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Lossy DC Power Flow
John W. Simpson-Porco, Member, IEEE

Abstract—The DC Power Flow approximation has been widely
used for decades in both industry and academia due to its
computational speed and simplicity, but suffers from inaccuracy,
in part due to the assumption of a lossless network. Here we
present a natural extension of the DC Power Flow to lossy
networks. Our approach is based on reformulating the lossy
active power flow equations into a novel fixed-point equation,
and iterating this fixed-point mapping to generate a sequence
of improving estimates for the active power flow solution. Each
iteration requires the solution of a standard DC Power Flow
problem with a modified vector of power injections. The first
iteration returns the standard DC Power Flow, and one or two
additional iterations yields a one or two order-of-magnitude
improvement in accuracy. For radial networks, we give explicit
conditions on the power flow data which guarantee (i) that the
active power flow equations possess a unique solution, and (ii)
that our iteration converges exponentially and monotonically to
this solution. For meshed networks, we extensively test our results
via standard power flow cases.

Index Terms—power flow analysis, power flow equations, dc
power flow, fixed point theorem, power system modeling

I. INTRODUCTION

The power flow equations describe the steady-state trans-
mission of power through an AC power grid, and are the
basis for all power system analysis, operations, and control.
These nonlinear equations are often included as equality
constraints in power system optimization problems, or are
solved as a subroutine within larger algorithms. While many
problems only require the power flow equations to be solved
once, applications such as contingency analysis and security-
constrained dispatch/unit commitment require the repeated
solution of many large power flow problems. This spectrum
of requirements is matched by a spectrum of power flow
models and solution algorithms, which range from exact
to approximate. At one end of this spectrum are solution
techniques such as Newton-Raphson and its derivatives. These
algorithms precisely solve the power flow equations with
no approximations, but are costly computationally, and their
convergence is difficult to theoretically characterize [1], [2].

At the other end of this spectrum is the DC Power Flow
(DCPF) approximation, which is an extensively used linearized
model of active power flow; see [3, Chapter 4.1.4] for an
introduction, and [4] for a recent overview. The DCPF is
approximate in several ways, but is also (i) linear (ii) easy to
understand, (iii) computationally inexpensive, and (iv) guar-
anteed to converge, as it requires only the solution of a single
set of sparse linear equations. Linearity has been extensively
exploited for characterizing location marginal prices in market
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applications [5], and the DCPF is particularly attractive for
combinatorial contingency and cascading failure studies [6].

One of the main sources of inaccuracy in the DCPF model
is that line resistances are neglected. The accuracy of this
approximation was studied in [7], and when compared to the
exact power flow solution, the DCPF was shown to generate
significant errors when R/X ratios reach 1/4. Similarly, [4]
observed inaccuracy when parallel transfer paths had signif-
icantly different R/X ratios, and [8] suggested that resistive
line losses are the largest source of error in the DCPF. These
errors also tend to be exacerbated in large networks [4], [5].1

As generalizations of the DCPF, various linearized mod-
els of power flow have recently been proposed in several
different coordinate systems [11]–[19]. These models extend
the DCPF to account for variations in bus voltages, but
resistive losses can never be precisely accounted for within a
linear/affine model, as they are inherently nonlinear. Attempts
have nonetheless been made to heuristically incorporate losses
into DCPF-type models, as is done in the so-called α-matching
model [4]. This model begins from a known power flow
solution, and treats the losses calculated from that known
solution as an approximation to the losses for the DCPF
solution [4], [20]; see also [8] for a linear programming
approach. While such heuristics can be effective, our goal
is to formulate a more theoretically rigorous procedure for
including resistive losses within a DCPF-inspired framework.

A. Contributions

This paper presents, analyzes, and tests the Lossy DC Power
Flow (L-DCPF), a generalization of the classic DCPF to lossy
networks. There are three main contributions. First, we derive
the Lossy DCPF algorithm. Our approach is to reformulate
the active power flow equations into a fixed-point form, and
use this reformulation to define an iteration. The first step
of this iteration returns a DCPF-like approximation, while
subsequent iterates yield improving approximations to the
desired solution of the active power flow equations including
resistive losses. The method can be interpreted as defining a
sequence of DC Power Flow problems, wherein the vector of
power injections is updated at each step to account for losses,
using the estimates of the phase angles from the previous
iteration. For meshed networks, an additional correction term
is required to enforce Kirchhoff’s voltage law.

Second, we present a detailed theoretical analysis of the
Lossy DCPF; this analysis is the major distinguishing feature
of this work. We begin by establishing that if the Lossy
DCPF iteration converges, it must converge to an active
power flow solution. For radial (i.e., tree) networks, we then

1Similarly, high R/X ratios degrade the convergence of fast decoupled
load flow; see [9], [10] and the references therein.
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give explicit conditions on the problem data for convergence.
Under these conditions, the iteration converges monotonically
and exponentially to the unique solution of the active power
flow equations. Moreover, the contraction mapping theorem
explicitly provides (i) a bound on the distance from the true
solution at every step, and (ii) a large set of initializations
from which the iteration converges. These conditions can also
be interpreted as sufficient conditions for the existence of a
unique “small-angle-difference” power flow solution.2

Third and finally, we extensively test the Lossy DCPF
on benchmark systems, ranging in size from 39 to 13,659
buses. For both base-case and highly-loaded systems, even
one iteration of the L-DCPF provides an order-of-magnitude
improvement in accuracy over the DCPF. The computational
complexity and convergence rate of the L-MDCPF iteration is
comparable to a chord Newton method, and the convergence
is very robust with respect to initialization errors.

