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Abstract: This paper investigates the robustness of two well-known applications of second-
order consensus dynamics, namely mechanical and power networks. For uniform subsystem
parameters, we derive expressions for the H∞ norms of mechanical and power networks, from
external disturbances to body displacements and to generator phase angles, respectively. The
closed-form expressions are in terms of the physical parameters (damping coefficients and
inertias) of the dynamics and in terms of the spectrum of the grounded Laplacian matrix
associated with the network. We then analyze the dependence of the H∞ norm of each network
on both the network structure and the physical parameters. For a fixed network topology, we find
that each system norm can be minimized by choosing the damping coefficient within a specified
range. Theoretical contributions are verified via two illustrative examples for mechanical and
power networks, in which we show that the network structure, number of the reference nodes
and their location in the network can have considerable effects on the system H∞ norm.
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1. INTRODUCTION

Connecting system-theoretic notions to graph theory has
attracted much attention in the past decade due to grow-
ing interest in networked control systems. Algebraic and
spectral graph theory have become key tools in the study
of systems on graphs, and have been used to study stability
Olfati-Saber et al. (2007), robustness Bamieh et al. (2012);
Patterson and Bamieh (2010); Pirani et al. (2017a), con-
trollability Olshevsky (2014); Pequito et al. (2016); Rah-
mani et al. (2009) and observability Sundaram and Had-
jicostis (2011). A foundational system-theoretic concept
is robustness to uncertainties or external disturbances.
Among the robustness metrics proposed in systems and
control theory, the H∞ norm plays a substantial role in
robust control synthesis and uncertainty modelling. Re-
cently, extensive research has been done characterizing
the H2 norm in terms of graph-theoretic notions Bamieh
et al. (2012); Fitch and Leonard (2013); Patterson et al.
(2015). Graph-theoretic characterizations of the H∞ norm
have received less attention however. In this paper we
investigate some graph-theoretic approaches to the H∞
norm of mechanical and power networks, which are two
well-known examples of second-order consensus dynamics.

Second-order consensus dynamics have been heavily in-
vestigated in recent years Ren and R. Beard (2007), due
to their diverse applications. Stability, performance and
robustness of such systems have also been analyzed Lin
et al. (2008a,b); Ren and Beard (2008). However, in order
to investigate the dependence of system robustness on the
physical model parameters, it is desirable to understand

the precise relationship between the robustness metric
and those parameters. The model of mechanical networks
presented in this paper has diverse applications Acosta
et al. (2005); Sandberg and Murray (2008, 2009). One
of these applications is cooperative adaptive cruise con-
trol in vehicle platooning problems, in which vehicles are
controlled to track reference inter-vehicular distances as
well as a desired velocity, targeting safety issues and fuel
consumption considerations Barooah et al. (2009); Hao
and Barooah (2013); Jovanovic and Bamieh (2005); Peters
et al. (2014); Sebastian et al. (2015). The other example of
a second-order consensus systems considered in this paper
is a network of power generators. During past years, there
have been great efforts on revisiting power network dynam-
ics from control-theoretic and cyber-physical perspectives
Dorfler and Bullo (2010); Schiffer et al. (2014); Simpson-
Porco et al. (2013). In this direction, some research has
been done to analyze the effect of the network structure as
well as physical control parameters on certain robustness
and performance metrics Poolla et al. (2016); Tegling et al.
(2015a,b); Teixeira et al. (2015).

The contributions of this paper are as follows:

• For homogeneous damping and mass/inertia con-
stants, we derive closed-form expressions for the H∞
norms of mechanical and power networks. The norms
are in terms of physical parameters of the subsystems
and in terms of the spectrum of the grounded Lapla-
cian matrix.

• We investigate the dependence of these H∞ norms
on physical parameters (in particular, on the homoge-



neous damping coefficient c and mass/inertia m), and
on the spectrum of the grounded Laplacian matrix.
We demonstrate this analysis via two examples, one
for each type of network.

The paper is organized as follows. In Section 2 some
notations and definitions used in this paper are introduced.
Section 3 presents the models for mechanical and power
networks, and characterizes the spectral properties of the
associated dynamic matrices in terms of the grounded
Laplacian matrix. In Section 4, we derive expressions for
the H∞ norm for mechanical and power networks and
describe its dependence on the physical parameters of the
system. The effect of network structure on the H∞ norm
for mechanical and power networks is discussed in Section
5. Section 6 concludes and proposes future research.

