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Abstract—As bulk synchronous generators in the power grid
are replaced by distributed generation interfaced through power
electronics, inertia is removed from the system, prompting
concerns over grid stability. Different metrics are available
for quantifying grid stability and performance; however, no
theoretical results are available comparing and contrasting these
metrics. This paper presents a rigorous system-theoretic study
of performance metrics for low-inertia stability. For networks
with uniform parameters, we derive explicit expressions for the
eigenvalue damping ratios, and for the H2 and H∞ norms of the
linearized swing dynamics, from external power disturbances to
different phase/frequency performance outputs.These expressions
show the dependence of system performance on inertia constants,
damping constants, and on the grid topology. Surprisingly, we
find that the H2 and H∞ norms can display contradictory
behavior as functions of the system inertia, indicating that low-
inertia performance depends strongly on the chosen performance
metric.

I. INTRODUCTION

Much attention has recently been focused on the integration
of renewable energy sources into large-scale electric power
systems. While traditional synchronous generators are charac-
terized by large rotating inertias, renewables are typically in-
tegrated through power converters which are purely electronic
and therefore provide no inertial response. As renewables
supplant traditional generation, the total inertia present in the
grid decreases, leading to concerns over “low-inertia stability”
of such renewable-dominated systems [1].

Quantifying the effects of lowered inertia on power grid
stability, transients, and sensitivity to disturbances is a topic
of present interest. In this direction, the effect of low rotational
inertia on system stability was studied in [2], [3], where effects
were quantified in terms of (i) transients after a fault, and
(ii) the region of attraction of a stable equilibrium point. The
authors showed that grid topology can play a significant role
when inertia levels are heterogeneous throughout the grid. In
[4], the effects of lowered inertia on eigenvalue damping ratios
and on frequency overshoot was studied, and an optimization
problem was posed to determine optimal inertia values which
maximize damping ratios while ensuring admissible transient
behavior after a large disturbance.

Another method for quantifying power system performance
is via a system norm, which measures the sensitivity of a
chosen performance output to external disturbances. The H2

performance of the swing dynamics was studied in [5], where
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phase differences of the network were the chosen performance
outputs. Interestingly, in this case the norm was found to be
independent of both network topology and inertia values. An
optimal inertia placement problem for minimizing the system’s
H2 norm was introduced in [6], by considering frequency
deviations and phase differences as output measurements. In
[7] the effect of disturbances on frequency deviations was
studied by optimizing the H2 norm, the H∞ norm, and the lo-
cations of eigenvalues. Sensitivity of the dominant eigenvalue
to variations in inertia was considered in [8], and the zeros of
swing dynamics with frequency outputs was studied in [9].

In summary, various metrics have been proposed for quan-
tifying low-inertia stability. An important question to ask is
whether these metrics are always consistent with one another.
That is, if one metric shows a degradation in system perfor-
mance, do the others? Unfortunately, we will show that the
answer in general is no, and that these metrics can even yield
contradictory results.

Our approach is to analytically study the linearized swing
dynamics of the network. We first consider the case of a single
generator, the so-called single-machine infinite-bus (SMIB)
system, and derive closed-form results for (i) the H2 and H∞
norms, for phase cohesiveness output, and (ii) the eigenvalues
of the system. Surprisingly, for phase output we find that the
H∞ norm is an increasing function of system inertia. In other
words, the system becomes more robust as inertia is removed.
We then move to the case of a network of generators, and
extend our single-machine results under the assumption of
uniform inertia and damping coefficients [5]. In this network
case, we show that the H∞ norm depends on the algebraic
connectivity λ2 of the grid’s admittance matrix. Our work can
also be interpreted as a further contribution to the theory of
robust networked dynamical systems [10]–[16].

The paper is organized as follows. Section II describes the
modeling of the power network and swing dynamics with
phase cohesiveness and frequency performance outputs. In
Section III we study the case of a single machine, pedagogi-
cally explaining our main results in terms of Bode plots and
eigenvalues. Section IV contains our main technical results,
where we derive expressions for the H2 and H∞ norms of
the swing dynamics for each performance output, and discuss
the dependence of each robustness metric on inertia, damping,
and network connectivity. Finally we conclude in Section V.
The remainder of this section establishes some notation.