The Lossy DCPF retains some aspects of the classic DCPF,
but not others. In terms of similarities, it is simple, intuitive,
requires minimal network data, and does not involve any state-
dependent Jacobian matrices; one simply solves a sequence of
DCPF problems with the same, constant, state-independent B′

matrix. This approach can rigorously accommodate stressed
networks and high R/X ratios; the price we pay for these
improvements is that the method is iterative, and each iteration
requires the solution of a DCPF-like linear equation. At a
conceptual level, this article builds a formal mathematical
bridge [24] between the DC Power Flow approximation [4]
and the effects of resistive losses. The theoretical analysis
presented also extends and generalizes known results for
lossless active power flow solvability, presented in [25], [26].

B. Paper Organization

The remainder of this section establishes some notation.
Section II clearly states the network model under consid-
eration, and reviews the DCPF approximation along with a
recently introduced modified DCPF. Section III introduces our
Lossy DCPF model, first for a two-bus system in Section III-A
and then for general networks in Section III-B. Theoretical
convergence results for the L-DCPF iteration are detailed in
Section IV. Section V provides some remarks on implementa-
tion before proceeding to extensive numerical testing. Section
VI concludes and points to future research.

C. Preliminaries and Notation

Vectors, Matrices, Functions: We let R denote the set of
real numbers. Given x ∈ Rn, [x] ∈ Rn×n is the diagonal
matrix with x on the diagonal, and ‖x‖∞ = maxi |xi|.
Throughout, 1n and 0n are the n-dimensional vectors of
unit and zero entries. The n × n identity matrix is In. For
a matrix M ∈ Rn×m, MT is its transpose, im(M) is its
range, ker(M) is its null-space, and ‖M‖∞ is its induced ∞-
norm. For x ∈ Rn, we define the vector functions sin(x) ,

2Casting power flow equations as fixed-point equations and applying
contraction mapping principles is a classic approach [21], but has received
renewed attention recently. See [22] for a survey of results; for distribution
systems, see, for example [18], [23].

(sin(x1), . . . , sin(xn))T, arcsin(x) as the inverse of sin(x),
cos(x) , (cos(x1), . . . , cos(xn))T, x2 = (x2

1, . . . , x
2
n)T, and

for x with nonnegative components,
√
x = (

√
x1, . . . ,

√
xn)T.

Graphs and graph matrices: A graph is a pair (N , E), where
N is the set of nodes and E ⊆ N ×N is the set of edges; we
consider only connected graphs. If a label e ∈ {1, . . . , |E|} and
an arbitrary orientation is assigned to each edge e ∼ (i, j) ∈
E , the node-edge incidence matrix A ∈ R|N |×|E| is defined
component-wise as Ake = 1 if node k is the source node
of edge e and as Ake = −1 if node k is the sink node of
edge e, with all other elements being zero. For x ∈ R|N |,
ATx ∈ R|E| is the vector with components xi − xj , with
(i, j) ∈ E . If the graph is radial (a tree), then ker(A) = ∅. The
space ker(A) is the cycle-space of the graph, and we let c be its
dimension. We let C ∈ {−1, 0, 1}|E|×c denote the (oriented)
edge-cycle incidence matrix [27, Section 3]; the columns of
C index cycles of the network, and span the cycle space, i.e.,
AC = 0. The matrix |A| — the “unsigned” incidence matrix
— is obtained by setting all non-zero elements of A equal
to 1. If a single row of A is removed, we call the result a
reduced incidence matrix Ar, which satisfies ker(AT

r ) = ∅.
If a weight wij > 0 is assigned to each edge (i, j) ∈ E ,
then L = LT = Ar[w]AT

r is the corresponding reduced (or
“grounded”) Laplacian matrix, and is positive definite.

II. POWER FLOW EQUATIONS, DC POWER FLOW, AND
MODIFIED DC POWER FLOW

A. Grid Model and Power Flow Equations

We consider the positive sequence representation of a
balanced three-phase network, modeled as a weighted graph
(N , E) where N = {1, . . . , n + 1} is the set of n + 1 buses
and E ⊂ N × N is the set of m branches. The admittance
matrix of the network is denoted by Y = G+ jB, where G is
the conductance matrix and B is the susceptance matrix. The
elements of Y are Yij = −yij/tij , where yij is the transfer
admittance between buses i and j — including off-nominal tap
ratios tij ≥ 1 — while Yii is defined as Yii = −

∑n+1
j=1 yij/t

2
ij .

To every bus i we associate a phasor voltage Vi∠θi and a
complex power Pi + jQi, which are related to each other
through the power flow equations

Pi =

n+1∑
j=1

ViVj (Gij cos(θi − θj) +Bij sin(θi − θj)) (1a)

Qi =

n+1∑
j=1

ViVj (Gij sin(θi − θj)−Bij cos(θi − θj)) (1b)

for each i ∈ {1, . . . , n + 1}. We will take bus n + 1 as
the slack bus with θn+1 = 0, Vn+1 fixed, and Pn+1, Qn+1

unknown. In this paper we focus on (1a) and not on (1b).
Buses {1, . . . , n} are considered as PV buses at which Pi and
Vi are fixed and θi is unknown. Since voltage magnitudes are
assumed fixed at buses {1, . . . , n}, constant power and ZIP
load models are equivalent, so we may — without loss of
generality — absorb any shunt-conductance/constant-current
active power load models into the constant power Pi in (1a).
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B. DC and Modified DC Power Flow

The model (1a)–(1b) is often simplified further in a number
of ways. Under the assumptions that (i) all conductances are
zero (ii) voltage magnitudes are known and constant, and (iii)
reactive power is unimportant, the model (1a)–(1b) may be
simplified to the lossless decoupled model

Pi =
∑n+1

j=1
ViVjBij sin(θi − θj) , i ∈ {1, . . . , n} .

