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Abstract—This paper presents a systematic control synthesis
framework for an optimal voltage-based frequency control (VFC)
in islanded/isolated microgrids. A detailed model of a microgrid
is first presented that is both scalable and generic. The problem of
voltage-based frequency control is then formulated as an optimal
H∞ controller synthesis problem for the linearized microgrid
model. The validity of model-reduction steps in which the feeders
are neglected is discussed, and various centralized/decentralized
control architectures are investigated. Multiple simulation studies
are finally performed in MATLAB/Simulink to test and compare
the performances of the control architectures in a microgrid test
system. Simulation results confirm the robustness of the VFC
controller with respect to simplifications in the system model,
and realistic system changes compared to a non-optimal VFC.

Index Terms—Microgrids, frequency control, stability, robust
control.

I . I N T R O D U C T I O N

AMicrogrid is a cluster of loads and Distributed Energy Re-
sources (DERs), including Renewable Energy Resources

(RES) and Energy Storage Systems (ESS), that acts as a single
controllable entity [1], [2]. Microgrids may operate in both
grid-connected and islanded forms [3], and should be capable
of seamless transition to islanded mode [4]. Isolated microgrids,
e.g., those of remote communities, have no Point of Common
Coupling with a larger grid.

Frequency control is a major challenge in isolated/islanded
microgrids, in particular those with a higher penetration of
electronically-interfaced DERs. First, in microgrid, mechanical
rotational inertia is much lower compared to conventional
networks, especially for high penetration of converter-based
DERs, making them prone to large frequency deviations [5].
In addition, demand-supply balance is critical in microgrids,
especially in isolated ones, due to the intermittent nature
of RES [6], and the low number of generation units, which
increases the risk of large disturbances due to generator outages
[5]. Hence, an islanded/isolated microgrid experiences more
frequent frequency deviations and a larger rate of change of
frequency compared to a bulk power system. In this case,
conventional frequency control techniques and tools, designed
for large interconnected networks, may not be effective for mi-
crogrid frequency regulation, even in the presence of sufficient
generation reserve [7].
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In view of the aforementioned frequency control challenges,
numerous original and/or supplementary control techniques
have been proposed in the literature [8], [9], including droop-
based methods [10], [11], distributed cooperative controls [12],
and central and/or hierarchical communication-based controls
[13], [14]. All these control techniques are focused on proper
power sharing among multiple DERs. Recently, the concept
of a dynamic Voltage-based Frequency Controller (VFC) was
introduced in [15] and [16], where it is shown that VFC acts as
a virtual flywheel in the system, and compensates for the active
power mismatch by changing the system operating voltages.
Thus, the VFC operates in parallel to other power sharing
techniques, and provides supplementary frequency control.

VFC is based on the strong coupling between voltage and
frequency in microgrids, since due to the relatively short
feeders of microgrids, voltage changes at the DERs terminals
are almost instantaneously reflected on the load side, with
limited voltage drops through the feeders, which in turn
changes the system demand depending on the load voltage
sensitivity indices [17], [18]. Thus, this tight voltage-frequency
coupling is used to control frequency in the system by changing
set-points of the voltage regulators (e.g., synchronous machine
exciters).

A. Contributions

This paper presents a systematic disturbance rejecting
control synthesis for voltage-based frequency control in is-
landed/isolated microgrids. The concept introduced in [15] is
formalized and extended to evaluate various architectures for
VFC, investigating the impact of each architecture on system
small- and large- perturbation stability.

There are three major technical contributions. First, in
Section II, a generic and scalable model of a microgrid is for-
mulated and linearized, allowing to synthesize linear controllers
and investigate microgrid stability. The added contribution com-
pared to the previously proposed models (e.g., [19], [20]) is that
the modeling approach presented here is highly scalable and
optimized for computer implementation; incidence matrices are
introduced and integrated in the formulation process, allowing
for easy re-structuring and/or addition/removal of microgrid
components. Discussion is provided on proper per-unitization
of system components and parameters.

Second, in Section III-B, a detailed discussion on the impact
of feeders in microgrid studies is given, in particular for
VFC synthesis. It has been previously argued that network in
microgrids may not play a significant role in the performance of
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control and optimization techniques [21], in particular because
feeders are short and their static capacity is much greater than
the maximum system demand [22], [23]. Conditions under
which network simplifications and/or elimination would be a
reasonable are identified and discussed.

