(i,j)∈Eab

gij
gcut

(Vi − Vj) . (9)

This shows that the cutset voltage is a particular weighted
average of voltage differences across lines in the cutset, with
the weights given by gij/gcut.

Remark 1 (Cutset Selection): We have assumed in the
previous calculations that a cutset has been chosen for
monitoring. By its definition in (8), the cutset voltage vcut is
independent of intra-area current flows, and only attempts
to measure an aggregate inter-area stress across the cut.
In particular, the cutset voltage (8) is proportional to the
net current flow across the cut. It follows that for vcut to
provide a useful indication of the stress across the cut, cutsets
must be selected such that current flows primarily in one
direction across the cut.§ We assume that this is the case in
what follows. In practice, the presence or planned presence
of PMUs in a network will determine the cutsets (or in
later extensions, areas) which can potentially be monitored,
and a procedure for placing sensors and selecting optimal
monitoring cuts remains as an open problem.

A large cutset voltage will always indicate a stressed cut-
set, and therefore a stressed overall grid. We caution against
drawing the converse implication however, and erroneously
concluding based on a small cutset voltage that the overall
grid is lightly stressed. Drawing this implication requires the
additional knowledge that intra-area current flows are small,
or equivalently that voltages on either side of the cutset are
fairly uniform. This is an additional criteria which the cutset
voltage does not attempt to capture. �

III. MAIN RESULTS: AVERAGE VOLTAGE DIFFERENCES
AND THE CUTSET VOLTAGE

The cutset voltage (8) is a definition based on intuition
from circuit theory. In this section we will formally relate
this definition to a decomposition of the circuit equations (5).
To begin our analysis, observe that the cutset conductance
(7) is the parallel combination of the conductances of the
cutset lines. This combination procedure can be thought of
as an approximation, which assumes that the cutset lines are
actually in parallel. For example, this is true if all nodes
within area Na (resp. Nb) are at the same potential. In this
case, the reduction procedure is exact, and the cutset voltage
vcut equals the (uniform) voltage difference along every edge
(i, j) ∈ Eab. In other words, the network effectively contracts
down to two nodes with multiple parallel connections. With
these ideas in mind, we decompose the vector of nodal
voltages as [

Va
Vb

]
=

[
µa1a

µb1b

]
+

[
Ṽa
Ṽb

]
, (10)

§Large circulating current flows between the two areas would indicate
a stressed grid, but lead to a small net current flow, and therefore a small
cutset voltage, so the indicator is not useful in this case.

where µa, µb > 0 are scalars and Ṽa, Ṽb are vectors which
satisfy 1T

a Ṽa = 1T
b Ṽb = 0. That is, in each area, we break the

subvector of nodal voltages into two pieces: a uniform profile
at voltage µ and a vector Ṽ in the subspace orthogonal to to
the image of 1. This decomposition is unique, in that given
Va and Vb we can determine µ and Ṽ uniquely via

µa =
1T
aVa
|Na|

, Ṽa = ΠaVa (11a)

µb =
1T
b Vb
|Nb|

, Ṽb = ΠbVb (11b)

where

Πa = Ia −
1

|Na|
1a1T

a , Πb = Ib −
1

|Nb|
1b1

T
b , (12)

are the projection matrices onto the subspaces orthogonal
to 1a and 1b, respectively. In particular, µa and µb are the
(arithmetic) average nodal voltages in areas Na and Nb.
Substituting the decomposition (10) into the nodal equations
(5), we obtain[

Ia
Ib

]
=

[
Gaa Gab

Gba Gbb

]([
µa1a

µb1b

]
+

[
Ṽa
Ṽb

])

=

[
µaGaa1a + µbGab1b

µaGba1a + µbGbb1b

]
+

[
Gaa Gab

Gba Gbb

][
Ṽa
Ṽb

]

=

[
(µb − µa)Gab1b

−(µb − µa)Gba1a

]
+

[
Gaa Gab

Gba Gbb

][
Ṽa
Ṽb

]
(13)

where we have used the facts that Gaa1a = −Gab1b and that
Gbb1b = −Gba1a.¶ Substituting KCL (1a) into the left-hand
side of (13) and using the incidence matrix (3), we obtain[

Aaa
a iaa +Aab

a iab
Aab

b iab +Abb
b ibb

]
=

[
(µb − µa)Gab1b

−(µb − µa)Gba1a

]
+G

[
Ṽa
Ṽb

]
.

