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Abstract— The primal-dual or saddle-point gradient algo-
rithm has recently attracted interest as a systematic tech-
nique for solving distributed optimization problems. To ex-
amine the robustness of the algorithm, here we introduce
exogenous disturbance inputs and quantify the performance
of the algorithm in terms of the induced L2-gain from the
disturbance to deviations around the optimizer. For convex
problems without inequality constraints, we find that the L2-
gain from a disturbance to the deviation of the primal state from
the optimizer depends only on how strongly convex the agent
objective functions are, and not on the equality constraints
or on algorithm time constants. For primal-dual laws derived
from an augmented Lagrangian, we show that the L2-gain is a
non-increasing function of the augmentation parameters, and
therefore that augmentation may be beneficial for improving
input/output performance.

I. INTRODUCTION

A distributed optimization problem is one in which indi-
vidual agents must cooperatively make decisions based on
local information to minimize a global cost subject to global
constraints. The defining aspects of the problem class are
that (i) each agent possess a local cost function, this cost
being known only to the respective agent, with the global
cost being the sum of individual costs (ii) communication
between agents is restricted, with allowable information
flows being described by a graph, and (iii) no centralized
coordination is permitted. As such, the approach is most
well-motivated for applications where central coordination
is undesirable or not possible; proposed applications include
the fusion of measurements in sensor networks, resource
allocation/congestion control in communication networks,
and optimal distributed frequency control in power systems.
The authors interest in distributed optimization stems from
the last of these application areas; surveying the literature
here is beyond our scope, but see for example [1]–[3].

A common continuous-time gradient-based algorithm for
distributed convex optimization is the primal-dual or saddle-
point algorithm, introduced in the early days of mathematical
economics by Kose [4] and Arrow et al. [5]; see [6] for con-
nections to Hamiltonian dynamics. The terminology saddle-
point comes from the observation that the algorithm seeks
the saddle points of the Lagrangian function of the problem.
Various convergence results are available in [7]–[9].

A. Some Relevant Literature

In [10] Nedić and Ozdaglar posed a distributed optimiza-
tion problem and studied a discrete-time algorithm for its so-
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lution. When translated to continuous-time for differentiable
cost functions, the algorithm reads roughly as

ẋi = −ki(t)∇xi
fi(xi)−

∑n

j=1
aij(t)(xi − xj) (1)

for each i ∈ {1, . . . , n}, where {ki(t)} are specified time-
varying gains and {aij(t)} are the edge weights for a
time-varying communication graph. The idea key idea is
to simultaneously apply both gradient descent and con-
sensus, adjusting the gain K(t) as necessary to ensure
convergence to the optimizer. Among many extensions,
the framework has been further developed using push-sum
protocols in [11]. Gharisifard and Cortés [12] studied the
convergence of a modified primal-dual algorithm on strongly
connected weight-balanced digraphs; extensions to time-
varying strongly connected digraphs via push-sums were
proposed in [13], with an alternative design proposed in
[14]. The design of algorithms under more complex influ-
ence/information structures was studied by Kvaternik et al.
in [15], [16]. Stegink et al. [17] take a port-Hamiltonian
approach to study the stability of primal-dual algorithms,
and apply their results to distributed frequency regulation in
power networks.

Elia and Wang [8], [18] studied primal-dual algorithms
from a control perspective, and observed that designs based
on augmented Lagrangians can be interpreted as PI con-
trollers. Moreover, these two-state augmented designs appear
to possess superior noise rejection properties compared to
the single-state design (1); see Figure 4 in [18]. Droge et al.
[19] continue the discussion on control-engineering aspects
of distributed optimization, suggesting that algorithm perfor-
mance be quantified in terms of time-domain criteria such
overshoot, settling time, and percent steady-state error from
the optimizer. Algorithms subject to disturbances generated
from a reference model have been studied in [20] via the
internal model principle, with mean-square stability under
stochastic disturbances studied in [21], [22].

B. Stability vs. Robustness

The above literature shares an emphasis on studying algo-
rithm convergence, with the goal being to find the weakest
convexity/connectivity conditions under which convergence
to an optimizer is guaranteed. In most control problems
however, a stable design is only the first step. It is well-
understood that stable systems with good convergence rates
can display poor transient behaviour when subjected to
exogeneous disturbances [23, Section 3.3.3]. Rather than
appealing to convergence rates alone, system norms are a
useful tool for quantifying an algorithm’s ability to tolerate



and attenuate disturbances, with the L2-norm being the most
common metric for nonlinear systems.