Third and finally, a systematic framework is presented for
VFC design through LMI-based minimization of the H∞ gain
from active power disturbances to frequency deviations in the
microgrid in Section III. The presented control synthesis has
considerable advantages over the trail-and-error-based tuning
of a fixed structure controller presented in [15], where the
presented controller is limited to systems with one voltage
regulator or multiple identical voltage regulators, whereas the
systematic control synthesis presented in this paper allows
for one-step design of VFC for all (potentially heterogeneous)
voltage regulators. In Section IV, various structures of VFC
are designed, including both SISO and MIMO controllers, and
their closed-loop performance and robustness are compared
via extensive simulations on a modified CIGRE test system
to identify the most effective, practical, and computationally
efficient control framework.

B. Notation

Let R denote the set of real numbers, Idn denote the n× n
identity matrix. A matrix of zeros of appropriate dimensions
is 0, while 1n denotes a column n-vector of all ones. The
symbol⊗ denotes the Kronecker product; for later let j =

√
−1,

J :=
[

0 1
−1 0

]
, and Jn := Idn ⊗ J . Given matrices A and

B, blkdiag(A,B) =
[
A 0
0 B

]
. For a set of scalars or vectors

v1, . . . , vn, col(v1, . . . , vn) denotes the stacked column matrix
of all entries. The notation A ∈ {0, 1}n×m means A ∈ Rn×m
with all elements being either zero or one.

I I . G E N E R A L M I C R O G R I D M O D E L

This section presents a general and modular model of a mi-
crogrid consisting of Π-model feeders, synchronous machines,
power converters, and exponential static load models.

A. Network Model

A balanced three-phase AC microgrid with base frequency
ωbse and base voltage Vbse is considered here; all quantities
in this paper are in per-unit values except for time. The
microgrid has nb buses with index set Nb = {1, . . . , nb}, nsg

synchronous generators with index setNsg = {1, . . . , nsg}, nld

loads with index set Nld, and npc power converters with index
set Npc. The topology of the network (and associated reference
directions for current flows and voltage drops) is described
by a connected oriented graph (Nb, E), with E ⊂ Nb × Nb

denoting the set of nbr (three-phase) branches of the form (j, k)
with j, k ∈ Nb. An arbitrary ordering to these nbr branches
is used and uniquely labeled as Nbr = {1, . . . , nbr}. The
microgrid topology may then be encoded in the bus-branch
incidence matrix A ∈ Rnb×nbr , defined component-wise as
Aje = +1 if branch e ∼ (j, k) for some bus k, Aje = −1
if e ∼ (k, j) for some bus k, and zero otherwise. For later
use, Am := A⊗ Idm ∈ Rm·nb×m·nbr , with A2 denoted more
simply as A.

Associated with each bus k ∈ Nb is a three-phase bus-to-
ground potential Vk ∈ R3 and a three-phase current injection
Ik ∈ R3, while each branch (j, k) ∈ E has a three-phase
oriented current flow ijk ∈ R3 and a three-phase oriented
voltage drop vjk ∈ R3. These variables are related to one
another via KCL and KVL, expressed through the incidence
matrix as follows [24]: I1...

Inb

 = A3

 i1
...

inbr

 ,
 v1

...
vnbr

 = AT
3

 V1

...
Vnb

 (1)

For each branch (j, k) ∈ E (and for each bus k ∈ Nb), and
has a three-phase KVL (or KCL) equation:

1

ωbse
Ljk

dijk
dt

= −Rjkijk + vjk , (j, k) ∈ E ,

1

ωbse
Ck

dVk
dt

= −GkVk + Ik , k ∈ Nb ,

(2)

where Rjk, Ljk > 0 are the resistances and inductances for
line (j, k); note that these parameters are the same for all
phases of branch (j, k).

To convert this three-phase equation to a rotating dq ref-
erence frame, let θG ∈ R be a global reference angle, let
T : R→ R2×3 be the abc to dq transformation matrix:

T (θG) =
2

3

[
sin(θG) sin(θG − 2π/3) sin(θG + 2π/3)
cos(θG) cos(θG − 2π/3) cos(θG + 2π/3)

]
and let:

VDQ,k = col(VD,k, VQ,k) : = T (θG)Vk

vDQ,jk = col(vD,jk, vQ,jk) : = T (θG)vjk

IDQ,k = col(ID,k, IQ,k) : = T (θG)Ik

iDQ,jk = col(iD,jk, iQ,jk) : = T (θG)ijk ,

be the transformed potential, voltage, and current variables.
Then in the new coordinates, the 3nbr + 3nb equations (2) are
transformed to the following 2nbr + 2nb equations:

Ljk
ωbse

d

dt

[
iD,jk
iQ,jk

]
=

[
−RjkiD,jk + ωGLjkiQ,jk
−ωGLjkiD,jk −RjkiQ,jk

]
+

[
vD,jk

vQ,jk

]
Ck
ωbse

d

dt

[
VD,k

VQ,k

]
=

[
−GkVD,k + ωGCkVQ,k

−ωGCkVD,k −GkVQ,k

]
+

[
ID,k
IQ,k

]
(3)

where ωG = θ̇G. Write (3) in vector notation, let

iDQ := col(iDQ,1 , iDQ,2 , . . . , iDQ,nbr
) ∈ R2nbr

be the stacked vector of all current flow variables, with
VDQ, vDQ, and IDQ defined analogously. The KCL/KVL equa-
tions (1) now reads in dq coordinates as follows:

IDQ = AiDQ + Iext
DQ , vDQ = ATVDQ , (4)

where Iext
DQ ∈ R2nb is introduced as the vector of additional

external current injections, through which loads, generators,
and converters will be interfaced as follows:

Iext
DQ = I ld

DQ + Isg
DQ + Iconv

DQ .

To shorten the formulas, let Lbr := blkdiag (LjkId2)(j,k)∈E
be the diagonal matrix of branch inductances, with Rbr, Gb,
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and Cb defined analogously. Then the network dynamics (3)
becomes the following vectorized state-space model:

1

ωbse

d

dt

[
Lbr 0
0 Cb

] [
iDQ

VDQ

]
=

[
0
Iext
DQ

]
+

[
−Rbr + ωGLbrJbr AT

A −Gb + ωGCbJb

] [
iDQ

VDQ ,

] (5)

where Jbr := Idnbr
⊗ J and Jb := Idnb

⊗ J . The network
model has internal states xnet := col(iDQ, VDQ), inputs unet =
col(ωG, I

ext
DQ), and outputs ynet = VDQ. Around an equilibrium

state-input pair {(xnet)?, (unet)?}, (5) can be linearized and
put into state-space form as follows:

∆ẋnet = Anet∆xnet +Bnet
G ∆ωG +Bnet

DQ∆Iext
DQ

∆VDQ = Cnet
DQ∆xnet (6)

where ∆z = z − z? is the deviation of z around z? and:

Anet = M−1
net

[
−Rbr + ω?GLbrJbr AT

A −Gb + ω?GCbJb

]
Bnet
G = M−1

net

[
LbrJbri

?
DQ

CbJbV
?
DQ

]
, Bnet

DQ = M−1
net

[
0

Id2nb

]
Cnet

DQ =
[
0 Id2nb

]
, Mnet =

1

ωbse
blkdiag(Lbr, Cb) .

(7)

B. Voltage-Sensitive Load Models

For each load k ∈ Nld, exponential load models are
considered, in which the (per-unit) instantaneous active and
reactive power injections P ld

k and Qld
k at bus k ∈ Nld are

proportional to the (per unit) bus voltage magnitude raised to
some power as follows:

P ld
k = Pk(Vk)mk , Qld

k = Qk(Vk)nk ,

V 2
k = V 2

D,k + V 2
Q,k = V T

DQ,kVDQ,k .
(8)

Here, nk,mk ≥ 0 are coefficients describing the load model,
and Pk and Qk are the per-unit instantaneous active/reactive
power consumptions at base voltage. To introduce load distur-
bances, the parameters Pk and Qk will have nominal values
P?k and Q?k, which can be subject to changes ∆Pk and ∆Qk,
respectively. The instantaneous active and reactive power for
the load are determined in terms of the load current and bus
voltage as follows:

P ld
k = I ld

D,kVD,k + I ld
Q,kVQ,k = (I ld

DQ,k)TVDQ,k

Qld
k = I ld

D,kVQ,k − I ld
Q,kVD,k = (I ld

DQ,k)T J VDQ,k .
(9)

Combining the previous equations, for each k ∈ Nld yields:

0 = Pk
(
V T

DQ,kVDQ,k

)mk
2 − (I ld

DQ,k)TVDQ,k

0 = Qk
(
V T

DQ,kVDQ,k

)nk
2 − (I ld

DQ,k)T J VDQ,k .
(10)

Around an operating point {(V ld
DQ)?, (I ld

DQ)?,P?,Q?}, the 2nld

load equations (10) may be linearized and rearranged to obtain
a vectorized expression of the form

∆I ld
DQ = Ald∆V ld

DQ + Eld∆Sld (11)

where ∆Sld = col(∆P1,∆Q1, . . . ,∆Pnld
,∆Qnld

) is the vec-
tor of power disturbances. The matrices Ald, Eld ∈ R2nld×2nld

are block diagonal with nld 2x2 blocks, given by

Ald
k =

[
V T

DQ,k

V T
DQ,kJ

T

]−1 [Pkγ(VDQ,k,mk)− (I ld
DQ,k)T

Qkγ(VDQ,k, nk)− (I ld
DQ,k)T

] ∣∣∣∣∣
op. pt.