We write this lossless model in vector notation as

Pr = ArDB sin(AT
r θr) , (2)

where Pr = (P1, . . . , Pn)T and θr = (θ1, . . . , θn)T are
column vectors of power injections and angles for buses
{1, . . . , n}, Ar is the reduced bus-branch incidence matrix of
the network obtained by removing the row of A corresponding
to the slack bus, and

DB , [ViVjBij ] (3)

is a diagonal and positive-definite m × m matrix of branch
weights. The DC Power Flow (DCPF) assumes3 that phase
angle differences AT

r θr are small, and hence that sin(AT
r θr) ≈

AT
r θr. The power flow equations (2) therefore reduce to a

system of linear equations Pr ≈ LBθr, where

LB , ArDBA
T
r (4)

is the reduced Laplacian matrix associated with the branch
weights in DB . We therefore obtain the explicit DCPF solution

θr,DC = L−1
B Pr . (5)

The Modified DC Power Flow (MDCPF), proposed in [26],
gives an improvement in accuracy and rigor over the DCPF.
The idea is to make the substitution ψ = sin(AT

r θr) in (2),
leading to the pair of equations

Pr = ArDBψ (6a)

ψ = sin(AT
r θr) (6b)

The general solution to (6a) is

ψ = AT
r L
−1
B Pr︸ ︷︷ ︸

:=ψMDC

+D−1
B Cx , (7)

where C is the edge-cycle incidence matrix and x ∈ Rc. The
first term ψMDC is a particular solution, while the second
term D−1

B Cx parameterizes the homogeneous solution. This
is easily verified, since

ArDBψMDC = ArDBA
T
r L
−1
B Pr = LBL

−1
B Pr = Pr ,

and ArDB(D−1
B Cx) = ArCx = 0n. Assuming that x = 0c

and ‖ψMDC‖∞ < 1, one may apply arcsin to both sides of
(6b) to obtain the solution AT

r θr = arcsin(ψMDC), or

θr,MDC = (ArA
T
r )−1Ar arcsin(AT

r L
−1
B Pr) . (8)

3The terminology “DC Power Flow” is usually packaged with several
additional assumptions. Under these assumptions, DB is simply the diagonal
matrix of inverse series line reactances, and the common notation for LB is
then B′. Although we do not impose these additional assumptions, in this
article we nonetheless refer to (5) as the DCPF.

The modified solution (8) is more accurate than the DCPF
in stressed networks, due to the explicit use of the nonlin-
earity arcsin(·), and (8) is provably an exact solution for
radial networks [26]. Finally, note that if one approximates
arcsin(x) ≈ x, then (8) reduces to the DCPF (5). A more a
detailed numerical comparison of the DCPF and the MDCPF
may be found in [26]. Our goal now is to extend the classic
DCPF (5) and the Modified DCPF (8) to lossy networks.

III. LOSSY DC POWER FLOW

This section presents a derivation of the (Modified) Lossy
DCPF. We begin with the two-bus case in Section III-A, before
proceeding to the general case in Section III-B.

A. Derivation for Two-Bus Case

Consider the two-bus network consisting of two PV buses
connected by a branch of admittance y = g − jb. With bus 2
as the slack bus, the active power flow equations (1a) are

P1 = gV 2
1 − gV1V2 cos θ + bV1V2 sin θ (9a)

P2 = gV 2
2 − gV1V2 cos θ − bV1V2 sin θ , (9b)

where g, b > 0 and θ = θ1. Making the substitution ψ =
sin(θ), we rewrite (9a) as

P1 = gV 2
1 − gV1V2

√
1− ψ2 + bV1V2ψ (10a)

ψ = sin(θ) , (10b)

where we have assumed that |θ| < π
2 and used that cos θ =

(1− sin2 θ)1/2 = (1−ψ2)1/2. Our goal is now to solve (10a)
for ψ, since we can then recover the phase angle as θ =
arcsin(ψ). We divide (10a) by bV1V2 and rearrange to obtain

ψ =
P1

bV1V2
+
g

b

(√
1− ψ2 − V1

V2

)
. (11)

We will think of (11) as defining an update equation for ψ.
One substitutes an estimate of ψ into the right-hand side of
(11), and the equation returns an updated estimate. Since ψ =
sin θ, our initial estimate would be the “flat start” condition
ψ[0] = sin(0) = 0. Substituting this into (11) generates

ψ[1] = P1/(bV1V2) + (g/b)(1− V1/V2) ,

which equals ψMDC = P1/(bV1V2) when V1 = V2. Therefore,
the first iteration ψ[1] returns a variation of the Modified
DC Power Flow. Repeating this process, one can generate a
sequence of approximations. We define the Lossy Modified DC
Power Flow (L-MDCPF) iteration as

ψ[k] =
P1

bV1V2
+
g

b

(√
1− (ψ[k − 1])2 − V1

V2

)
θ[k] = arcsin(ψ[k]) .

(12)

Once again, the terminology “modified” refers to phase angles
being calculated using an arcsin [26], in contrast to standard
DC Power Flow. If we approximate arcsin(ψ) ≈ ψ in (12),
we instead obtain the Lossy DC Power Flow (L-DCPF)

θ[k] =
P1

bV1V2
+
g

b

(√
1− (θ[k − 1])2 − V1

V2

)
. (13)
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B. Derivation for General Meshed Networks

We now extend the development of Section III-A to arbitrary
networks. As we will see, a complicating factor not present in
the radial two-bus case is that Kirchhoff’s voltage law must
be satisfied around every cycle of the network. We begin by
returning to the active power flow (1a), which we write as

Pi =
∑

j 6=i
BijViVj sin(θi − θj) +GiiV

2
i

+
∑

j 6=i
GijViVj cos(θi − θj) ,

(14)

for i ∈ {1, . . . , n}. Just as we did in Section II-B, this may
be written in vector form as

Pr = ArDB sin(AT
r θr) +GdiagV

2
r

− |A|rDG cos(AT
r θr) .