2. NOTATIONS AND DEFINITIONS

We denote an undirected graph (network) by G = {V, E},
where V = {v1, v2, . . . , vn} is a set of nodes (or vertices)
and E ⊂ V × V is the set of edges. Neighbors of node
vi ∈ V are given by the set Ni = {vj ∈ V | (vi, vj) ∈ E}.
The unweighted adjacency matrix of the graph is given by
a symmetric and binary n × n matrix A, where element
Aij = 1 if (vi, vj) ∈ E and zero otherwise. The degree of

node vi is denoted by di ,
∑n
j=1Aij . For a given set of

nodes X ⊂ V, the edge-boundary (or just boundary) of the

set is given by ∂X , {(vi, vj) ∈ E | vi ∈ X, vj ∈ V \X}.
The Laplacian matrix of the graph is given by L , D−A,
where D = diag(d1, d2, . . . , dn). The eigenvalues of the
Laplacian are real and nonnegative, and are denoted by
0 = λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L). For a given subset S ⊂
V of nodes (which we term grounded nodes), the grounded
Laplacian induced by S is denoted by LgS or simply Lg,
and is obtained by removing the rows and columns of L
corresponding to the nodes in S. For the case where the
underlying network is connected and there exists at least
one grounded node, the grounded Laplacian matrix Lg is a
positive-definite matrix Pirani and Sundaram (2016). For
a given set I, the number of members (cardinality) of the
set is denoted by |I|.

3. NETWORK MODELS

In this section, we discuss two applications of second-order
consensus dynamics: mechanical mass-spring-damper net-
works, and networks of power generators.

3.1 Mechanical Network

Consider a simple system comprised of two bodies con-
nected to each other via a spring and a viscous damper,
as shown in Fig. 1(a). Suppose that the position of one of
the bodies (called the reference or leader) is fixed 1 and
the other acts as the follower. This is the simplest form of
a network control system of masses, springs and dampers
which will be addressed in this paper. The dynamics of
the reference body is ẋ1(t) = 0. From Newton’s law, the
dynamics of the follower body are

m2ẍ2 = k (x1 − x2) + c (ẋ1 − ẋ2) + w2(t), (1)

1 We can easily extend this to the case where the reference body
tracks an input signal, i.e. ẍ1(t) = u(t).
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Fig. 1. A simple schematic figure of (a) mechanical in-
teractions with grounded body m1, (b) Connected
generators with resistance x12 and slack generator
with θ̇ = 0.

where m, c, k are mass, damping and stiffness constants,
respectively. The follower is subject to an external forcing
disturbance, which we denote by w2(t).

Now we extend the above system to a network of connected
masses with arbitrary topology. Consider a connected
network of n masses V = {v1, v2, . . . , vn}. Each mass
vi ∈ V is either a follower vi ∈ F or a reference mass
vi ∈ R. The position and the velocity of each mass vi is
denoted by scalars xi and ẋi(t), respectively. The equation
of motion of each follower is

miẍi =
∑
j∈Ni

kij (xj − xi) + cij (ẋj − ẋi) + wi(t), vi ∈ F ,

(2)

where kij , cij > 0 are spring stiffness and damping con-
stant between mi and mj and wi(t) models the distur-
bance and uncertainties in dynamics of the i-th body. The
dynamics of the reference body is

ẋi = 0, vi ∈ R. (3)

Here we consider homogeneous mass, stiffness and damp-
ing constants, i.e. mi = m, ki = k and ci = c, ∀i =
1, 2, ..., n. The objective of this study is to investigate the
robustness of the networked control system to external
disturbances. Thus, we only consider the dynamics of the
followers, since they are affected by the disturbances. In
vector notation, the dynamics of the followers are

[
ẋ

ẍ

]
=

 0|F| I|F|

− k
m
Lg −

c

m
Lg

[x
ẋ

]
+

 0|F|
1

m
I|F|

w(t),

y = x, (4)

where Lg is the grounded Laplacian matrix formed by
removing rows and columns corresponding to the reference
bodies and y(t) is the output of interest, in this case the
positions of the follower bodies.