Eld
k =

[
V T

DQ,k

V T
DQ,kJ

T

]−1 [
κ(VDQ,k,mk) 0

0 κ(VDQ,k,mk)

] ∣∣∣∣∣
op. pt.

where γ(z, β) = β(zTz)
β
2−1zT and κ(z, β) = (zTz)

β
2 .

C. Synchronous Generators

The dynamic model of the kth synchronous machine has a
mechanical subsystem, where states are the rotor angle δk and
angular frequency ωk, equipped with a Woodward governor
model with associated state vector xgov,k ∈ R5; the governor
reference frequency ωref,k is assumed to be constant. The
machine has an electrical subsystem (igen,k ∈ R6) equipped
with a one state exciter model (efd,k ∈ R). All models are
written in the the local rotor reference frame of the machine.

The voltage set-point Vref,k for the exciter is separated into
a nominal set-point V ?ref,k and a modulation term ∆vref,k, as
Vref,k = V ?ref,k + ∆vref,k. The external inputs to the model are
the exciter voltage reference modulation ∆vref,k, and the local
dq frame terminal voltage vector vdq,k = col(vd,k, vq,k); the
latter are the inputs through which the generator is interfaced
with the network. The output of the generator model is the
local dq frame current injection idq,k = col(id,k, iq,k). The
overall nonlinear state-state model of generator k ∈ Nsg is of
the following form:

ẋgen
k = f̃ sg

k (xsg
k , vdq,k) +Bsg

v,k∆vref,k

idq,k = csgk x
gen
k

(12)

with state vector

xsg
k = (δk, ωk, xgov,k, igen,k, efd,k)T ∈ R14 ,

where f̃ sg
k : R14×R2 → R14 describes the generator dynamics

and Bsg
v,k ∈ R14×1, csgk ∈ R2×14 are appropriate matrices.

The generator equations are expressed in the local rotor
dq reference frame rotating at speed ωk. To interface each
generator model with the network model, the coupling input
and output variables are transformed to the global dq reference
frame rotating at speed ωG via the local-to-global transforma-
tion matrix T : R× R→ R2×2 defined by [25]:

T (θG, δk) :=

[
cos(θG − δk) sin(θG − δk)
− sin(θG − δk) cos(θG − δk)

]
, (13)

which satisfies T (θG, δk)−1 = T (θG, δk)T. Hence,

Isg
DQ,k = T (θG, δk)idq,k , V sg

DQ,k = T (θG, δk)vdq,k .

With this transformation of inputs and outputs, the state-space
model is:

ẋsg
k = f sg

k (xsg
k , θG, V

sg
DQ,k) +Bsg

v,k∆vref,k

Isg
DQ,k = T (θG, δk)csgk x

sg
k ,
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with network inputs V sg
DQ,k ∈ R2 and outputs Isg

DQ,k ∈ R2,
and where f sg

k (xsg
k , θG, V

sg
DQ,k) := f̃ sg

k (xsg
k , T (θG, δk)TV sg

DQ,k).
Putting these equations all together for all generators k ∈ Nsg,
the stacked nonlinear input-output system are:

ẋsg = f sg(xsg, θG, V
sg
DQ) +Bsg

v ∆vref

Isg
DQ = hsg(xsg, θG) .

(14)

For the global reference angle, the first generator rotor angle is
arbitrarily selected * and set to θG = δ1, ωG = ω1. It follows
that around an operating point (x?sg, (V

sg
DQ)?, (Isg

DQ)?,∆v?ref =
0) , the dynamics (14) can be linearized to obtain the model:

∆ẋsg = Asg∆xsg +Bsg
DQ∆V sg

DQ +Bsg
v ∆vref

∆Isg
DQ = Csg

DQ∆xsg ,

∆ωsg = Csg
ω ∆xsg

∆θG = Csg
θG

∆xsg =
[

1 0T
14nsg−1

]
∆xsg

∆ωG = Csg
ωG∆xsg =

[
0 1 0T

14nsg−2

]
∆xsg

(15)

where Asg ∈ R14nsg×14nsg , Bsg
DQ ∈ R14nsg×2nsg , Bsg

v ∈
R14nsg×nsg and Csg

DQ ∈ R2nsg×14nsg are appropriate matrices.
The additional outputs ∆θG = ∆δ1 and ∆ωG = ∆ω1

are fictitious, and are used only for the global reference
frame transformation, while the measurement output ∆ωsg =
col(∆ω1, . . . ,∆ωnsg

) will be used for control purposes.