(15)

where Gdiag ∈ Rn×n is the diagonal matrix with elements
Gii, V 2

r = (V 2
1 , . . . , V

2
n )T, |A|r is the “unsigned” reduced

bus-branch incidence matrix (Section I-C), and

DG = [ViVj |Gij |] (16)

is an m × m diagonal matrix of branch weights. We again
introduce the change of variables ψ , sin(AT

r θr) ∈ Rm.
Assuming that the branch-wise angle differences AT

r θr satisfy
‖AT

r θr‖∞ < π
2 , it follows from sin2(z) + cos2(z) = 1 that

cos(AT
r θ) =

√
1m − ψ2 ,

where ψ2 = (ψ2
1 , . . . , ψ

2
m)T. Eliminating θr from (15), we

arrive at the equivalent pair of equations

Pr = ArDBψ +GdiagV
2
r − |A|rDG

√
1m − ψ2 (17a)

ψ = sin(AT
r θr) . (17b)

If one temporarily thinks of the third term on the right-hand
side of (17a) as being constant, then (17a) is linear in ψ. By
mirroring our arguments from Section II-B, we can therefore
write the general solution to (17a) as

ψ = AT
r L
−1
B

(
Pr −GdiagV

2
r

+ |A|rDG
√

1m − ψ2
)

+ D−1
B Cx ,

(18)

where C is the edge-cycle incidence matrix and x ∈ Rc is to
be determined. Once ψ is known, the phase angle differences
AT
r θr = arcsin(ψ) are calculated from (17b). However, by

Kirchhoff’s voltage law, these differences must sum to zero
(mod 2π) around every cycle in the network, and therefore

CTarcsin(ψ) = 0c (mod 2π) . (19)

To summarize so far, the active power flow equation (14) is
equivalent to the pair (17), which is in turn equivalent to the
pair (18)–(19). We now think of (18) as defining an update
equation for ψ. If we substitute the “flat-start” initialization
ψ[0] = 0m, x[0] = 0c into (18), we obtain the iterate

ψ[1] = ψMDC +AT
r L
−1
B (|A|rDG1m −GdiagV

2
r ) . (20)

When Vi = Vj for all buses i, j, the quantity within the
brackets in ψ[1] vanishes, and ψ[1] = ψMDC. Therefore, just as
in the two-bus case of Section III-A, the first iteration returns

a variation of the Modified DCPF solution. Repeating this
process, one can generate a sequence of approximations. For
networks with cycles, the variable x must also be updated by
solving (19). While many options are possible for this update,
we propose the following chord Newton step

x[k + 1] = x[k]− (CTD−1
B C)−1CTarcsin(ψ[k]) .

In general then, we can define the Lossy Modified DC Power
Flow (L-MDCPF) iteration for meshed networks as

x[k + 1] = x[k]− (CTD−1
B C)−1CTarcsin(ψ[k])

ψ[k + 1] = AT
r L
−1
B

(
Pr −GdiagV

2
r

+ |A|rDG
√

1m − (ψ[k])2

)
+ D−1

B Cx[k + 1]

θr[k + 1] = (ArA
T
r )−1Ar arcsin(ψ[k + 1]) .

(21)

For radial networks, one simply removes the iteration for x and
sets x = 0c. If we (i) assume x = 0c, and (ii) approximate
arcsin(ψ) ≈ ψ, then we may eliminate ψ[k] and state the
simpler Lossy DC Power Flow (L-DCPF)

θr[k + 1] , L−1
B

(
Pr −GdiagV

2
r

+ |A|rDG
√

1m − (AT
r θ[k])2

)
.

(22)

Remark 1 (Interpretation of Lossy DCPF): In (18), one
can interpret the quantity in brackets as an effective vector
of power injections, which includes the effects of resistive
losses. Unfortunately, this effective injection vector depends
on ψ, which is the variable we are trying to determine. The
L-MDCPF and L-DCPF iterations obtain an estimate for this
effective power injection vector by using the value of ψ (or
equivalently, the estimated phase angles) from the previous
iteration (see also Section V-A). This is an automatic loss-
allocation procedure, which exploits the physics of power flow,
in the spirit of an iterated α-matching procedure [20, Eqns. (6)-
(7)]. One can therefore think of the iterations (21) and (22) as
solving a sequence of DC Power Flows, where each iteration
provides the hot-start point for the next. The additional vari-
able x[k] ensures that the solution AT

r θr = arcsin(ψ) satisfies
Kirchhoff’s voltage law. �

IV. THEORETICAL RESULTS: POWER FLOW SOLUTIONS
AND CONVERGENCE OF LOSSY DCPF

The Lossy Modified DC Power Flow (21) was formulated
by transforming the auxiliary equation (17a) into (18), then
turning (18) into an iteration. If this iteration converges to a
power flow solution, we can be confident that by taking k large
enough, θr[k] will be a good approximation to the power flow
solution. Moreover, if this iteration converges monotonically,
we can be confident that each successive approximation is
more accurate than the previous one. We now present results
in this direction; all proofs are contained in Appendix A.

Proposition 4.1 (Lossy Modified DCPF and Active Power
Flow): If the sequences {x[k]} and {ψ[k]} generated by
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the Lossy Modified DC Power Flow (21) converge to val-
ues x∗ ∈ Rc and ψ∗ ∈ Rm respectively, then the se-
quence {AT

r θr[k]} of phase differences converges to a solution
AT
r θ
∗
r = arcsin(ψ∗) (mod 2π) of the active power flow

equations (14).

Proposition 4.1 simply says that the L-MDCPF is an itera-
tive algorithm for solving the active power flow equations (14).
The iteration variable x[k] is required due to the possibility
of loop flows in meshed networks [28]. When the network is
radial, we may set x = 0c and the situation simplifies.