3.2 Power Network

Consider a power network of n buses V = {v1, v2, ..., vn}
and a set of edges E , as shown in Fig. 1(b). Here we assume
a Kron-reduced transmission network model, where all
buses are modeled as generators and branch resistances are
neglected. At each node i = 1, 2, ..., n, there is a generator
with inertia mi, damping ci, and voltage phase angle θi.
The dynamics of the i-th generator is described by the
swing equation

miθ̈i + ciθ̇i = Pm,i − Pe,i + wi(t), (5)

where Pm,i is the constant mechanical power input from
turbine and wi(t) models disturbances arising from chang-
ing generation or changing local load. The term Pe,i is the



real electrical power injected from i-th generator to the
network, and is given by

Pe,i =
∑
j∈Ni

ViVjBij sin(θi − θj), (6)

where Vi is the nodal voltage magnitude and −Bij < 0
is the susceptance associated with edge (vi, vj) ∈ E . We
further approximate this using the so-called DC Power
Flow, where Vi ' Vj ' 1 and |θi − θj | << 1, leading to
the linear model

Pe,i ≈
∑
j∈Ni

Bij(θi − θj). (7)

Substituting (7) into (5) yields the LTI system

miθ̈i + ciθ̇i ≈ −
∑
j∈Ni

Bij(θi − θj) + Pm,i + wi(t), (8)

We consider a reference (slack) generator, i ∈ R, which
has a constant phase

θ̇i = 0, vi ∈ R. (9)

Similar to the case of mechanical network, here we assume
that mi = m, Bij = b and ci = c for all i = 1, 2, ..., |F|
Tegling et al. (2015b). After shifting the equilibrium point
of (8) to the origin, the term proportional to Pm,i may be
removed and the dynamics of the followers can be written
in vector form as[

θ̇

θ̈

]
=

 0|F| I|F|

− b

m
Lg −

c

m
I|F|

[θ
θ̇

]
+

 0|F|
1

m
I|F|

w(t),

y = θ , (10)

where we have taken y = θ as the output of interest;
this is the phase difference between each bus angle and
the (zero) 2 angle of the reference bus. Other kinds of
performance outputs (including frequency) are considered
in Pirani et al. (2017b).

In Section 4 we derive expressions for the H∞ norms of
the systems (4) and (10), respectively. Since the smallest
eigenvalue of Lg plays a crucial role in the robustness of (4)
and (10) to external disturbances, the following theorem
provides some graph-theoretic bounds on λ1. 3

Theorem 1. (Pirani and Sundaram (2016)). Consider a con-
nected network G = {V, E} with a set of reference nodes
R ⊂ V. Let Lg be the grounded Laplacian matrix for G.
Let βi = |Ni ∩ R| be the number of reference nodes in
follower vi’s neighborhood. Then

max

{
|∂R|umin

|F|
,min
i∈F
{βi}

}
≤ λ1 ≤

|∂R|
|F|

≤ max
i∈F
{βi} ≤ |R|,

(11)

where umin is the smallest component of the eigenvector u
corresponding to λ1. Here we normalized the elements of
x such that ||u||∞ = 1.

4. H∞ PERFORMANCE OF MECHANICAL AND
POWER NETWORKS

We now present closed-form expressions for the H∞ sys-
tem norm of mechanical and power networks, from exter-
nal disturbances to the mass displacements and the phase
2 Without loss of generality we assume that the states of reference
nodes are zero, i.e., x = 0 and θ = 0.
3 For simplicity, λi refers to λi(Lg), unless indicated.

angles, respectively. We then discuss how each system
norm depends on the physical parameters of the subsys-
tems.

Theorem 2. Consider the mechanical network described
by (4) and the power network described by (10).

(i) Mechanical Network: For the mechanical network
(4), theH∞ norm from disturbances to position errors
is

||G||Mech
∞ =


2m

cλ
3
2
1

√
4mk − c2λ1

, if
λ1c

2

2km
≤ 1,

1

kλ1
otherwise.

(12)

(ii) Power Network: For the power network (10), the
H∞ norm from disturbances to phase angle errors is

||G||Power
∞ =


2m

c
√

4bmλ1 − c2
, if

c2

2bmλ1
≤ 1,

1

bλ1
otherwise.

(13)

Proof. We prove the result for the mechanical network;
the proof for the power network is similar. Computing the
transfer function of (4) gives

G(s) =
(
ms2I + (cs+ k)Lg

)−1

= U
(
ms2I + (cs+ k)Λ

)−1︸ ︷︷ ︸
diag(Gi(s))

UT , (14)

where U = [u1,u2, ...,u|F|] is a matrix formed by eigen-
vectors of Lg and diag(Gi(s)) is a diagonal matrix with
diagonal elements Gi(s) = 1

ms2+cλis+kλi
. Then we have

|Gi(jω)|2 =
1

(mω2 − kλi)2 + c2λ2
iω

2︸ ︷︷ ︸
f(ω)

. (15)

Maximizing |Gi(jω)|2 with respect to ω is equivalent to

minimizing f(ω). By setting df(ω)
dω = 0, we get ω̄1 = 0 and

ω̄2 = (kλi

m −
c2λ2

i

2m2 )
1
2 as critical points. Here ω̄2 is the global

minimizer of f(ω), unless λic
2

2km > 1. Hence, we have

ω̄ =


(
kλi
m
− c2λ2

i

2m2

) 1
2

, if
λic

2

2km
≤ 1,

0 otherwise.