D. Power Converter Model (Grid-Following)

In this paper, it is sufficient to model inverters using an
average model thus ignoring discontinuous high-frequency
switching dynamics [26]. The dynamic model of the kth power
inverter consists of the RL output filter dynamics with output
current states iodq,k = col(iod,k, i

o
q,k); a sixth-order phase-locked

loop with internal states xPLL,k ∈ R5, and output voltage
angle state δk ∈ R [27]; and a PI current control loop with
dq decoupling cross terms with states γdq,k ∈ R2. The input
to the kth inverter model is the terminal voltage vdq,k ∈ R2

with the injected grid current idq,k as the output. Omitting a
detailed derivation, the final vectorized model of all inverters
with inputs and outputs in the global dq frame is given by:

ẋpc = fpc(xpc, θG, V
pc
DQ)

Ipc
DQ = hpc(xpc, θG)

(16)

and around an operating point, one obtains the following
associated linearized model:

∆ẋpc = Apc∆xpc +Bpc
G ∆θG +Bpc

DQ∆V pc
DQ (17a)

∆Ipc
DQ = Cpc

DQ∆xpc +Dpc
G ∆θG . (17b)

E. Interconnected Microgrid Model

A general method for interconnecting the preceding com-
ponent models and the network model are discussed next.
First, define the indicator matrices Ild ∈ {0, 1}nb×nld , Isg ∈
{0, 1}nb×nsg , and Ipc ∈ {0, 1}nb×npc . These matrices are

*The selection of a constant global reference frequency ωG = ωbse is
also common, but is inappropriate for systems without governors; the choice
ωG = ω1 allows for this possibility at the expense of more complicated
formulas.

Network

Loads

Inverters

Generators

I IT

VDQIext
DQ

V ld
DQ

V pc
DQ

V sg
DQ

I ld
DQ

Ipc
DQ

Isg
DQ

∆vref

Sld

ωsg

Fig. 1: Block diagram of interconnected microgrid model.

defined component-wise as, for example, element (k, g) of Isg

equals 1 if generator g ∈ Nsg is connected to bus k ∈ Nb,
and zero otherwise. To use these matrices in dq coordinates,
let Ild = Ild ⊗ Id2, Isg = Isg ⊗ Id2, and Ipc = Ipc ⊗ Id2.
The indicator matrices are used to sum the global dq current
injections at each bus, yielding:

Iext
DQ = IldI

ld
DQ + IsgI

sg
DQ + IpcI

pc
DQ = I

I ld
DQ

Isg
DQ

Ipc
DQ

 (18)

where I = [ Ild Isg Ipc ]. Similarly, the voltage potential inputs
for the subsystem models can be determined as follows:V ld

DQ

V sg
DQ

V pc
DQ

 =

 ITldVDQ

ITsgVDQ

ITpcVDQ

 = ITVDQ . (19)

The overall nonlinear microgrid model is formed by the
nonlinear network equations (5), the exponential load equations
(10), the synchronous generator model (14), the inverter model
(16), and the interconnection equations (18), (19). A block
diagram schematic is shown in Figure 1.

The overall open-loop linearized microgrid model with state
∆xmg = col(∆xnet,∆xsg,∆xpc) is obtained from (6), (11),
(15), (17), (18), and (19) as follows:

∆ẋmg = Amg∆xmg +Bmg
S ∆Sld +Bmg

v ∆vref

∆ωsg = Cmg∆xmg
(21)

where the system matrices are defined in (20).
Remark (Incorporating other components): The modelling

framework developed is modular, and can easily incorporate
other component models including grid-forming and grid-
following power converters, or machine and convertor models
of different order. This is easily concluded from Fig. 1, where
additional model types simply correspond to new component
blocks, with the interconnection matrices I being expanded
accordingly. The only requirement is that the component be
described by an admittance-type model, with terminal voltage
being the input and terminal current being the output. �
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Amg =