Corollary 4.2 (Lossy Modified DCPF and Active Power
Flow on Radial Networks): If the network is radial and the
sequence {ψ[k]} from the Lossy Modified DC Power Flow
(21) converges to a value ψ∗ ∈ Rm, then the sequence {θr[k]}
converges to the solution θ∗r = (ArA

T
r )−1Ararcsin(ψ∗) of

the active power flow equations (14).

Proposition 4.1 and Corollary 4.2 address what happens
if the sequences of iterates {x[k], ψ[k]} converge. We now
seek conditions on the network data for which convergence is
guaranteed. If we are to converge to a solution however, we
should ensure there is a solution to converge to in the first
place, so we now address this point. We restrict ourselves to
radial networks, as the meshed case remains an open problem
even for lossless networks [25]. For simplicity, we assume all
voltage magnitudes are equal and that there are no off-nominal
tap ratios; these latter assumptions are easily relaxed.

Theorem 4.3 (Existence and Uniqueness of Solutions to
Active Power Flow on Radial Networks): Consider the lossy
active power flow equations (14). Assume the network is radial
and that Vi = V > 0 for all buses i ∈ {1, . . . , n+ 1}. Let

ρ , ‖D−1
B A−1

r |A|rDG‖∞ (23)

be a measure of the R/X ratio of the network, let ψMDC =
AT
r L
−1
B Pr be the auxiliary solution to the Modified DC Power

Flow from (7), and let

Γ , ‖ψMDC‖∞ (24)

measure the size of that solution. If

Γ2 + 2Γρ < 1 , (25)

then the active power flow equations (14) possess a unique
solution θ∗r = (θ∗1 , . . . , θ

∗
n) with branch-wise phase differences

AT
r θ
∗
r ∈ Rm satisfying ‖AT

r θ
∗
r‖∞ ≤ arcsin(β−) < π

2 , where

β± =
Γ + ρ

1 + ρ2
± ρ

1 + ρ2

√
1− (Γ2 + 2Γρ)

satisfy 0 ≤ β− < β+ ≤ 1. Moreover, there do not exist any
solutions with phase differences satisfying

arcsin(β−) < |θi − θj | < arcsin(β+) , (26)

for any branch (i, j) ∈ E .

The main condition (25) of Theorem 4.3 is quite intuitive.
It says that the Modified DC Power Flow solution ψMDC

— and hence the phase angle differences AT
r θr,MDC =

arcsin(ψMDC) that result from it — should not be too large,
and that neither should the network R/X ratio, as measured

by ρ. These two variables play off one-another: for fixed
Γ ∈ (0, 1), the condition (25) says that ρ < 1−Γ2

2Γ . This permits
high R/X ratios when the MDCPF solution has small angles,
and lower R/X ratios as the angles from the MDCPF solution
grow.4 Moreover, in the two-bus case of Section III-A, (25) is
both necessary and sufficient for the existence and uniqueness
of a solution. When ρ = 0, Theorem 4.3 reduces to the lossless
case studied in [25]. The final equation (26) implies that θ∗r is
the unique solution within a large region in angle-space.

In the proof of Theorem 4.3, we show that the condition
(25) implies that the right-hand side of (18) is a contraction
mapping. Since the Lossy Modified DCPF (21) is based on
iterating this mapping, we have a strong convergence result.

Corollary 4.4 (Convergence of Lossy Modified DC Power
Flow for Radial Networks): Consider the Lossy Modi-
fied DC Power Flow (21), and assume the conditions of
Theorem 4.3 hold. Then from every initialization ψ[0] ∈
(−β+, β+)n, the corresponding sequence of phase angle esti-
mates {θr[k]}k=1,2,... converges monotonically and exponen-
tially to the unique solution θ∗r of the active power flow equa-
tions (14) satisfying ‖AT

r θ
∗
r‖∞ ≤ arcsin(β−). The sequence

of variables ψ[k] satisfy the error estimate

‖ψ[k]− ψ∗‖∞ ≤
Γ

1− c
ck ,

where ψ∗ = sin(AT
r θ
∗
r) and c = ρβ−(1− β2

−)−
1
2 < 1.

Corollary 4.4 delivers the basic intuition for why the Lossy
DC Power Flow should work well: the iteration (21) is, under
reasonable conditions, a contraction mapping. Monotonic con-
vergence tells us that each iteration improves on the previous
one, and exponential convergence tells us this improvement is
fairly rapid. The result provides bounds on both the conver-
gence rate and the set of convergent initializations. Corollary
4.4 is restricted to radial networks; in Section V we will test
the Lossy DCPF iteration on meshed networks.

V. NUMERICAL TESTING

Having established the theoretical basis for our Lossy DC
Power Flow formulation, we now proceed to numerical testing.
In Section V-A we comment on how to properly compute the
L-MDCPF, before proceeding to testing in Section V-B.

A. Computational Considerations

The Lossy Modified DC Power Flow (21) is written out
explicitly in terms of inverses. It is however computationally
preferable to code the algorithm in terms of linear equations,
so that sparse solution techniques can be applied. Algorithm 1
details one reasonable implementation for the L-MDCPF (21);
other implementations are obviously possible. The implemen-
tation of the simpler Lossy DCPF (22) is similar.