Our goal here is to provide such a robustness analysis
for the primal-dual algorithm. While it is generally in-
teresting to understand how sensitive the algorithm is to
disturbances, as a specific example consider the case of
online optimization. In this scenario, we do not simply run
an optimization algorithm once, but have it continuously
run in real-time, taking in measurements and allowing the
agents to cooperatively track the optimizer of the problem
as problem parameters change. In other words, the opti-
mization algorithm is now acting much like a controller,
and like all controllers, becomes subject to measurement
noise and unknown disturbances. We therefore arrive at the
question of dynamic input/output performance or sensitivity:
how much (or how little) does the primal-dual algorithm
amplify exogenous noise and disturbances? In the power
systems context, disturbances arise from noisy measurements
or time-varying power injections. Understanding how well
primal-dual frequency-control algorithms can attenuate these
disturbances has immediate consequences for the viability of
the approach in practice.

C. Contributions

Here we continue with the application of control-theoretic
ideas to distributed optimization, much in the spirit of the
recent works [8], [16]–[19], [24]. For problems without
inequality constraints, we interpret the primal-dual algorithm
as the interconnection of three distinct subsystems; a primal
subsystem, a dual subsystem, and a (static) interconnec-
tion subsystem. By studying the input/output dissipativity
properties of these three subsystems, we are able to bound
the L2-gain of a particular input/output map, providing one
indication of how sensitive the algorithm is to external
disturbances. We then study the more general situation where
the primal-dual algorithm is derived from an augmented
Lagrangian, and find that this may — or more interestingly,
may not — lead to a decrease in the previously determined
L2-gain.

D. Notation

The set R (resp. R≥0) is the set of real (resp. nonnegative)
numbers. The n × n identity matrix is In, 0 is a matrix
of zeros of appropriate dimension, while 1n (resp. 0n) are
column n-vectors of all ones and all zeros, respectively. If
f : Rn → R is differentiable, then ∇xf : Rn → Rn is its
gradient; we will suppress the subscript x when no confusion
can arise. A differentiable function f : Rn → R is convex if
there exists a function m : Rn × Rn → R≥0 (the modulus
of convexity) such that

(∇f(x1)−∇f(x2))T(x1−x2) ≥ m(x1, x2)‖x1−x2‖22 , (2)

for all x1, x2 ∈ Rn. If m(x, y) > 0 for all x, y ∈ Rn,
then f is strictly convex, while if m(x, y) ≥ m > 0 for all
x, y ∈ Rn, f is m-strongly convex.

II. REVIEW OF L2-STABILITY AND PASSIVITY

While we assume some familiarity, we provide a brief
refresher on these input-output system properties; see [25,
Chapters 5 and 6] for details. We consider the square,
continuous-time nonlinear control-affine system

Σ :

{
ẋ = F (x) +G(x)u

y = H(x) + J(x)u ,
(3)

with state x ∈ Rn, input u ∈ Rm and output y ∈ Rm,
and assume that F,G,H, J are of appropriate dimension and
sufficiently smooth, with F (0) = H(0) = 0.

A. L2-Stability of State-Space Control Systems

A signal u : R≥0 → Rm is in L2[0,∞) (or simply L2) if
its L2-norm ‖u‖L2 is finite, i.e., if

‖u‖L2 =

(∫ ∞
0

u(t)Tu(t) dt

) 1
2

<∞ .

Signals in L2 have finite energy, which is rather restrictive.
To relax this, we say u is in the extended L2-space L2e if
its truncation uT to the interval [0, T ] is in L2 for all finite
T ≥ 0. For example, step and ramp functions are in L2e but
not in L2. The control system Σ in (3) is said to be finite-
gain L2-stable with L2-gain less than or equal to γ ≥ 0 if
for all initial conditions x(0) ∈ Rn there is a constant bias
bx(0) ≥ 0 such that

‖yT ‖L2
≤ γ‖uT ‖L2

+ bx(0) (4)

for all T ≥ 0 and for all u ∈ L2e. The L2-gain ‖Σ‖L2
of Σ

is then defined as the smallest γ satisfying the above:

‖Σ‖L2
, inf{γ | ∃ bx(0) such that (4) holds} . (5)

In other words, the L2-gain of a system quantifies how much
input signals are amplified by the system, with both input
and output measured in terms of the L2 norm. In general the
L2-gain of a system is difficult to calculate; even verifying
a given upper bound requires the solution of a PDE [26,
Equation 3.49]. However, dissipation inequalities – and here
in particular, passivity – provide a simpler verification tool.