 Anet 0 0
0 Asg 0
0 0 Apc


︸ ︷︷ ︸

subsystem dynamics

+

 Bnet
DQ 0 0
0 Bsg

DQ 0
0 0 Bpc

DQ

 IldA
ldITld Isg Ipc

ITsg 0 0
ITpc 0 0


︸ ︷︷ ︸

interconnection matrix

 Cnet
DQ 0 0
0 Csg

DQ 0
0 0 Cpc

DQ



+

Bnet
DQIpcD

pc
G Bnet

G

0 0
Bpc
G 0

[0 Csg
θG

0
0 Csg

ωG 0

]
︸ ︷︷ ︸

residual dq transform terms

, Bmg
v =

 0
Bsg
v

0

 , Bmg
S =

Bnet
DQIldE

ld

0
0

 , Cmg =
[
0 Csg

ω 0
] (20)

I I I . O P T I M A L V F C D E S I G N P R O B L E M

A. VFC Design

The guiding principle behind VFC is to measure the fre-
quency deviations ∆ωsg and change the set-points of voltage
regulators in the system, to compensate for active power mis-
matches [15]. For example, in an event of under-frequency, the
voltage regulator set-points are decreased, causing a decrease
in the provided load voltage, and a subsequent decrease in
load power consumption. For a coefficient of mk = 1.5 in (8),
which has been shown to be a typical load voltage sensitivity
for islanded microgrids [15], [17], a 5% drop in the nominal
operating voltage yields a 7.6% drop in the demand.

The design of VFC is formulated here as an optimal control
problem for a so-called generalized plant, which is the model
within the dashed box in Fig. 2. The generalized plant consists

Microgrid 
Model

W

sg
1

sg
2

sg

sg
n

∑ 

∑ 

∑ 

,2dW

,1dW

sg,d nW

VFC

1y

2y

sgny

∑ 

SW
Sd

1refv

1d

∑ 

refm
v

mu

,1uW

,u mW

2d

sgnd

1z

2z

1mz 

1u

Plant Model

Fig. 2: Systematic VFC Control Synthesis Structure.

of the linearized microgrid model (21) augmented by the
following additional equations:

(i) Control signals: ∆u = ∆vref generated by the VFC.
(ii) Frequency measurement equations: ∆y = ∆ωsg +

Wn∆dn, where ∆dn ∈ Rnsg models measurement noise

and Wd = diag(Wd,1, . . . ,Wd,nsg
) is a diagonal matrix

parameterizing the noise level.
(iii) load disturbance inputs: parameterized as ∆Sld =

WS∆dS , where dS ∈ R2nld models the load power
disturbances and WS = diag(WS,1, . . . ,WS,2nld

) param-
eterizes the disturbance strengths.

(iv) system performance outputs:

∆z = col(∆z1,∆z2) = col(Wω∆ωsg,Wu∆u)

which contains the set of variables that one wishes the
controller to “keep small” in the presence of disturbances,
once again weighted using diagonal matrices Wω and Wu

of appropriate sizes.†

In terms of these definitions and the microgrid model (21),
the generalized plant G is given by: ∆ẋmg

∆z1
∆z2
∆y

 =

 Amg Bmg
S WS 0 Bmg

v

WωC
mg 0 0 0

0 0 0 Wu

Cmg 0 Wn 0


 ∆xmg

∆dS
∆dn
∆u


The problem of VFC design may then be posed as follows:
design an LTI feedback controller K with state ξ(t):

K :
ξ̇(t) = Acξ(t) +Bc∆y(t)

∆u(t) = Ccξ(t) +Dc∆y(t)
(22)

processing noisy frequency measurements ∆y and produc-
ing voltage regulator set points ∆u, such that, when K is
interconnected with the generalized plant G, the influence of
disturbances ∆d on the performance variable ∆z is minimized.
The feedback interconnection is denoted by F(G,K), which is
again an LTI system with input ∆d and output ∆z, seeking to
minimize the H∞ norm of F(G,K), which is defined as the
maximum energy amplification from ∆d to ∆z as follows:

‖F(G,K)‖H∞ := sup
∆d∈L2,∆d 6=0

‖∆z‖L2

‖∆d‖L2

(23)

where ‖∆η‖L2 :=
(∫∞

0
‖∆η(t)‖22 dt

)1/2
denotes the L2-

norm of the signal ∆η(t) [28]. The (sub)-optimal H∞ control
problem is then formulated as:

minimize
K

γ subject to ‖F(G,K)‖H∞ < γ . (24)

†While it is intuitive that the VFC should keep the frequency deviations
∆ωsg small, the control inputs ∆u must also be included in the performance
output to curb overly aggressive control actions, as in a classical LQR
control problem. The weights Wω and Wu weight the relative sizes of these
contributions to the overall size ‖∆z‖2 of the performance output.
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Under standard technical assumptions [28], this minimization
problem is well-posed and efficiently solvable via convex
optimization.