Each iteration for ψ requires solving a linear equation, but
with the same constant coefficient matrix LB , which is sparse
and positive-definite. If there are no topology changes, one
may compute and store the Cholesky factorization of LB ,
and each iteration will require only one forward/backward

4A similar observation regarding R/X ratios was made in [21].
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Algorithm 1: Lossy Modified DCPF
Inputs: grid data, max iterations Imax, ψ[0], x[0]
Outputs: voltage phase angles θr
J̃ ← CTD−1

B C
for k ← 0 to Imax do

Pr[k]← from equation (27)
δr[k + 1]← Solve(LBδr = Pr[k])
if c = 0 then

ψ[k + 1]← AT
r δr[k + 1]

else
x← Solve(J̃(x− x[k]) = CTarcsin(ψ[k]))
ψ[k + 1]← AT

r δr[k + 1] + D−1
B Cx

θr[k + 1]← Solve(AT
r θr = arcsin(ψ[k + 1]))

return voltage phase angles θr

substitution. Sparsity-exploiting techniques such as optimal
bus orderings can also be used for increased speed. Similar
statements apply to the linear equation for the x-variable
updates. The vector Pr[k] is given by

Pr[k] = Pr −GdiagV
2
r + |A|rDG

√
1m − (ψ[k])2 , (27)

and may be thought of as an updated vector of power in-
jections which contains an estimate of the resistive losses,
allocated automatically to buses. We conclude that for radial
systems computing k L-MDCPF iterations has roughly equal
complexity to computing k classical DC Power Flows, while
for meshed systems an additional c-dimensional linear system
must be solved to update the x variables.

B. Simulations

We now present two simulation studies which illustrate our
results. As our primary objective is to compare the Lossy
DCPF to the DCPF and to other methods, it is not particularly
important whether the models are hot-started with correct
voltage magnitudes, or cold-started with Vi = 1 for all buses;
we have chosen the former.

For the first test, we compare the iterates of the Lossy
Modified DCPF (21) to the iterates of four other methods: the
DCPF (5), the Lossy DCPF (22), the Newton-Raphson method
(NR), and a chord Newton-Raphson method (CNR); the latter
is similar to the fast-decoupled load flow method.5 We ini-
tialize each method with a flat start θr = 0n, and measure
the error from the exact solution at each iteration using the
maximum angle error incurred at any bus ‖θr − θr[k]‖∞. To
tie our simulation results to the theory developed in Section IV
we consider two networks: the radial IEEE 37 bus system, and
the heavily meshed IEEE 118 bus system. Since convergence
rates are more easily distinguished in stressed systems, we load
both systems along the base case 90% of the way to power
flow insolvability, as determined by continuation power flow.

The results for the radial IEEE 37 system are plotted in
Figure 1. Since the DCPF is non-iterative, it maintains a

5For a system of nonlinear equations F (z) = 0, the chord Newton method
is defined by the iteration zk+1 = zk − F ′(z0)−1F (zk), where z0 is the
initial point for the iteration.

Fig. 1. Comparison of method iterates for IEEE 37 bus system.

constant (and rather poor) accuracy over all iterations. The
Newton-Raphson iteration shows its characteristic quadratic
convergence, taking only a few iterations to reach an accuracy
of 10−12 degrees. The chord Newton-Raphson and the Lossy
Modified DCPF plots essentially overlap, taking roughly twice
as many iterations as NR. The most interesting plot is that
from the Lossy DCPF; the iterates converge to an accuracy of
10−4 degrees. This is more than accurate enough for practical
purposes, but is not the exact solution. For radial networks, the
only difference between the L-MDCPF (21) and the L-DCPF
(22) is the explicit use of arcsin(·) in the former. We conclude
that the arcsin(·) nonlinearity provides a mild increase in
accuracy, allowing for convergence to the exact solution, but
that all methods provide reasonable results in radial systems.

The results for the meshed IEEE 118 system are plotted
in Figure 2. As before, the DCPF maintains a constant poor
accuracy, while the NR iteration converges quadratically. In
this example, the Lossy Modified DCPF converges faster than
the chord Newton method, taking roughly 10 fewer iterations.
Again, the most interesting comparison is between the L-
MDCPF and the L-DCPF; the latter converges, but to a point
nowhere near the true solution. For meshed networks, the two
methods differ significantly due to the extra iteration in the L-
MDCPF for the x variables, which enforce Kirchhoff’s voltage
law. The trends in Figure 2 are similar across all meshed test
cases, from 39 to 13,659 buses. We conclude for meshed
networks that (i) the L-MDCPF converges linearly to the
proper solution, at a rate comparable to fast-decoupled power
flow, and that (ii) the L-DCPF iteration does not converge well
for meshed networks.

The additional iteration for the x-variable in the L-MDCPF
(21) is required for convergence to the exact solution, but
is also undesirable, as it imposes additional computational
burden. For our second set of tests, we examine what happens
if we simply ignore this part of the iteration, and set x = 0c in
the L-MDCPF (21). To test over a wider variety of systems, we
consider ten standard test cases at base case loading [29], [30].
For each of these networks, Table I displays the maximum
phase angle error ‖θr − θr[k]‖∞ (in degrees) between the
exact solution and the output of the L-MDCPF (21) after k
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Fig. 2. Comparison of method iterates for IEEE 118 bus system.

iterations. The first column corresponding to k = 1 is —
as we have previously remarked below (20) — essentially
a version of the MDCPF approximation. Note that some of
the MDCPF predictions are extremely inaccurate in large
networks. One additional ψ-iteration (k = 2) of the L-
MDCPF yields an order-of-magnitude improvement in error,
with another iteration (k = 3) yielding an additional order-
of-magnitude in most cases. The accuracy tends to remain
constant after the third or fourth iteration; for the PEGASE
13,659 case, k = 4 brings the error down to 0.5◦.