B. Passivity of State-Space Control Systems

The system Σ in (3) is called passive if there exists a
continuously differentiable storage function V : Rn → R≥0
satisfying V (0) = 0 and a scalar ρ ≥ 0 such that along
trajectories of (3) we have∗

V̇ = ∇xV (x)T(F (x) +G(x)u) ≤ −ρyTy + yTu .

If ρ > 0, then Σ is called output-strictly passive. It can be
shown that if Σ is output-strictly passive, then Σ is finite
L2-gain stable with L2-gain less than or equal to 1/ρ. Thus,
establishing output strict passivity establishes an upper bound
on the L2-gain of the system.

∗Since the (x, u, y) = (0, 0, 0) is an equilibrium configuration of the
system Σ, one could call this passive around the origin. Later, we will
establish passivity of the primal-dual dynamics around its (typically non-
zero) equilibrium configuration.



III. PRIMAL-DUAL ALGORITHM FOR DISTRIBUTED
OPTIMIZATION

Consider the optimization problem

minimize
x∈Rn

f(x) =
∑n

i=1
fi(xi)

subject to Sx = b ,
(6)

where x = (x1, . . . , xn) ∈ Rn is the agent state vector,
each fi : R → R is continuously differentiable and strictly
convex, b ∈ Rr, and S ∈ Rr×n where r < n. We assume
that S has full row rank (rank(S) = r), which simply means
that the constraints Sx = b are not redundant. Relaxing the
problem setup to include inequality constraints, vector local
variables xi ∈ Rni , to the case of r ≥ n, to the case where
rank(S) < r, and weakening the differentiability/convexity
requirements on f are topics for future work. One should
think of the matrix S as encoding sparse constraints between
agents, and hence (6) has a naturally distributed structure.
For example, if ST is the incidence matrix of a graph [27,
Chapter 8], then Sx = 0 simply says that xi = xj for all
i, j ∈ {1, . . . , n}, implying that agents agree on their states
at any optimizer.

Under the above assumptions the problem (6) is a convex
optimization problem; it has a finite optimum, the equality
constraints are strictly feasible, and (6) may be equivalently
studied through its Lagrange dual with zero duality gap [28].
The Lagrangian L : Rn × Rr → R of the problem (6) is

L(x, ν) = f(x) + νT(Sx− b) , (7)

where ν ∈ Rr is a vector of Lagrange multipliers. By strong
duality, the KKT conditions

∇xL(x∗, ν∗) = 0n ⇐⇒ 0n = ∇f(x∗) + STν∗ ,

∇νL(x∗, ν∗) = 0r ⇐⇒ 0r = Sx∗ − b ,
(8)

are necessary and sufficient for optimality, and (8) determines
the unique primal-dual optimizer (x∗, ν∗).

To calculate this optimizer, the primal-dual algorithm [7]–
[9], [29], [30] says that we should perform gradient descent
on the primal variables and gradient ascent on the dual
variables

τxẋ = −∇xL(x, ν) , τν ν̇ = ∇νL(x, ν) , (9)

which for the Lagrangian (7) reduces to

τxẋ = −∇f(x)− STν

τν ν̇ = Sx− b ,
(10)

where τx, τν are positive definite diagonal matrices of time
constants. By construction, the equilibrium points of (10) are
in one-to-one correspondence with the solutions of the KKT
conditions (8). One may show [7]–[9] that if each local cost
fi is strictly convex, then (10) converges from every initial
condition to the global optimizer of (6).