A. Notation and Definitions

In this paper, an undirected network is denoted by G =
{V, E}, where V = {1, . . . , n} is a set of nodes and E ⊂ V×V
is the set of edges. Neighbors of node i ∈ V are given by the



set Ni = {j ∈ V | (i, j) ∈ E}. The adjacency matrix of
the graph is the symmetric n × n matrix A, where Aij > 0
if (i, j) ∈ E and zero otherwise. The degree of node i is
denoted by di ,

∑n
j=1Aij . The Laplacian matrix of the graph

is given by L , D−A, where D = diag(d1, d2, . . . , dn). The
eigenvalues of the Laplacian are real and nonnegative, and are
denoted by 0 = λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L). The ith
eigenvalue of the Laplacian matrix is simply denote by λi in
this paper, and we denote by L

1
2 the matrix square root of L.

II. POWER NETWORK MODEL

Consider a power transmission network with n buses V =
{1, . . . , n} and a set of transmission lines E . Here we assume
a Kron-reduced transmission network model, where all buses
are modeled as generators and branch resistances are neglected
[5]. At each bus i ∈ V , there is a generator with inertia
constant Mi > 0, damping/droop constant Di > 0, and voltage
phase angle θi. The dynamics of the ith generator is described
by the swing equation

Miθ̈i +Diθ̇i = Pm,i − Pe,i + wi(t), (1)

where Pm,i is the constant mechanical power input from
turbine and wi(t) models disturbances arising from generation
or local load variations. The term Pe,i is the real electrical
power injected from i-th generator to the network, given by

Pe,i =
∑

j∈Ni

ViVjBij sin(θi − θj), (2)

where Vi is the nodal voltage magnitude and −Bij < 0 is
the susceptance associated with edge (i, j) ∈ E . We further
approximate (2) using the so-called DC Power Flow, where
Vi ' Vj ' 1 and |θi − θj | << 1, leading to the linear model

Pe,i ≈
∑

j∈Ni

Bij(θi − θj). (3)

Substituting (3) into (1) yields

Miθ̈i +Diθ̇i ≈ −
∑

j∈Ni

Bij(θi − θj) + Pm,i + wi. (4)

In this paper we assume homogeneous inertia and damping
parameters, i.e., Mi = M and Di = D for all i = 1, . . . , n
similarly to [17]. This assumption allows us to establish
closed-form expressions for our results. After shifting the
equilibrium point of (4) to the origin, the term proportional
to Pm,i may be removed and the dynamics of the generators
can be written in state-space form for θ = [θ1, ..., θn]T and
w = [w1, ..., wn]T as[

θ̇

θ̈

]
=

[
0n In

− 1
ML − D

M In

]
︸ ︷︷ ︸

A

[
θ

θ̇

]
︸︷︷︸
Θ

+

[
0n
1
M In

]
︸ ︷︷ ︸

F

w(t),

y = CΘ , (5)

where L is the Laplacian matrix with weights Bij , and the
output matrix C can take several forms. With the aim of
measuring useful quantifies for assessing system performance,
we consider the following outputs:

(i) Phase Cohesiveness: y = CΘ = L
1
2 θ. With this choice,

yTy = θTLθ =
∑
{i,j}∈E

Bij(θi − θj)2 ,

which measures how tightly phase angles are clustered in
the network. This output was proposed in [5] to measure
resistive losses during transients using the H2 norm,
and has been more broadly used in the network control
literature [18], [19]. An alternative way of defining this
performance output is to use any other output matrix
C̃ in (5) such that C̃TC̃ = L. In this case, as both
H2 and H∞ norms are functions of the spectrum of
G∗G = FT(s∗I − A)−TCTC(sI − A)−1F , identical
results will be obtained as if one used C = [L

1
2 0]. One

such choice is

y = diag(Bij)
1
2BTθ, (6)

where B ∈ Rn×|E| is the incidence matrix associated with
the network. In this case we have an output associated
with each edge. In fact, yij = B

1
2
ij(θi − θj) which is

proportional to the power transmitted across line {i, j}.
Therefore, this output can be interpreted either as a
measure of coherence (cohesiveness), power losses, or
power flow on transmission lines.