TABLE I
BASE CASE TESTING OF LOSSY MODIFIED DC POWER FLOW

Test System Error (deg) Error (deg) Error (deg)
k = 1 k = 2 k = 3

New England 39 1.33 0.02 0.00
RTS ’96 (2 area) 1.88 0.03 0.00
57 bus system 0.55 0.01 0.00
RTS ’96 (3 area) 4.16 0.06 0.01
118 bus system 3.49 0.05 0.01
300 bus system 19.3 0.22 0.07
Polish 2383wp 5.32 0.31 0.02
PEGASE 2869 21.44 0.61 0.05
PEGASE 9241 74.05 6.02 0.37
PEGASE 13,659 242.7 111.7 5.85

For heavily loaded networks, we expect that losses will
more substantial, and that the gap between the DCPF pre-
dictions and the L-DCPF predictions will grow. The previous
experiments were repeated, and the results are shown in Table
II.6 Once again, the first column (k = 1) shows the wildly
inaccurate predictions of the Modified DCPF. One additional
iteration of the Lossy DCPF (k = 2) reduces the error by an
order of magnitude, and in some cases by nearly two. A third
iteration further improves the results, with the error remaining
roughly constant thereafter. We conclude then that even when
ignoring the x-iteration, the Lossy DCPF is able to correct
for resistive losses, and that a result accurate enough for most
purposes can be achieved in only one or two iterations beyond
the DCPF approximation.

6PEGASE 13,659 is omitted, as the base case is already more than 90%
of the way to insolvability.

TABLE II
HIGH LOAD TESTING OF LOSSY MODIFIED DC POWER FLOW

Test System Error (deg) Error (deg) Error (deg)
k = 1 k = 2 k = 3

New England 39 7.10 0.30 0.02
RTS ’96 (2 area) 9.34 0.21 0.17
57 bus system 1.74 0.07 0.02
RTS ’96 (3 area) 20.5 0.42 0.2
118 bus system 42.09 3.65 1.28
300 bus system 35.96 0.59 0.23
Polish 2383wp 19.58 2.27 0.3
PEGASE 2869 63.52 4.39 0.53
PEGASE 9241 93.37 8.07 0.51

Corollary 4.4 implies that the L-MDCPF convergence
should be insensitive to initialization. As a final test then, we
consider the IEEE 118 bus test system with high loading (90%
of the way to insolvability). We generate 1000 random phase
angle initial conditions, each with components pulled uni-
formly from the interval [−ϕ,ϕ] for various values of ϕ. For
each initial condition, we run the NR, CNR, and L-MDCPF
algorithms. If the iterates converge to the known small-angle
solution, we mark the test successful; otherwise, we say the
solver has failed. Table III shows the fraction of successful
tests for various values of ϕ. For small values of ϕ (i.e.,
initializations close to θr = 0) all solvers behave similarly.
As ϕ increases, both the NR and CNR solvers increasingly
struggle to converge; they either diverge, or converge to an
undesirable solution.7 In contrast, the L-MDCPF iteration
recovers the desired solution from every constructed initial
condition, even for very highly randomized initial conditions.

TABLE III
SOLVER SUCCESS RATES FOR RANDOM INITIALIZATIONS (118 BUS).

ϕ (deg.) NR CNR L-MDCPF

15 1.00 1.00 1.00
20 0.73 0.91 1.00
25 0.06 0.36 1.00
30 0.00 0.02 1.00
40 0.00 0.00 1.00
70 0.00 0.00 1.00
80 0.00 0.00 1.00

VI. CONCLUSIONS

In this paper we have introduced the Lossy DCPF and the
Lossy Modified DCPF, which are generalizations of the classic
DC Power Flow and the Modified DC Power Flow to large
networks with line resistances. These generalizations yield a
convergent sequence of approximations in terms of a sequence
of DC Power Flow problems, where the vector of power
injections is updated at every step. In standard test cases, the
convergence of this sequence is rapid, and taking even one step
yields a order-of-magnitude improvement in accuracy over the
DC Power Flow. The method is also theoretically justified,
with convergence conditions given for radial networks.

7The results are even more extreme in larger test systems, where NR and
CNR solvers diverge due to even mild perturbations in initialization.
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There are many avenues for future work. Theoretically, it
would be desirable (i) to obtain less conservative conditions
in Theorem 4.3, (ii) to obtain convergence conditions for
(21) in meshed networks, and (iii) to further extend the
algorithm and theoretical results from active power flow to full,
coupled AC power flow. Further analysis and understanding
of iterative solution methods for meshed networks is needed.
On the applications side, the Lossy DCPF algorithm seems
well-suited for market and contingency analysis, and future
work will examine whether the L-DCPF can enable rapid yet
accurate calculation of locational marginal prices [31] and line
outage distribution factors, especially in large, heavily loaded
networks.

APPENDIX A
TECHNICAL PROOFS

Proof of Proposition 4.1: If ψ[k]→ ψ∗ and x[k]→ x∗, then
by construction (ψ∗, x∗) together satisfy (18). Substitution
using (18) shows immediately that ψ∗ solves (17a). Note that,
by necessity, ψ∗ must satisfy ‖ψ∗‖∞ < 1, since otherwise the
right-hand side of (18) would be complex while the left-hand
side of (18) would be real. By construction, ψ∗ also satisfies
(19), or equivalently CTarcsin(ψ∗) = 2πξ for some integer
vector ξ = (ξ1, . . . , ξc)

T. Since C has full rank and is totally
unimodular [27, Theorem 3.4], we can always find another
integer vector ξ′ such that CTξ′ = ξ [32, Theorem 5.20]. The
general solution to CTarcsin(ψ∗) = 2πξ may therefore be
written as arcsin(ψ∗) = 2πξ′ + AT

r θr for some θr ∈ Rn,
with 2πξ′ the particular solution and AT

r θr parameterizing the
homogeneous solution. Taking the sin(·) of both sides shows
that ψ∗ satisfies (17b), and the conclusion follows. �

Proof of Theorem 4.3: Beginning with the auxiliary equation
(17a), we add and subtract |A|rDG1m to obtain

Pr = ArDBψ + |A|rDG
(

1m −
√

1m − ψ2
)

+GdiagV
2
r − |A|rDG1m .