(14)
Left-multiplying (14) by (1T

a ,1
T
b ), using Lemma A.1 (i) and

(iii), and noting (using Lemma A.1 and A.2) that 1T
aGab1b =

1T
bGba1a = −gcut, the previous two equations reduce to

icut = gcut(µa − µb) + 1T
a (GaaṼa +GabṼb) ,

−icut = −gcut(µb − µa) + 1T
b (GbaṼa +GbbṼb) .

These equations are in fact redundant, so we discard the
second. Dividing the first by gcut and using the definition of
vcut, we find that

µa − µb = vcut − 1T
a (GaaṼa +GabṼb)/gcut

= vcut + (1T
bGbaṼa − 1T

aGabṼb)/gcut

= vcut + (−gTa Ṽa + gTb Ṽb)/gcut ,

where

ga , −Gab1b ∈ Ra , (15a)

gb , −Gba1a ∈ Rb , (15b)

¶This follows from (4) and the fact that G1n = 0n.



are the weighted inter-area degree vectors for areas Na and
Nb. That is, ga ∈ Ra is the vector of weighted nodal degrees
for area Na taking into account only edges contained in the
cutset, and similarly for gb ∈ Rb. Using the inverse relations
(11), we may go further and write

µa − µb = vcut +
1

gcut

[
−gTa Πa gTb Πb

] [Va
Vb

]
= vcut − εcut ,

where

εcut ,
1

gcut

[
gTa Πa −gTb Πb

] [Va
Vb

]
, (16)

is the cutset voltage error. We have therefore proved the
following result.

Theorem 3.1 (Cutset Voltage and Average Voltages):
Consider the two-area circuit described by the nodal
equations (5), and let µa and µb be the mean voltages in
areas Na and Nb, respectively. Let the weighted inter-area
degree vectors be as in (15), and the cutset voltage be as
defined in (8). Then

vcut = µa − µb + εcut , (17)

where the cutset voltage error is as in (16).
From equation (17), we see that the cutset voltage equals

the difference in average nodal voltages across the cutset,
plus an error term εcut for which we have obtained an explicit
formula. While the cutset voltage (8) is relatively straightfor-
ward to compute, it requires not only voltage measurements
but also knowledge of the branch conductances gij . Exact
knowledge of these parameters may prove problematic, es-
pecially in the DC power flow context where effective branch
susceptances are calculated based on numerics. In contrast,
(17) shows that the cutset voltage can be computed with only
voltage measurements if the error term is somehow known
to be sufficiently small. The next result characterizes some
cases when the cutset voltage error term is in fact exactly
zero. We first require a definition.

Definition 1 (Almost Equitable Partitions, [9]): For an
integer K ≥ 2, let π , {N1,N2, . . . ,NK} be a partition
of a weighted undirected graph G = (N , E). For any node
i ∈ N and any area q ∈ {1, . . . ,K}, let

gparallel(i,Nq) ,
∑

j∈Nq,{i,j}∈E
gij ,

be the total parallel conductance between node i ∈ N and
area Nq . We call π an almost equitable partition (AEP) of
G if for each pair of distinct areas p, q ∈ {1, . . . ,K}, there
exists a value gpq ∈ R such that

gparallel(i,Nq) = gpq ,

for all nodes i ∈ Np.
In other words, a partition is almost equitable if every

node in each area “sees” the same parallel conductance to
the other areas. An example of such a partition for two-area
network is shown in Figure 1. Notice that in our two-area

Fig. 1. An almost equitable partition π = {{1, 2, 3, 4}, {5, 6}}, with the
resulting network reduction. In this case, ga = (5, 5, 5, 5), gb = (10, 10),
and gcut = 20.

network, gparallel(i,Nb) is equal to the ith element of ga.
Similar statement holds for gparallel(i,Na) and gb, which
yields the following technical lemma.

Lemma 3.2 (AEPs and Inter-Area Degree Vectors):
Consider the two-area network ({Na,Nb}, E) discussed
previously, and let the weighted inter-area degree vectors
ga, gb be as in (15). Then π = {Na,Nb} is an almost
equitable partition of G if and only if ga ∈ im 1a and
gb ∈ im 1b.

We therefore have the following corollary of Theorem 3.1,
which characterizes when the cutset error vanishes.