(ii) Frequency: y = CΘ = θ̇. Large frequency transients are
unacceptable during operations, and therefore quantifying
the effect of disturbances on frequency is important [7].

(iii) Phase Cohesiveness & Frequency: Combining the pre-
vious two outputs, we obtain

y = CΘ =

[
L

1
2 θ

κθ̇

]
,

where κ > 0 is a design parameter. This performance
output was used in [6] in the context of optimizing the
placement of inertia in the grid, and aims to simultane-
ously capture phase and frequency performance.

The performance metrics we are investigating in this paper
are (a) the poles of the swing dynamics (5) (eigenvalues of
the A matrix), which provide a stability measure independent
of the chosen output, and (b) system H2 and H∞ norms of
(5), defined as

||G||2 ,
(

1

2π
trace

∫ ∞
0

G∗(jω)G(jω)dω

) 1
2

,

||G||∞ , sup
ω∈R

λ
1
2
max(G∗(jω)G(jω)), (7)

where G(.) is the transfer function from external disturbance
w(t) to different performance outputs mentioned above. In
Section IV, we derive closed-form expressions for the poles
and damping ratios of (5) and H2 and H∞ norms for outputs
(i) and (ii) mentioned before. These expressions are in terms
of the spectrum of the Laplacian matrix as well as physical
parameters of the system. Output (iii) proved too difficult to
study analytically. However, we demonstrate numerically that
in general, the corresponding H2 and H∞ norms for output
(iii) show contradictory behaviour as a function of the inertia.

III. LOW-INERTIA PERFORMANCE OF SINGLE-MACHINE
INFINITE-BUS (SMIB) SYSTEM

Before proceeding to a more general setting consisting of
many generators interacting over a network, we build intuition



by considering the case of a single machine connected to a
large power system (an “infinite bus”), shown in Figure 1.

Fig. 1: A single generator with voltage phase angle θ con-
nected to a large power system.

The SMIB system is described by the linearized dynamics

Mθ̈ = −Dθ̇ + P −Bθ + w ,

y = B
1
2 θ,

(8)

where M,D,B > 0 and P are real scalars. For this case,
the output y corresponds to the phase cohesiveness output
described in Section II. The following result follows as a
special case of the more general result presented in Section
IV; frequency output results are deferred to the next section.

Theorem 1: (H2 and H∞ Performance of SMIB System):
Consider the single-machine infinite-bus system described by
the dynamics (8), with the phase output y = B

1
2 θ. The H2

and H∞ norms of the system are

||G||2 =

(
1

2D

) 1
2

, (9)

and

||G||∞ =

{
2M
√
B

D
√
4MB−D2

, if D2

2MB ≤ 1,
1√
B

otherwise.
(10)

We are primarily interested in the parametric dependence of
(9) and (10) on the inertia constant M , and make two main
observations. First, the H2 norm (9) is independent of M .
This indicates that the RMS or “average” sensitivity of the
system to disturbances will be the same whether inertia is
large or small. Second, the H∞ norm (10) is independent of
M for M ∈ (0, D2/2B), and strictly increasing in M for
M ∈ [D2/2B,∞). In sharp contrast to conventional wisdom
then, the system becomes more robust as inertia is removed.

To understand this phenomena, consider the root locus plot
(Figure 2) of (8) as a function of the inertia constant M . The

Fig. 2: Root locus of SMIB system as a function of inertia.

poles of the system (8) are

s = − D

2M
± 1

2M

√
D2 − 4MB

with natural frequency ωn and damping ratio ζ given by

ωn =
√
B/M , ζ =

D

2
√
BM

.

When M is small, the system is heavily over-damped and
the poles s ∈ {−D/M,−ε}, where 0 < ε � D/M is a
function of M , display a time-scale separation with fast and
slow responses, respectively. As M is increased, these poles
converge on the real axis, break out into a complex conjugate
pair, and eventually circle back to the origin. The damping
ratio ζ continues to decrease however, as the poles converge
faster to the imaginary axis than they do to the real axis. This
results in an increasing peak in the Bode plot (Figure 3), and
therefore an increasing H∞ norm.
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Fig. 3: Bode magnitude plot of SMIB system for two values
of inertia.