(16)

substituting the values in (16) into |Gi(jω)| yields

sup
ω
|Gi(jω)| =


2m

cλ
3
2
i

√
4mk − c2λi

, if
λic

2

2km
≤ 1,

1

kλi
otherwise.

(17)

Both terms in (17) are monotonic decreasing functions of
λi, which is clear from the second term, 1

kλi
. For the first

term, by differentiating with respect to λi we find that

arg minλi

(
2m

cλ
3
2
i

√
4mk−c2λi

)
= 3km

c2 , which is out of the

range of λi ≤ 2km
c2 . Hence, for system H∞ norm we have

||G||Mech
∞ = sup

ω
max
i
||Gi(jω)||,



which yields the result. 2

According to Theorem 2, the H∞ norms for both me-
chanical and power networks are monotonic decreasing
functions of λ1. Hence, increasing the smallest eigenvalue
of the grounded Laplacian matrix (by changing the net-
work topology, and managing the number and location of
the reference nodes) will always decrease the H∞ norm
and consequently provide a more robust network control
system. We will return to the effect of network structure
on the norm in Section 5. However, due to the fact that
in most cases the network structure and the number and
location of reference nodes are fixed, it is more convenient
to use local feedback controllers to increase the robustness
of the overall system. To this end, in the following propo-
sition we analyze the behaviour of the damping coefficient
c and inertia m on system H∞ norms for both mechanical
and power networks.

Proposition 3. Consider the mechanical network described
by (4) and the power network described by (10). The
following statements hold:

(i) Mechanical Network: The H∞ norm of a mechan-
ical network (12) is a non-increasing function of the
damping coefficient c and is bounded from below as

||G||Mech
∞ ≥ 1

kλ1
, (18)

with equality sign for all c ≥
√

2mk
λ1

. Moreover, the

norm is a non-decreasing function of the mass m,
and is bounded from below by (18), which holds with

equality sign for all m ≤ c2λ1

2k .
(ii) Power Network: The H∞ norm of the power net-

work (13) is a non-increasing function of the damping
coefficient c, and it is bounded from below as

||G||Power
∞ ≥ 1

bλ1
, (19)

with equality sign for all c ≥
√

2bmλ1.Moreover, the
norm is a non-decreasing function of the inertia m,
and is bounded from below by (19), which holds with

equality sign for all m ≤ c2

2bλ1
.

Proof. The proof for both the mechanical and power
networks is similar; here we consider the power network
case. First note that ||G||Power

∞ is a continuous function of
c and m (it can be verified by checking the values in bound-
aries between two sub-functions in (13)). Let f(c) denote
||G||Power

∞ as a function of c. For the first sub-function
in (13) we have f(c) = 2m

c
√

4bmλ1−c2
. Differentiating with

respect to c yields

f ′(c) =
2m

(4bmλ1 − c2)
3
2

− 2m

c2(4bmλ1 − c2)
1
2

.

By solving f ′(c) = 0, we reach to the critical point
c̄ =
√

2bmλ1, which is exactly the boundary of the range
of this sub-function in (13). For c < c̄ we have f ′(c) < 0
and for c > c̄, based on the second sub-function in (13)

we have df(c)
dc = 0 (since it is independent of c). Hence the

minimum value of f(c) is attained for all c ≥
√

2bmλ1.

Now consider ||G||Power
∞ as a function of inertia, and denote

this function by g(m). Differentiating g(m) for the first
sub-function in (13) with respect to m yields

g′(m) =
2

c(4bmλ1 − c2)
1
2

− 4mbλ1

c(4bmλ1 − c2)
3
2

, (20)

where m̄ = c2

2bλ1
is its critical point, which is the boundary

of the range of this sub-function in (13). Considering the
fact that for all m < m̄ (based on the second sub-function),
we have g(m) = 1

bλ1
and for m > m̄, we have g′(m) > 0,

the result is obtained. 2

Fig. 2 shows the behavior of the power network H∞
norm as a function of both damping and inertia, for
several values of λ1. We make two comments. First,
while in general the H∞ norm is non-differentiable, both
expressions from Theorem 2 are continuously differentiable
functions of c and m. Second, given a fixed network
structure and one of the values of c or m, the other
parameter can be adjusted to maximize system robustness.