(28)

In components, the final two terms read as

GiiV
2
i −

∑n+1

j=1
ViVjGij = −

∑n

j 6=i
ViGij(Vi − Vj) ,

where we inserted Gii = −
∑n+1
j=1 Gij since there are no off-

nominal tap ratios. Since by assumption Vi = V ∈ R for
all i ∈ {1, . . . , n + 1}, this expression is identically zero,
and these terms vanish from (28). Since the network is radial,
ker(Ar) = ∅ [33, Prop. 4.3]. It follows that Ar is invertible,
and we may rearrange (28) to obtain

ψ = D−1
B A−1

r

(
Pr + |A|rDG

(
1m −

√
1m − ψ2

))
. (29)

We now claim that D−1
B A−1

r = AT
r L
−1
B . To see this, let X =

AT
r L
−1
B . Then ArDBX = (ArDBA

T
r )L−1

B = LBL
−1
B = Im,

and the result follows. Therefore, (29) may be written as

ψ = AT
r L
−1
B Pr︸ ︷︷ ︸

,ψMDC

+D−1
B A−1

r |A|rDG︸ ︷︷ ︸
,H

(
1m −

√
1m − [ψ]ψ

)

= ψMDC +H
(

1m −
√

1m − ψ2
)
, f(ψ) . (30)

Fig. 3. Two points on the circle defined by β− and β+.

In other words, ψ solves the auxiliary equation (17a) if and
only if ψ solves (30), which is a fixed point equation ψ =
f(ψ) for the variable ψ. We will first seek to find a closed
invariant set for f , i.e., a closed set I such that f : I → I. For
β ∈ [0, 1), let I(β) = {ψ ∈ Rm | ‖ψ‖∞ ≤ β}, and suppose
that ψ ∈ I(β). Then

‖f(ψ)‖∞ ≤ ‖ψMDC‖∞ + ‖H‖∞(1−
√

1− β2)

≤ Γ + ρ(1−
√

1− β2) , (31)

where we have inserted the definition of ρ from (23) and Γ
from (24). We now require that (31) is further upper bounded
by β, which will imply that f(ψ) ∈ I(β). This leads to the
inequality

Γ + ρ(1−
√

1− β2) ≤ β ,

which can be easily manipulated into

(1 + ρ2)β2 − 2(Γ + ρ)β + (Γ + ρ)2 − ρ2 ≤ 0 . (32)

While we omit the details, one can solve (32) with equality
sign for β, obtaining the two solutions

β± =
Γ + ρ

1 + ρ2
± ρ

1 + ρ2

√
1− (Γ2 + 2Γρ) . (33)

The solutions are well-defined and distinct if and only if the
stated condition (25) holds, in which case they satisfy 0 ≤
β− < β+ ≤ 1. Inspection then reveals that (32) is satisfied
for all β ∈ [β−, β+], and satisfied with strict inequality sign
for β ∈ (β−, β+). In the latter case, pick any ψ ∈ I(β) such
that ‖ψ‖∞ = β. Then ‖f(ψ)‖∞ < β = ‖ψ‖∞, and therefore
f(ψ) 6= ψ. It follows that there can exist no fixed points ψ
with components ψi ∈ (β−, β+), and therefore there exist no
power flow solutions in the set (26). In particular, we have
shown that if ψ ∈ I(β−), then f(ψ) ∈ I(β−), so I(β−)
is a compact invariant set for f . We now show that f is a
contraction on I(β−). From (30), we have

∂f

∂ψ
(ψ) = H(Im − [ψ]2)−

1
2 [ψ] . (34)

If ψ ∈ I(β−), then it follows that∥∥∥ ∂f
∂ψ

(ψ)
∥∥∥
∞
≤ ‖H‖∞

β−(
1− β2

−
)1/2 = ρ

β−(
1− β2

−
)1/2︸ ︷︷ ︸

,c(ρ,Γ)

. (35)

We now seek to show that c(ρ,Γ) < 1 for all (Γ, ρ) satisfying
the condition (25). First note that c(0, 0) = 0. Next note
that since Γ 7→ β− is strictly increasing, so is Γ 7→ c(ρ,Γ).
While less obvious, it is also true that ρ 7→ β− is strictly



SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS. THIS VERSION: JULY 20, 2017 9

increasing, and therefore so is ρ 7→ c. It therefore suffices to
check that c(ρ,Γ) ≤ 1 when the condition (25) is satisfied
with equality sign. Solving Γ2 +2Γρ−1 = 0 for Γ > 0 yields
Γcrit = −ρ +

√
1 + ρ2. Some straightforward algebra then

shows that c(ρ,Γcrit) = 1, and therefore ‖ ∂f∂ψ (ψ)‖∞ < 1 for
all (Γ, ρ) satisfying the condition (25). Since I(β−) is convex,
it follows by standard results that f is a contraction mapping
on I(β−). Therefore, the Banach Fixed-Point Theorem [34,
Theorem 9.32] guarantees that f possess a unique fixed point
ψ∗ satisfying ‖ψ∗‖∞ ≤ β− < 1. Therefore, ψ∗ is the unique
solution contained in the set I(β−) to the auxiliary equation
(17a). Since ‖ψ∗‖∞ < 1, we may apply arcsin(·) component-
wise to (17b) to obtain

AT
r θ
∗
r = arcsin(ψ∗). (36)

Since the network is radial, ker(Ar) = ∅, and therefore
im(AT

r ) = Rn [33, Prop. 4.3]. The right-hand side of (36)
is therefore always in the image of AT

r , and we may uniquely
solve (36) for θ∗r = (ArA

T
r )−1Ararcsin(ψ∗). �
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