Conversely, the H2 result (9) indicates that despite this
increasingly resonant peak in the Bode plot, the total (squared)
area under the magnitude plot remains constant (Figure 3). In
summary, increasing the inertia makes the system increasingly
resonant at the resonant frequency

ωpeak = ωn
√

1− 2ζ2 =

√
B

M

(
1− D2

2BM

)
'
√
B

M
,

while the magnitude roll-off occurs shortly after this resonant
peak due to increased low-pass filtering from the large inertia.
These results indicate that the relationship between inertia and
system performance can be subtle, and depends strongly on
the way performance is measured.

IV. H2 AND H∞ ROBUSTNESS OF THE SWING EQUATION

This section contains our main technical results, extending
the arguments from the SMIB system to a class of networks
with homogeneous inertia and damping constants.

A. Eigenvalues of the swing dynamics

Our first result characterizes the eigenvalues (poles) of the
linearized swing dynamics (5).



Theorem 2: Consider the power network described by the
linearized swing dynamics (5). The eigenvalues of (5) are
given by

si1 = − D

2M
+

1

2M

√
D2 − 4Mλi

si2 = − D

2M
− 1

2M

√
D2 − 4Mλi

i = 1, . . . , n , (11)

and the smallest damping ratio ζmin of any mode equals

ζmin =
D

2
√
Mλn

.

Proof: The eigenvalues of A are determined by det(sIn−
A) = 0, which yields

det

[
sIn −In
1
ML sIn + D

M In

]
= det

(
(s2 + s

D

M
)In +

1

M
L

)
=

n∏
i=1

(
s2 + s

D

M
+

1

M
λi

)
= 0 ,

from which the expressions (11) follow. By solving the pair
of equations 2ζiωn,i = D

M and ω2
n,i = λi

M , the damping ratio
of the ith mode is ζi = D/(2

√
Mλi) which obtains the result.

While increasing the damping constant D obviously damps
the dynamics, Theorem 2 indicates that, counter-intuitively,
increasing inertia M yields a less damped response. Moreover,
the result shows that the largest eigenvalue λn of the Laplacian
matrix L controls this minimally-damped mode.

B. System norms for phase cohesiveness output

We now present closed-form expressions for H2 and H∞
system norms of the swing dynamics (5), from external dis-
turbances w(t) to the phase cohesiveness performance output.
The proof of case (i) of Theorem 3 is presented in [5] and the
proof of case (ii) is in Appendix A.

Theorem 3: (Performance of Swing Dynamics with Phase
Output): Consider the power network described by the lin-
earized swing dynamics (5) with the phase cohesiveness output
y = L

1
2 θ or y = diag(Bij)

1
2BTθ.

(i) The H2 norm from disturbances to the output is

||G||2 =
( n

2D

) 1
2

, (12)

(ii) The H∞ norm from disturbances to the output is

||G||∞ =

{
2M
√
λ2

D
√
4Mλ2−D2 , if D2

2Mλ2
≤ 1,

1√
λ2

otherwise.
(13)

In Corollary 1, we discuss the dependencies of H2 and H∞
norms to system parameters. The proof is similar to that of
Proposition 3 in [20] and is omitted due to space limitations.

Corollary 1: SystemH2 norm for phase cohesiveness output
(12) is independent of the inertia M and it is a monotonic
decreasing function of the damping constant D. Moreover,
the system H∞ norm (13) is a continuously differentiable and

non-decreasing function of the inertia M , and it is bounded
from below as

||G||∞ ≥
1√
λ2
, (14)

with strict equality sign for all M ≤ D2

2λ2
. Moreover, (13) is a

convex function of M for M ≤ D2

λ2
and concave for M > D2

λ2
.

Furthermore, the H∞ norm is a non-increasing function of D
and bounded from below by (14).

Fig. 4 shows the behavior of H2 and H∞ norms of
the swing dynamics (5) for phase cohesiveness output, as
functions of inertia M and damping D. As it is shown in
Fig. 4 (left) and predicted by Corollary 1, system H2 norm is
a monotonic decreasing function of D and system H∞ norm
is monotonic decreasing function for D ≤

√
2Mλ2 and is

independent of D for D >
√

2Mλ2. From Fig. 4 (right), the
system H2 norm is independent of the inertia M while the
H∞ norm is independent of M for M < D2

2λ2
and increases

by M when M ≥ D2

2λ2
and changes its convexity at M = D2

λ2
.
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Fig. 4: System norms as functions of inertia and damping, for
phase cohesiveness output.