For example, if m is fixed, one should choose c =
√

2mk
λ1

in mechanical and c =
√

2mbλ1 in power network to yield
the minimum system H∞ norm.

𝒄 = 𝟐𝒃𝒎𝝀𝟏(𝑳𝒈)  

𝒎 =
𝒄𝟐

𝟐𝒃𝝀𝟏(𝑳𝒈)
 

Fig. 2. ||G||Power
∞ as a function of damping constant c and

inertia constant m for different values of λ1.

5. THE EFFECT OF NETWORK ON H∞
PERFORMANCE

In this section, we present examples which illustrate how
the network structure and the number and location of ref-
erence nodes can affect the H∞ performance of mechanical
and power networks.

5.1 Mechanical Network

Consider a network of masses, springs and dampers with
mi = m = 1, ki = k = 100, ci = c = 10 for all
i = 1, 2, ..., 5. There are two reference and five follower
masses, as shown in Fig. 3. The goal of this example is
to show that interconnections between followers and the
reference masses provide more robust network than those
within the follower masses.



Fig. 3. Mechanical network with (a) line graph between
followers and (b) complete graph between followers.

In Fig. 3 (a), since each follower is exactly connected to one
reference node, we have mini∈F{βi} = maxi∈F{βi} = 1 in
(11), which gives λ1 = 1. By substituting into (12) we
have ||G||Mech

∞ = 0.01. In Fig. 3 (b) the follower set F
forms a complete graph and two of them are connected to

the reference set R. In this case we have λ1 ≤ |∂R||F| = 2
5 .

Substituting this value into (12), and noting that here c2 <
2km
λ1

, we get ||G||∞ ≥ 0.04. Therefore, the interconnections
from followers to reference nodes are more important than
the interconnections between followers for robustness, and
the graph-theoretic bounds (11) can be used as design
criteria to improve system robustness.

5.2 Power Network

In power networks, there exists a limited flexibility in
changing the network structure. However, in order to an-
alyze such systems a reference node (with reference phase
angle) should be chosen first. Since the H∞ norm is a
monotonic decreasing function of λ1, given a power net-
work with fixed m, b and c, maximizing the smallest eigen-
value of the grounded Laplacian matrix and minimizing
||G||Power

∞ are equivalent. Hence, the choice of a reference
node has a considerable effect on the H∞ performance.
From the reference (leader) selection point of view, in
order to minimize the ||G||Power

∞ norm, a reference should
be chosen which maximizes λ1. This is discussed in the
following definition.

Definition 1. Consider a graph G(V, E). The grounding
centrality of each vertex vs ∈ V, denoted by I(s), is
I(s) = λ1(Lgs). The set of grounding central vertices in
the graph G is given by IC(G) = argmaxvs∈V λ1(Lgs).

According to the above definition, a grounding central
vertex vs ∈ IC(G) is a vertex that maximizes λ1, if chosen
as a reference, over all possible choices of single reference
nodes Pirani et al. (2016).

Fig. 4 shows a network called a broom tree, Bn,∆, com-
prised of a star S∆ with ∆ leaf vertices and a path of length
n−∆−1 attached to the center of the star Stevanovic and
Ilic (2010).

Consider Fig. 4 representing a power network with m =
20

2πf and c = 10
2πf , based on Sauer and Pai (1999), with

f = 60Hz and b = 1. Fig. 5 plots the value of the H∞
norm as a function of the node which is chosen as a

reference (the slack bus choice). As shown in this figure,
the reference node which minimizes the system H∞ norm
is node number 8. This node does not have the highest
degree (“degree central” node), nor is it the closest node
to the other nodes (the “closeness central” node). In the
graph shown in Fig. 4, node 7 is both the degree and
closeness central node. By increasing ∆ and consequently
n in the broom tree, the grounding central node becomes
farther from the degree and closeness central nodes in the
network.

6. SUMMARY AND CONCLUSIONS

In this paper we investigated the robustness of mechan-
ical and power network dynamical systems in the sense
of their system H∞ norm. For homogeneous subsystem
parameters, we derived-closed form expressions for theH∞
norm in terms of physical properties of each dynamics
(mass/inertia, coupling weights and damping coefficients)
and in terms of the network structure, encapsulated in
the smallest eigenvalue of the grounded Laplacian matrix.
An interesting and important avenue for extending the
results presented in this paper is to derive the system
norms when the physical subsystem parameters are het-
erogeneous. Moreover, it would be informative to compare
theH∞ norm to theH2 norm in terms of their dependency
on physical parameters and network structure.
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