Corollary 3.3 (Zero Cutset Voltage Error): The cutset
voltage error εcut vanishes and vcut = µa − µb if either

(i) Uniform Area Voltages: Va ∈ im 1a and Vb ∈ im 1b ,
or

(ii) Almost Equitable Partitions: π = {Na,Nb} is an
almost equitable partition of G.

Proof: In case (i), we compute using (12) that ΠaVa =
0a and ΠbVb = 0b, so the result follows. Similarly, in case
(ii), gTa Πa = 0T

a and gTb Πb = 0T
b .

Corollary 3.3 (i) can be interpreted as the strong intra-
area coupling limit, where Λaa,Λbb −→ +∞. In this strong
coupling limit, each area contracts down to a single node.
It follows then that µa − µb = vcut exactly, independent of
the exact conductance values or the interconnection pattern
between the areas. Conversely, Corollary 3.3 (ii) holds inde-
pendent of the nodal voltage values and current injections,
and depends only on structural and weighting properties of
the partition/cutset. While almost equitability is a specialized
property that can not be expected to hold in test cases,
the result provides insight into how the graph topology
and weights influence the cutset voltage. If either condition
holds, vcut can easily be computed through centralized or
distributed averaging of pure voltage measurements, with
no knowledge of branch conductances required. While (9)
says to “average the differences”, (17) instead allows one to
subtract two averages; inter-area computations are therefore
largely replaced by intra-area ones.



Remark 2 (Extension to Bordering Buses): From the
expression (9), vcut depends only on the voltages on the
borders of the respective areas. Here, we use the coordinate
change (10), where µ denotes the average voltage level of
the entire area. When all buses are border buses (as in Figure
1) these two situations are equivalent, but in general they
are not. Closing this theoretical gap requires refining our
analysis by using more complicated block-matrix notation,
and is deferred to an extended publication. �

IV. EXTENSION TO VOLTAGE ACROSS AN AREA

We now extend the previous arguments regarding the cut-
set voltage to the generalization of a “voltage across an area”
[4, Section III]. The situation of interest is shown in Figure 2,
where now a set of nodes Nm lies in the middle between the
areas Na and Nb. We assume that Nm is a nodal cutset of G,
meaning that the graph (V \Nm, Enode−cut) — obtained by
removing the area Nm and any associated dangling edges
— is disconnected. For simplicity, we also assume that
the subgraph induced by the area Nm is connected; these
assumptions can be relaxed without much difficulty.

For this problem setup, the incidence matrix takes the form

A =

Aaa
a Aam

a 0
Aam

m Amm
m Abm

m

0 Abm
b Abb

b

 , (18)

with the accompanying nodal equations IaIm
Ib

 =

Gaa Gam 0
Gma Gmm Gmb

0 Gbm Gbb

VaVm
Vb

 . (19)

Applying Kron reduction [14] to the middle area Nm, we
obtain the reduced representation[

Ireda

Iredb

]
=

[
Gred

aa Gred
ab

Gred
ba Gred

bb

] [
Va
Vb

]
, (20)

where

Gred
aa , Gaa −GamG

−1
mmGma (21a)

Gred
bb , Gbb −GbmG

−1
mmGmb (21b)

Gred
ab = (Gred

ba )T , −GamG
−1
mmGmb (21c)

Ireda , Ia −GamG
−1
mmIm (21d)

Iredb , Ib −GbmG
−1
mmIm . (21e)

Since by assumption there were no shunt conductances, G
is an irreducible Laplacian matrix, and the matrix

Gred ,

[
Gred

aa Gred
ab

Gred
ba Gred

bb

]
inherits this property [14, Lemma II.1]. In particular, this
implies that the current balance 1T

aI
red
a + 1T

b I
red
b = 0 holds

for the reduced network. The reduced network described by
(20) therefore has the form of the network considered in
Section III, which is two areas Na and Nb separated by a
cutset of lines. The difference is that the lines of the cutset are
now equivalent lines as determined by (21a)–(21c), and the
current injections are now the equivalent current injections

Fig. 2. The three-area case of Section IV, where the middle area Nm is
a nodal cutset between areas Na and Nb.

determined by (21d)–(21e). Let Gred = (Nred, Ered) denote
the corresponding reduced graph, where‖

Nred = Na ∪Nb ,

Ered = Eaared ∪ Eabred ∪ Ebbred .