IV. L2-GAIN ANALYSIS OF PRIMAL-DUAL ALGORITHM

We interpret the dynamics (10) as follows: the job of the
primal subsystem with state x is to solve the unconstrained
optimization problem

minimize
x∈Rn

f(x) =
∑n

i=1
fi(xi) . (11)

Since fi depends only on xi, each agent locally implements
a first-order gradient descent to reach the minimum of its
cost function, and outputs the local state. The job of the
dual subsystem is to act as a feedback controller for the error
signal Sx−b, here an integral controller. The interconnection
of these two subsystems then yields the dynamics (10), and
the points where the two systems interconnect are a natural
place to insert exogenous disturbances and study their effects.
Figure 1 depicts the described interconnection.

Fig. 1. Block-diagram of input/output primal-dual dynamics, with exoge-
nous disturbances w.

To study input/output performance, we augment the dy-
namics (10) with primal/dual disturbance inputs w =
(wp, wd) and performance outputs y = (yp, yd) as

Σpd :


τxẋ = −∇f(x)− STν + wp

τν ν̇ = Sx− b+ wd

yp = x

yd = ν

(12)

Our first result shows that the system in Figure 1 is passive,
and quantifies the L2-gain from primal disturbances wp to
primal outputs yp.

Theorem 4.1 (Primal-Dual I/O Performance):
Consider the input-output primal-dual dynamics Σpd

in (10), and let (x∗, ν∗) be the unique equilibrium point as
determined by the KKT conditions (8). If for each agent
i ∈ {1, . . . , n},

(i) fi(xi) is strictly convex, then Σpd is passive around
(x∗, ν∗) ;



(ii) fi(xi) is mi-strongly convex, then the map from wp
to yp is finite L2-gain stable around the equilibrium
point (x∗, ν∗), with L2-gain satisfying

‖Σpd‖L2
≤ 1

mmin
,

where mmin = mini∈{1,...,n}mi is the minimum
modulus of convexity among the agent cost functions.

Theorem 4.1(ii) shows that the ability of the system to
attenuate primal disturbances depends only on how strongly
convex the objective functions are, and it is the least strongly
convex cost which determines the L2-gain. Surprisingly, the
bound does not depend in any way on the constraint matrix
S or on the time-constants τx, τν of the system. Moreover,
in the limit where mmin → 0, our finite L2-gain bound
becomes arbitrarily large. This suggests that — while strict
convexity is sufficient to guarantee asymptotic convergence
— the system may be quite sensitive to external disturbances.

Proof: We begin by decomposing (10) into three
subsystems:

Σprimal :

{
τxẋ = −∇f(x) + up

yp = x

Σdual :

{
τν ν̇ = ud

yd = ν
Σinter :

{
ep = −STfd

ed = Sfp − b

subject to the feedback interconnection

up = ep + wp , fp = yp − w1
inter ,

ud = ed + wd , fd = yd − w2
inter ,

The subsystems and the interconnection structure is shown in
Figure 1, where for the sake of generality we have included
additional inputs to the interconnection w1

inter and w2
inter.

The equilibrium values associated with these variables are

x∗, u∗p = e∗p = −STν∗, y∗p = f∗p = x∗

ν∗, u∗d = e∗d = 0r, y∗d = f∗d = ν∗ .

Beginning with Σprimal, consider the storage function candi-
date Vprimal(x) = 1

2 (x− x∗)Tτx(x− x∗). Along trajectories
of Σprimal, we calculate that

V̇primal = (x− x∗)T(−∇f(x) + up)

= −(∇f(x))T(x− x∗) + (x− x∗)Tup

Since from (8) it holds that −∇f(x∗) + u∗p = 0n, we may
subtract (x−x∗)T(−∇f(x∗)+u∗p) from the right-hand side,
obtaining

V̇primal = −(x− x∗)T((∇f(x)−∇f(x∗)) (13)

+ (x− x∗)T(up − u∗p) . (14)

For the dual system Σdual consider the storage function can-
didate Vdual(ν) = 1

2 (ν − ν∗)Tτν(ν − ν∗). Along trajectories
of Σdual,

V̇dual = (ν − ν∗)Tud = (yd − y∗d)T(ud − u∗d) , (15)

where we have used that u∗d = 0. Finally, for the intercon-
nection Σinter, using the fact that Sf∗p − b = 0r, one may
compute that[

ep − e∗p
ed − e∗d

]
=

[
0 −ST

S 0

] [
fp − f∗p
fd − f∗d

]
.