B. Model Simplification

The optimal control synthesis discussed in Section III yields
a VFC with the same number of states as the generalized plant
[28]. This can be computationally expensive, and implementing
a high-order VFC is difficult in practice, thus it is desirable
to reduce the dimensionality of the plant when possible [29].
Luckily, the physical properties typical of most microgrids
allow for a natural hierarchical or reduced-order models that
approximate well the original model for the purposes of VFC
design.

It has been previously speculated that the network in mi-
crogrids may not play a significant role in the performance
of control and optimization techniques [21], in particular
because feeders are short and their capacity is much greater
than the maximum system demand [22], [23]. Furthermore,
the design of an effective VFC is largely informed by load
voltage sensitivity and voltage and frequency control (such as
exciter and governor) parameters, and not by network dynamics,
topology, or impedance. Hence, it is argued next that the
static network model may be completely removed, effectively
reducing the microgrid to a single bus.

1) Elimination of Feeders: If the feeders are short and
have very low impedance, all points in the network are very
close electrically. Practice shows that the voltage drop along
a microgrid feeder rarely exceeds 0.02 pu in isolated/islanded
microgrids [21]–[23]. Therefor, as the principle of VFC is to
adjust voltage levels at loads by modifying the voltage at the
point of regulation, the feeders will have negligible impact on
VFC performance.

To validate this idea dynamically, based on the microgrid
model (21) and computing the Fourier-domain response of the
machine frequencies to the voltage regulator setpoints, one has:

∆ωsg(jω) =
[
Cmg(jωI −Amg)−1Bmg

v

]
∆vref(jω)

= Tε(jω)∆vref(jω) .
(25)

Introducing a parameter ε ∈ [0, 1], which multiplies the feeder
impedances, if ε = 0, the feeders are removed, while ε = 1
yields the true model. The frequency response of the system
with feeders (ε = 1) and without feeders (ε = 0) is illustrated in
Fig. 3, for the parameters of the CIGRE benchmark system [30],
which exhibits relatively long (approximately 7 km) feeders.
Observe that the response of the system with and without
the inclusion of feeders is nearly identical, with only minor
deviations occurring at high frequencies. For this figure, the
test system has three inputs, which are deviations to the voltage
regulators set-points, and one output, which is the system global
frequnecy.

2) Balanced Model Truncation: After eliminating the feed-
ers, the the standard model reduction technique of balanced
truncation is applied to obtain a reduced-order LTI model which
describes the input-output dynamics of the microgrid. The
order of the reduced model is chosen to obtain a good match
between the frequency responses of the reduced and full-order
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Fig. 3: Frequency response Tε(jω) for CIGRE system with ε ∈ {0, 1}.

models based on [28]. For the test system presented in this
paper, the full model order is 117 and is reduced to 10 for
controller synthesis.

I V. S I M U L AT I O N R E S U LT S

This section presents VFC control performance, and eval-
uates the impact of system simplifications during the design
process. A modified version of the CIGRE benchmark for
medium voltage distribution network in [30] is used as the test
system. This system has three diesel synchronous machine S1,
S2, and S3, with a rating of 1.42, 0.86, and 0.57 MVA, respec-
tively. The diesel-based synchronous machines and governors
are tuned and validated according the actual measurements
from commercial grade synchronous machines in [31], while
the exciters are simplified to reduce complexity. In addition,
the system has two 1 MW inverters, operating in grid-feeding
mode. Loads are modeled using a voltage-sensitive exponential
model with a 1.5 exponent, which is a reasonable value for
typical isolated microgrids [17].

To illustrate the flexibility one has in terms of VFC control
architecture, two VFC designs are considered here. The first
design is a standard centralized controller, which processes
the frequency measurements from all three synchronous ma-
chines, and produces voltage reference changes for the three
corresponding exciter systems (a 3× 3 controller).

The second design also produces three exciter set-points,
but instead processes only the frequency deviation from syn-
chronous machine 1 (a 3×1 controller). For implementation, if
the empirical fact that frequency is a global variable in isolated
microgrids is exploited (negligible differences throughout the
system), one may decentralize this design by letting each unit
compute the corresponding regulator setpoint using its own
frequency deviation instead of that from unit S1:K11

K21

K31

 ≈

K11 0 0
0 K21 0
0 0 K31


This design is referred to as the decentralized VFC design.

The model simplifications explained in Section. III-B are
applied to the system, reducing the overall system states
from 117 to 10. The control synthesis is performed using
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Fig. 4: PI-based VFC based on [15].
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Fig. 5: Frequency and voltage response of the system with and without
the VFC.