The current flowing across the cutset from Na to Nb is

iredcut , 1T
abi

red
ab , (22)

where ired = (iredaa , i
red
ab , i

red
bb ) is a branch current vector

satisfying KCL in the reduced network, given by Aredi
red =

Ired, where Ared is the incidence matrix of Gred. With the
conductance of area Nm defined as

garea , −1T
aG

red
ab 1b , (23)

the voltage across the area Nm is defined by

varea , i
red
cut/garea. (24)

Applying Theorem 3.1 of Section III now yields the
following result.

Theorem 4.1 (Area Voltage and Mean Voltages):
Consider the three-area circuit described by the nodal
equations (19), and let µa and µb be the mean voltages in
areas Na and Nb, respectively. Let the reduced quantities be
as in (21), with garea and varea as defined in (23),(24), and
define the reduced weighted inter-area degree vectors as

greda , −Gred
ab 1b , (25a)

gredb , −Gred
ba 1a . (25b)

Then
varea = µa − µb − εarea , (26)

where the area voltage error is εarea is given by

εarea ,
1

garea

[
(greda )TΠa −(gredb )TΠb

] [Va
Vb

]
. (27)

As in Section III, if it is known that the area voltage
error εarea is small, then the voltage varea across area Nm

can be calculated from pure voltage measurements via (26);
surprisingly, these measurements need only come from areas
Na and Nb, and not from Nm. From Corollary 3.3, we know
that εarea will in fact vanish if the voltage profiles in areas

‖The exact edges present in Ered can be determined from the Kron-
reduction process; see [14, Theorem III.4] for more information.



Na and Nb are individually uniform, or if πred = {Na,Nb}
is an almost equitable partition of the reduced graph Gred.
We therefore wonder: under what conditions on the original
graph G will πred be an almost equitable partition of the
reduced graph Gred?

Proposition 4.2 (AEPs and Kron Reduction): Consider
the three-area network G described by the nodal equations
(19), and its reduced network Gred described by the reduced
nodal equations (20). Then πred = {Na,Nb} is an almost
equitable partition of Gred if π = {Na,Nm,Nb} is an
almost equitable partition of G.

Proof: Let π = {Na,Nm,Nb} be an almost equitable
partition of G. By Lemma 3.2 then, it holds that

Gam1m ∈ im 1a , Gbm1m ∈ im 1b

Gma1a ∈ im 1m , Gmb1b ∈ im 1m .

In addition, since the matrix G has zero row sums, we have

Gaa1a ∈ im 1a , Gbb1b ∈ im 1b, Gmm1m ∈ im 1m .

The latter implies that G−1mm1m ∈ im 1m as well. Therefore,
by (21), we find that

Gred
ab 1b ∈ im 1a, Gred

ba 1a ∈ im 1b.

Since from (25), −Gred
ab 1b and −Gred

ba 1a are the weighted
inter-area degree vectors of the reduced graph Gred, we
conclude from Lemma 3.2 that πred = {Na,Nb} is an almost
equitable partition of Gred.

Applying Proposition 4.2 yields the following corollary.
Corollary 4.3 (Zero Area Voltage Error): The area

voltage error term εarea vanishes and varea = µa − µb if
(i) Va ∈ im 1a and Vb ∈ im 1b , or

(ii) {Na,Nm,Nb} is an almost equitable partition of G.
Remark 3: The restriction to the two and three area net-

works considered here is for clarity of exposition: extensions
of the results here can be quickly derived for multi-area
networks, at the cost of complicated bookkeeping. The
results concerning almost equitablity can also be generalized
to more general graph structures using the notion of invariant
subspaces; see [10, Lemma 5]. �

V. CONCLUSIONS

We have shown that the so-called cutset voltage defined in
[4] can be written as the difference between the mean voltage
levels on either side of the cut, plus an error term which
accounts for the distribution of weighted nodal degrees. We
then identified two cases where this error term vanishes,
implying the model-dependent cutset voltage can be exactly
computed using only voltage measurements. Finally, we
extended the results to the case of a voltage across an area.

Future work will explore the refinements mentioned in
Remarks 1, 2 and 3. It will also be relevant to examine
what can be said when voltage measurements are accessible
at only a subset of nodes, and examine the size of the
error terms εcut and εarea on standard grid data and cutset
selections, such as those in [4]. Another open theoretical
question is whether the cutset voltage has a useful variational
characterization, which would indicate optimality.