C. System norms for frequency output

We now present closed-form expressions for H2 and H∞
system norms of the swing dynamics (5), from external
disturbances w(t) to the frequency output.

Theorem 4: (Performance of Swing Dynamics with Fre-
quency Output): Consider the power network described by
the linearized swing dynamics (5) with frequency deviation
output y = θ̇.

(i) The H2 norm from disturbances to the output is

||G||2 =
( n

2DM

) 1
2

. (15)

(ii) The H∞ norm from disturbances to the output is

||G||∞ =
1

D
. (16)

Proof: For case (i), we compute the H2 using the trace
formula ||G||22 = trace(FTPF ), where P is the observability
Gramian P =

∫∞
0
eA

TtCTCeAt and it is uniquely obtained
from the Lyapunov equation PA + ATP = −CTC. Here
matrix A is marginally stable and (A,C) is not observable.
However, since the mode corresponding to the marginally
stable eigenvalue, v = [1T

n 0T
n]T is not observable, i.e.,



CeAtv = Cv = 02n for all t ≥ 0, and the rest of the
eigenvalues are stable, the indefinite integral exists [21]. To
calculate the observability Gramian, we have[

P11 P12

P21 P22

]
A+AT

[
P11 P12

P21 P22

]
=

[
0n 0n

0n −In

]
, (17)

Since F = [0n,
1
M In]T, we have FTPF = 1

M2P22; thus we
only need to calculate P22. By solving (17) for P22 we get
P22 = M

2D In. Hence we have ||G||22 = trace(FTPF ) = n
2DM .

The proof of case (ii) is similar to case (ii) of Theorem 3.
The following corollary discusses the dependencies of sys-

tem H2 and H∞ norms (15) and (16) to system parameters,
inertia and damping constants.

Corollary 2: System H2 norm for frequency output (15)
is a monotonic decreasing function of the inertia M and
the damping D. The H∞ norm of the power network (16)
is an independent function of inertia and it is a monotonic
decreasing function of D.

Fig. 5 shows the behavior of H2 and H∞ norms of
the linearized swing dynamics (5) for frequency output, as
functions of inertia and damping. As it is shown in Fig. 5
and predicted by Corollary 2, both metrics are monotonic
decreasing functions of damping M and inertia D and the only
exception is the invariance of H∞ with respect to variations
of M , confirming (16).
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Fig. 5: System norms as functions of inertia and damping, for
frequency output.

Remark 1: (Dependence on the Network Structure): As it
can be concluded from Theorem 4, both system H2 and H∞
norms of (5) for frequency output case, are independent of
the network structure. Such independence of network structure
also holds for the system H2 norm for phase output (12),
based on Theorem 3. However, for this particular performance
output, system H∞ norm (13) is highly dependent on the
connectivity of the underlying network.

D. Combined phase cohesiveness and frequency outputs

Finally, we consider the output proposed in [6] which
simultaneously accounts for phase cohesiveness and frequency
deviations:

y =

[
L

1
2 0n

0n κIn

][
θ

θ̇

]
, (18)

where κ > 0 is a chosen constant. Intuitively, based on results
from Theorem 3 and Theorem 4 we expect that with the
output (18) (i) the H∞ should be an increasing function of

inertia, and (ii) the H2 norm should be a decreasing function
of inertia. Figure 6 shows the trace of both system norms
obtained numerically.
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Fig. 6: System norms as functions of inertia for output (18).