Since the matrix above is skew-symmetric, it follows that

(ep − e∗p)T(fp − f∗p ) + (ed − e∗d)T(fd − f∗d ) = 0 . (16)

Setting V (x, ν) = Vprimal(x) + Vdual(ν), we find by adding
the dissipation inequalities (13) and (15) and subtracting (16)
that

V̇ ≤ −(yp − y∗p)T(∇f(yp)−∇f(y∗p))

+


yp − y∗p
yd − y∗d
ep − e∗p
ed − e∗d


T 

wp
wd
w1

inter

w2
inter

 . (17)

Setting w1
inter = w2

inter = 0, and using the fact that f(x) is
strictly convex, we immediately obtain statement (i) of the
theorem. For statement (ii), Since each function fi(xi) is
mi-strongly convex, ∇f(x) satisfies

(yp − y∗p)T(∇f(yp)−∇f(y∗p)) ≥ (yp − y∗p)TM(yp − y∗p) ,

for any x, y ∈ Rn, where M = diag(m1, . . . ,mn). Inserting
this bound into (17) and setting wd = w1

inter = w2
inter = 0,

we obtain

V̇ ≤ −(yp − y∗p)TM(yp − y∗p) + (yp − y∗p)Twp .

From this we see that the map from wp to yp− y∗p is output
strictly passive with ρ = λmin(M) = mmin. It follows that
the L2-gain from wp to yp − y∗p is less than or equal to
1/ρ = 1

mmin
, which shows the result.

V. L2-GAIN ANALYSIS OF AUGMENTED LAGRANGIAN
PRIMAL-DUAL ALGORITHMS

Consider now the augmented optimization problem

minimize
x∈Rn

f(x) +
1

2
(Sx− b)TK(Sx− b)

subject to Sx = b ,
(18)

where we have incorporated the squared constraint Sx−b =
0r into the cost function, with K = diag(k1, . . . , kr) being
a positive diagonal matrix of gains. Letting Lk(x, ν) denote
the Lagrangian function of (18), it follows that (x, ν) is a
saddle point of Lk(x, ν) if and only if it is a saddle point
of L(x, ν), and hence the (unique) optimizer is unchanged.
Taking gradients of Lk(x, ν), we obtain the augmented
primal-dual algorithm

τxẋ = −∇f(x)− STν − STK(Sx− b) (19a)
τν ν̇ = Sx− b . (19b)

From a static optimization point of view, we have incorpo-
rated additional convexity into the cost function. As noted
by [8], [18], this leads to a proportional control action in the
primal-dual system. While it is well understood that such



augmentation tends to improve the convergence rate of the
algorithm, the following result shows that an improvement
in I/O performance may (or may not!) also occur.

Theorem 5.1 (Aug. Primal-Dual I/O Performance):
Consider the input-output augmented primal-dual dynamics

Σapd :


τxẋ = −∇f(x)− STν − STK(Sx− b) + wp

τν ν̇ = Sx− b
yp = x

with disturbance input wp and performance output yp, and
let (x∗, ν∗) be the unique equilibrium point of (18) as
determined by the KKT conditions (8). If for each agent
i ∈ {1, . . . , n} the cost fi(xi) is mi-strongly convex, then the
L2-gain from wp to yp around the equilibrium point (x∗, ν∗)
satisfies

‖Σapd‖L2
≤ 1

λmin(M + STKS)
. (20)

Proof: The decomposition of the algorithm into sub-
systems now reads as , as can be seen through the following
decomposition:

Σprimal :

{
τxẋ = −∇f(x) + up

yp = x

Σdual :

{
τν ν̇ = ud

yd = ν +Kud
Σinter :

{
ep = −STfd

ed = Sfp − b

subject to the feedback interconnection

up = ep + wp , fp = yp ,

ud = ed , fd = yd .

Note the change in Σdual. Using tildes to denote a deviation

Fig. 2. Block-diagram of input/output augmented primal-dual dynamics
for Theorem 5.1.

from the equilibrium value (e.g., ỹp = yp − y∗p), we may
proceed as before to arrive at the dissipation inequalities

V̇primal ≤ −ỹTpMỹp + ỹTp ũp , (21a)

0 = −ẽTp f̃p − ẽTd f̃d , (21b)

for the primal subsystem Σprimal and the interconnection
Σinter, respectively. For the dual system Σdual, we use the
same storage function as before and compute that

V̇dual = (ν − ν∗)Tud
= (yd −Kud − y∗d)T(ud − u∗d)
= −(ud − u∗d)TK(ud − u∗d) + (yd − y∗d)T(ud − u∗d)
= −ũTdKũd + ỹTd ũd . (22)

Using the interconnection equations and Σinter to eliminate
everything other than ỹp and wp, the dissipation inequality
for V = Vprimal + Vdual reduces to

V̇ ≤ −ỹTpMỹp − (Sỹp)
TK(Sỹp) + ỹTpwp

= −ỹTp (M + STKS)ỹTp + ỹTpwp .