REFERENCES

[1] V. Terzija, G. Valverde, D. Cai, P. Regulski, V. Madani, J. Fitch,
S. Skok, M. Begovic, and A. Phadke, “Wide-area monitoring, pro-
tection, and control of future electric power networks,” Proceedings
of the IEEE, vol. 99, no. 1, pp. 80–93, 2011.

[2] Y. V. Makarov, P. Du, S. Lu, T. B. Nguyen, X. Guo, J. W. Burns, J. F.
Gronquist, and M. A. Pai, “Pmu-based wide-area security assessment:
Concept, method, and implementation,” IEEE Transactions on Smart
Grid, vol. 3, no. 3, pp. 1325–1332, 2012.

[3] A. Chakrabortty and P. P. Khargonekar, “Introduction to wide-area
control of power systems,” in American Control Conference, Wash-
ington, DC, USA, Jun. 2013, pp. 6758–6770.

[4] I. Dobson, “Voltages across an area of a network,” IEEE Transactions
on Power Systems, vol. 27, no. 2, pp. 993–1002, 2011.

[5] H. Sehwail and I. Dobson, “Locating line outages in a specific area
of a power system with synchrophasors,” in North American Power
Symposium (NAPS), 2012, Champaign, IL, Sep. 2012, pp. 1–6.

[6] A. Darvishi and I. Dobson, “Threshold-based monitoring of multiple
outages with pmu measurements of area angle,” IEEE Transactions
on Power Systems, vol. 31, no. 3, pp. 2116–2124, 2015.

[7] L. Ramirez and I. Dobson, “Monitoring voltage collapse margin by
measuring the area voltage across several transmission lines with
synchrophasors,” in IEEE Power & Energy Society General Meeting,
National Harbor, MD, USA, Jul. 2014.

[8] C. Taylor, D. Erickson, K. Martin, R. Wilson, and V. Venkatasubrama-
nian, “WACS – wide-area stability and voltage control system: R&d
and online demonstration,” Proceedings of the IEEE, vol. 93, no. 5,
pp. 892–906, 2005.

[9] D. M. Cardoso, C. Delorme, and P. Rama, “Laplacian eigenvectors
and eigenvalues and almost equitable partitions,” European Journal of
Combinatorics, vol. 28, no. 3, pp. 665–673, 2007.

[10] N. Monshizadeh, H. Trentelman, and M. Camlibel, “Projection-based
model reduction of multi-agent systems using graph partitions,” IEEE
Transactions on Control of Network Systems, vol. 1, no. 2, pp. 145–
154, 2014.

[11] S. Zhang, M. Cao, and M. Camlibel, “Upper and lower bounds for
controllable subspaces of networks of diffusively coupled agents,”
Automatic Control, IEEE Transactions on, vol. 59, no. 3, pp. 745–
750, 2014.

[12] N. Monshizadeh, S. Zhang, and M. Camlibel, “Disturbance decoupling
problem for multi-agent systems: a graph topological approach,”
Systems & Control Letters, vol. 76, pp. 35–41, 2015.

[13] C. A. Desoer and E. S. Kuh, Basic Circuit Theory. IEEE Press, 1969.
[14] F. Dörfler and F. Bullo, “Kron reduction of graphs with applications

to electrical networks,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 60, no. 1, pp. 150–163, 2013.

APPENDIX
TECHNICAL LEMMAS

Lemma A.1 (Incidence Matrix): For the incidence matrix
(3) the following properties hold:

(i) 1T
aA

aa
a = 0T

aa

(ii) 1T
bA

bb
b = 0T

bb

(iii) 1T
aA

ab
a = −1T

bA
ab
b = 1T

ab .
Proof: The result follows from the partitioning (3) and

the fact that AT1n = 0`.

Lemma A.2 (Conductance Matrix Submatrices): The
submatrices of the conductance matrix in (5) are given by

Gaa = Aaa
a Λaa(Aaa

a )T +Aab
a Λab(A

ab
a )T (28a)

Gab = Aab
a Λab(A

ab
b )T (28b)

Gba = Aab
b Λab(A

ab
a )T (28c)

Gbb = Abb
b Λbb(A

bb
b )T +Aab

b Λab(A
ab
b )T . (28d)

Proof: The result follows by direct expansion of G =
AΛAT using (3).
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