MATLAB bulit-in H infinity synthesis function [32], resulting
in a controller with 10 states.

Finally, for the sake of comparison, the performance of a
single-input-single-output PI-based VFC design, as shown in
Fig. 4, is also included in the result. The feedback loop is
added to avoid parallel integration of frequency deviation by
the S1 governor and the VFC. This PI-based VFC receives
the frequency deviation from S1 and sends the same output
signal to all the three exciters, and is tuned by a combination
of Ziegler-Nichols and grid-search techniques.

To investigate the impact of VFC, the system loading is
suddenly increased by 650 kW, and the system performance
with and without VFC is shown in Fig. 5. Prior to the
disturbance, the system nominal loading is 2.5 MW of active
power and 1 MVar of reactive power. The inverters are injecting
a total of 1 MW of active power and 600 kVar of reactive power.
S1 is operating in isochronous mode, injecting 625 kW and
480 kVar, while S2 and S3 are operating in constant active
power mode, injecting of 548 kW and 440 kW active power
correspondingly.

As seen in Fig. 5, the system frequency response is consid-
erably improved, with over 50% decrease in the peak-to-peak
value. Moreover, the system damping is also enhanced, as the
system with VFC exhibits a critically damped performance.
In addition, the steady-state deviation for both voltage and
frequency is zero. Although the frequency response with
the PI-based VFC has a slightly shorter recovery time, the
voltage recovery is considerably slower, demonstrating the
major advantage of the design proposed here as compared
to a conventional PI-based VFC. Note that the difference
between the performance of the two proposed VFC designs

TABLE I: Eigenvalues of the system with and without VFC

Without Centralized Decentralized PI-based

-0.0709 -0.0829 -0.0767 -0.0548

-0.1951 -0.0999 -0.1232 -0.1945

-0.8828±1.4117i -0.1932 -0.1936 -0.2055±0.134i

-1.1465 -0.661±0.152i -0.508±0.295i -1.144

-1.1706 -1.1466 1.1424 -1.1689
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Fig. 6: Frequency and voltage response of the system with and without
the VFC with grid supporting converter.

is not significant. The results presented here demonstrate the
considerable benefit of a well-tuned VFC, acting as a virtual
flywheel in the system to compensate for transient active power
mismatches in the system.

The impact of the controller on the system eigenvalues is
reported in Table. I, which includes the first 5 eigenvalues with
the largest real part in order of magnitude. As seen in Table. I,
for the centralized and decentralized VFCs, the real part of the
system critical eigenvalue is slightly decreased, indicating an
improved damping ratio.

To further verify the controller synthesis procedure, S2 and
S3 are replaced by a 1 MW grid-supporting inverter. The
inverter is set to inject the same active power as S1 and 100
KVar at nominal steady-state terminal voltage. The inverter
reactive power injection is sensitive to a terminal voltage set-
point through a 1.42 MVar/pu linear droop mechanism. The
rest of the system, including the loading and the disturbance is
the same as before. Thus, the VFC in this case has one input,
S1 frequency, and two outputs that integrate with S1 exciter
set-point and the grid-supporting inverter voltage-set point.
The system performance is shown in Fig. 6, demonstrating
a considerable improvement in the system frequency response.
This is continued by the system three eigenvalues with the
largest real-part shown in Table II.

V. C O N C L U S I O N S

A scalable and generic model of a hybrid microgrid was
first formulated and linearized for general control synthesis
purposes. The model was then used to demonstrate the insignifi-
cant impact of microgrid feeders on voltage-frequency coupling
through mathematical and experimental analysis; the outcome
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TABLE II: Eigenvalues of the system with grid-supporting converter
with and without VFC

Without VFC with VFC

-0.8791±1.4824i -0.6184

-1.2003 -1.2026

-16.0883±13.3779i -4.5233±4.834

of this analysis laid the foundation for considerable model
simplification. An optimal H∞ control synthesis framework
for VFC was established on the simplified model and tested on
the actual model, showing that the synthesis process is robust
to model simplifications, and that a well-tuned VFC controller
enhances the system damping, as well as its frequency response.
Thus, the VFC plays the role of a virtual flywheel with a
considerably capacity compared to the system nominal rating.
The presented results here illustrate the small role of microgrid
feeder on its static and dynamic performance, as well as voltage-
frequency coupling. Furthermore, the study presented here
lays the foundation on an even more robust VFC designs,
considering uncertainty in load and DERs parameters.
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