Since rank(S) = r < n and K > 0, STKS ∈ Rn×n is
positive semidefinite with rank r. Since M > 0, it follows
that M + STKS is positive definite, and therefore

V̇ ≤ −λmin(M + STKS)‖ỹp‖22 + ỹTpwp ,

with λmin(M+STKS) > 0. The desired result now follows
as in Theorem 4.1.

By standard eigenvalue inequalities [31, Theorem 3.3.16],
the L2-gain bound of Theorem 5.1 is less than or equal
to the bound obtained in Theorem 4.1 for every K ≥ 0.
Whether this new bound is strictly less than the previous
bound depends on the particulars of K abd M , and on the
the image ST. For simplicity, assume that K = kIr for
some k > 0, and without loss of generality assume that the
minimum convexity parameter mmin is achieved by agent 1.
W consider two examples. In the first example, augmentation
lowers the L2-gain, while in the second example it does not.

(i) Agreement Constraints: Consider the case where r =
n − 1 and S = ET, where E is the incidence matrix
of an acyclic† graph. In this case, the constraint that
Sx = ETx = 0n−1 says that x ∈ span(1n), meaning
that xi = xj for all i, j ∈ {1, . . . , n}. It follows
that STKS = kEET = kL, where L = EET is an
undirected unweighted Laplacian matrix for the graph
described by E. A straightforward argument shows that

lim
k→∞

λmin(M + kL) = mavg ,
1

n

∑n

i=1
mi .

In other words, by using high-gain Laplacian propor-
tional control, the L2-gain bound is improved from
‖Σpd‖L2 ≤ m−1min to ‖Σapd‖L2 ≤ m−1avg in the limit of
large k. If all mi are not equal, then this yields a strict
decrease in the bound on the L2-gain.

(ii) Unconstrained Variable: Consider the case where
variable x1 is not involved in any of the equality con-
straints Sx = b. In other words, the first column of S
contains only zero elements, which implies that STKS
has a zero eigenvalue with eigenvector (1, 0, . . . , 0)T.

†For any connected graph it holds that rank(E) = n − 1. The acyclic
assumption ensures that E ∈ Rn×(n−1), for consistency with our standing
assumptions that S ∈ Rr×n and rank(S) = r.



Then λmin(M + STKS) = λmin(M) = m1 for all
choices of diagonal gain matrices K > 0. Therefore, in
this case augmentation is unable to reduce the L2-gain.
The problem here is that (1, 0, . . . , 0)T is not in the
image of ST. The proportional action therefore cannot
influence the first state, which is the state limiting the
L2 gain of the system from being lowered.

VI. CONCLUSIONS

Here we have proposed a passivity and L2-gain framework
for studying the robustness of primal-dual gradient dynamics
to unmodeled external disturbances. The L2-gain from dis-
turbances entering the primal dynamics to the primal variable
seems to be limited by the least strongly convex agent cost
function fi(xi), which is rather intuitive. We found that
using an augmented Lagrangian may or may not improve
this performance depending on the particulars of the cost
functions {fi(xi)}ni=1 and the constraint matrix S.

The decomposition of the dynamics in Figure 2 sug-
gests the exploration of a dissipativity-based framework for
optimizing and interconnecting optimization algorithms, in
which input/output performance robustness becomes a focal
point of design; the dual system Σdual arising from the
augmented Lagrangian is simply one possibly dissipative
(in this case, input-strictly passive) system. This broad
framework will be pursued further in a future publication,
and may be able to accommodate inequality constraints,
directed communication, and delay, along with other types
of distributed optimization algorithms. Future work will
also attempt to connect these results to those in [24], and
equilibrium-independent passivity or incremental passivity
may allow for stronger conclusions to be drawn regarding
system stability under interconnection.
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