V. CONCLUSIONS

In this paper we studied various metrics for quantifying
performance in low-inertia power systems. Under the assump-
tion of homogeneous inertia and damping parameters, we
derived a closed-form expression for the minimally damped
eigenvalue, and calculated the H2 and H∞ system norms for
phase cohesiveness and frequency deviation outputs. These
expressions depend on the network structure through the
spectrum of the Laplacian/admittance matrix. Our results show
that these various metrics of performance do not necessarily
trend in the same direction as a function of grid inertia; in
general, they are competing objectives. As the derived system
norms are functions of both physical and network properties,
optimizing these system norms with respect to either the
physical or network structure is an important field of future
research. Another avenue for extending the results presented
in this paper is to quantify these system norms when system
parameters are no longer homogeneous.
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APPENDIX

A. Proof of Theorem 3
We use the following lemma to prove Theorem 3, case (ii).
Lemma 1: Consider the square linear system

G :

{
ẋ = Ax+ Fu

y = Cx .
(19)

with x ∈ Rn and u, y ∈ Rm, and for orthogonal V ∈ Rm×m
consider the input/output transformation ỹ = V y, ũ = V u,
leading to the linear system

G̃ :

{
ẋ = Ax+ FV −1ũ

ỹ = V Cx .
(20)

Then ‖G‖∞ = ‖G̃‖∞.
Proof: The corresponding transfer functions are

G(s) = C(sI −A)−1F

G̃(s) = V C(sI −A)−1FV −1 ,

and therefore

G̃G̃? = V C(sI −A)−1F V −1V −T︸ ︷︷ ︸
=(V TV )−1=I

FT(s?I −A)−TCTV T

= V (GG?)V T = V (GG?)V −1 ,

where we have twice used that V is orthogonal. Therefore,
GG? and G̃G̃? are similar. It follows that for all ω ≥ 0

σmax(G(jω)) = λmax(G(jω)GT(−jω))

= λmax(G̃(jω)G̃T(−jω))

= σmax(G̃(jω)) ,

and the result follows by taking supremums over ω.

Proof of Theorem 3: The model (5) has state-space matrices

A =

[
0 In

− 1
ML − D

M I

]
, F =

[
0

1
M In

]
, C =

[
L

1
2 0

]
,

with state vector Θ = (θ, θ̇). Let Λ = V TLV be the eigen-
decomposition of L, where V may be taken to be orthogonal.
Consider the invertible change of states Θ̃ = (V Tθ, V Tθ̇).
Then a straightforward computation shows that

˙̃Θ =

[
0 In

− 1
MΛ − D

M I

]
Θ̃ +

[
0

1
M V T

]
w

y =
[
L

1
2V 0

]
Θ̃ .

(21)

The model (21) has the same transfer function as (5), and
hence the same system norm. Now consider an input/output
transformation on (21), where ȳ = V Ty and w̄ = V Tw . Then
by Lemma 1, the transformed system

˙̃Θ =

[
0 In

− 1
MΛ − D

M I

]
Θ̃ +

 0
1
M V TV︸ ︷︷ ︸

=In

 w̄
ȳ =

[
V TL

1
2V 0

]︸ ︷︷ ︸
=
[
Λ

1
2 0

]
Θ̃ .

(22)

has the same system norm as (21). The system (22) is
comprised of n decoupled subsystems, each of the form

˙̃Θi =

[
0 1

− 1
M λi − D

M

]
Θ̃i +

[
0
1
M

]
w̄i

ȳi =
[
λ

1
2
i 0

]
Θ̃i .

(23)

with transfer functions

G̃i(s) =
λ

1
2
i

Ms2 +Ds+ λi
, i ∈ {1, . . . , n} .

Clearly G̃1(s) = 0. For i ∈ {2, . . . , n}, we have

|G̃i(jω)|2 = G̃i(−jω)G̃i(jω) =
λi

(λi −Mω2)2 +D2ω2︸ ︷︷ ︸
f(ω)

.

Maximizing |G̃i(jω)|2 with respect to ω is equivalent to
minimizing f(ω). By setting df(ω)

dω = 0 we get ω̄1 = 0

and ω̄2 = ( λi

M −
D2

2M2 )
1
2 as critical points. Here ω̄2 is the

global minimizer of f(ω), unless D2

2Mλi
> 1. Substituting these

critical values back into the formula for |G̃i(jω)|2, we find for
i ∈ {2, . . . , n} that

||G̃i||∞ =

{
2M
√
λi

D
√
4Mλi−D2 , if D2

2Mλi
≤ 1,

1√
λi

otherwise .
(24)

Since 0 < λ2 < λ2 ≤ λ3 ≤ · · · ≤ λn and ||G̃i||∞ is a
monotonically decreasing function of λi, the result follows. �


