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Abstract— In this paper we propose two real-time attack de-
tection and secure state estimation algorithms, namely Rolling
Window Detector (RWD) and Novel Residual Detector (NRD).
These algorithms are basically developed based on Kalman
state estimation. In the former, we present a statistical testing
approach which is handled over a finite time horizon T to detect
individual attacked sensors. The latter extends the χ2–detector
to be able to detect individual compromised sensors. Both
methods then will be employed together with a modified version
of Kalman filter to perform a secure state estimation with a
relatively low estimation error. Efficiency of the algorithms
will be assessed in both unstealthy and stealthy scenarios.
Productivity of the methods will be underlined in the stealthy
case, which is of much more significance among cyber-security
challenges. Simulation results on an IEEE 14-bus power grid
test system along with a comprehensive comparison between the
performance of RWD and NRD with a recently introduced tool,
which is the only other method that tries to detect individual
attacked sensors, proves the effectiveness of the algorithms.

I. INTRODUCTION

Development of control systems in terms of their re-
liability and trustworthiness has become a major concern
within the control community. In primal systems, exchang-
ing sensor measurements and control inputs throughout the
system was largely handled over wired and well-maintained
infrastructures. Cyber-Physical Systems (CPS), provide the
opportunity not only to have large scale wide spread control
systems but also to take advantage of wireless data commu-
nication approaches. When CPS comes into view, control,
computation and networking bind together to form a suitable
infrastructure for control and systems purposes. Although,
benefiting from communication channels has enhanced the
solicitation for CPSs, the vulnerability of such systems to
malicious external attackers has attracted a great amount
of attention [1] and made the problem of secure state
estimation to a highly attractive problem in both control
and communication systems. Hence, Confrontation of CPSs
with an intelligent intruder who has access to an arbitrary
subset of the sensors requires fruitful techniques to overcome
any possible performance degradations. Several well-known
attacks on CPSs include Stuxnet on a Supervisory Control
and Data Acquisition (SCADA) system [2], attacks on the
wireless network channels in smart power grid systems [3],
and compromising Anti-lock Braking System (ABS) sensors
of a vehicle [4].

Research works such as [5] proved that in deterministic
systems, detectability of attacks can be equivalently inter-
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preted by a control-theoretic notion of invariant dynamics.
More rigorously, in a deterministic system, an attacker is
undetectable if and only if it stimulates only the zero dynam-
ics of the system [6]. In this paper we focus on stochastic
systems contaminated by both process and measurement
noise.

One of the most common methodologies for detecting
attacks is Kalman filter-based attack detection [7]–[11]. In
[7], the authors use a hypothetical testing based on the
residual vector to detect the attacks. Their method is ba-
sically established on the Cumulative Summation (CUSUM)
algorithm. In [8], the attacker’s action is formulated in terms
of an optimization problem maximizing the degradation on
the system while not exceeding certain threshold to remain
undetected. The authors use [12] to convert their first prob-
lem to a quadratically constrained quadratic problem which
is proved in [12] to have an analytical solution; however,
this method requires computation of a certain quantity for
each combination of the sensors to decide which subset of
the sensors need be secured. Hence, this approach is largely
an off-line method, whereas real-time attack detection is of
more interest in real-world applications. Authors of [9] study
the well-known χ2–detector based on Kalman filtering but
for a particular case of sinusoidal signals in power grids.
An intelligent malicious intruder often prefers to conceal
himself from the controller/detector while performing his
attack action over the system. The level of stealthiness of
an attacker has been formulated in several recent studies.
Particularly, the notion of ε–stealthiness is generalized in
[10] based on an information-theoretic concept. We will use
a milder version of the stealthiness notion in this paper
since our objective is developing effective algorithms for
unstealthy and stealthy cases rather than largely to focus on
the information-theoretic details of this notion.

Explicitly, the contributions in this paper are as follows.
We introduce two attack detection and secure state estimation
algorithms, namely Rolling Window Detector (RWD) and
Novel Residual Detector (NRD).1 These algorithms are based
on Kalman state estimation. In the former, we present a
statistical testing approach which is handled over a finite
time horizon T to detect individual attacked sensors. The
latter extends the χ2–detector to be able to detect individual
compromised sensors. Both methods then will be employed
together with a modified version of Kalman filter to perform
a secure state estimation with a relatively low estimation
error. The efficiency of the algorithms will be assessed in

1In the rest of the paper, RWD and NRD denote the proposed algorithms.



both unstealthy and stealthy scenarios. Specifically, in the
stealthy case, that is of great significance among cyber-
security challenges, we see that our methods can effectively
detect almost all of the attacked sensors while a powerful
recently introduced tool in the literature, namely Imhotep-
SMT [13] can detect none of the compromised sensors.
The authors in [13] proposed a Satisfiability Modulo Theory
(SMT) approach which contains solving a combinatorial
problem with a relatively high computational complexity.
To the best of our knowledge, that method is the only
other that attempts to identify specific, individual attacked
sensors. As such, this paper focuses on a comparison with
that specific method. Although this method has been proved
to be able to detect individual attacked sensors, it turns out
that Imhotep-SMT fails to perform well in the stealthy case.
In addition, due to the high computational complexity of the
combinatorial aspect of the `0 optimization and that of SMT
solver, these estimators have delays which is not favorable
in real-time applications.

The rest of this paper is organized as follows. Sec. II
describes the model of the system under study in normal
and attacked cases along with the attack modeling. Sec. III
is devoted to some preliminary concepts for attack detection
via Kalman filtering, and to the χ2–detector which will be ex-
ploited afterwards. In Sec. IV we explain our developed real-
time algorithms. The algorithms will be described in three
cases: the stealthy, the unstealthy, and the very unstealthy
cases. Simulation results on an IEEE 14-bus power grid test
system will be presented in Sec. V. The attack detection and
the secure estimation results will be compared to the recently
introduced estimator and several detection rate analyses will
be conducted. Finally, Sec. VI concludes the paper.

II. SYSTEM AND ATTACK MODELING

We model the system under study as a state-space dy-
namical model driven by process and measurement noise as
follows,

P :

{
xk+1 = Axk +Buk + νk,

yk = Cxk + wk,
(1)

where, x ∈ Rn, u ∈ Rm, and y ∈ Rp are the state(s),
input(s) and output(s) of the system, respectively. ν and w are
the process and measurement noise, assumed to have zero-
mean Gaussian distributions with noise covariance matrices
Q and R, respectively, i.e., ν ∼ N (0, Q) and w ∼ N (0, R).
The initial state x0 is assumed to be a random Gaussian
variable x0 ∼ N (0, Σ) which is independent of process and
measurement noise.

In this paper we focus on the random attack as a false data
injection into the sensor measurements. The attacked system
can be represented as follows,

Pa :

{
xak+1 = Axak +Buk + νk,

yak = Cxak + wk +Dak,
(2)

where xak and yak denote the state and the output of the
system under attack, respectively.2 ak is the attack vector

2In the sequel, we drop the superscript a for simplicity in the notations.

consisting of arbitrary signals injected by the intruder to
corrupt the sensors. Sensors accessed by the intruder are
determined by D which is a diagonal matrix. Specifically,
sensor j is under attack if Djj = 1, otherwise Djj = 0.
We assume that the pair (A,C) is observable which is a
reasonable assumption since otherwise the state of the system
is not reconstructable even in the absence of attacks. In
this paper we focus on the case in which the attack vector
is represented by zero-mean Independent and Identically
Distributed (i.i.d.) Gaussian components. With the model (2)
in mind, two possible important cases might occur, namely
the unstealthy case and the stealthy case. In the former,
having striven to fool the sensors, the attacker just attempts
to corrupt the measurements by injecting false random se-
quences to the output sensors and achieves a performance
disruption in the system without trying to remain undetected.
In the latter, which is of more concern, the intruder aims
to inject false data to the measurements while subsisting
undetected. Getting to that goal, the attacker injects false
noise components to the measurements with a relatively
comparable standard deviation to that of the measurement
noise components. Particularly, as the standard deviation3 of
the attack gets closer to that of the measurement noise, the
attack is regarded as a stealthier one. Mathematically, the
random attack injected by the intruder in the measurements,
the process and the measurement noise can be expressed as
follows,

νk = σνXν , wk = σwYw, ak = σaZa, (3)

where σν , σw, and σa represent the process noise power, the
measurement noise power and the attack power, respectively.
For the i.i.d. noise and random attack model assumed in
this paper, Xν , Yw, Za

i.i.d.∼ N (0, 1). Hence, ν ∼ N (0, Q =
diag(σ2

ν)) and w ∼ N (0, R = diag(σ2
w)) where diag(·)

is a diagonal matrix (with appropriate dimension) with the
argument on its diagonal elements and zero elsewhere. The
stealthy case studied in the simulation results of the paper
is modeled as σa → σw.4 In this respect, the intelligent
attacker tries to deteriorate the system performance while
being undetected by hiding himself in the measurement
noise. For a deeper definition and analysis of the stealthiness
notion, the reader is referred to [14] and [10]. We will
investigate these two cases with the simple aforementioned
definition in subsequent sections through various simulations.

III. ATTACK DETECTION PRELIMINARIES

In this section we review some basic and preliminary
concepts which we will modify/generalize and upon which
we establish our algorithms in the subsequent section.

A. Kalman Filtering

Kalman filtering is a well-known procedure to provide the
optimal estimate of the states of a dynamical system com-
posed of a contaminated Gaussian process and measurements

3In the rest of the paper, we abuse the terminology of “noise power” and
“attack power” to denote the standard deviation of wk and ak , respectively.

4We call the situation σa = σw as the strictly stealthy case.



driven by Gaussian noise. In particular, Kalman recursive
estimation equations can be formulated as follows,
• Measurement Update

Kk = Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

, (4)
Pk|k = Pk|k−1 −KkCPk|k−1, (5)

x̂k|k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1

)
, (6)

• Time Update

x̂k+1|k = Ax̂k|k +Buk, (7)

Pk+1|k = APk|kA
T +Q, (8)

where x̂k+1|k, Pk+1|k and Kk denote the estimated state of
the system at time k+ 1 using the information up to time k,
the error covariance matrix predicted at time k+ 1 using the
information up to time k and Kalman gain matrix at time k,
respectively. Since the system is assumed to be observable
and typically it has been running for a long period of time,
the Kalman filter converges in a few steps and the system can
be assumed to reach the steady state before the attacks begin.
Consequently, before an attack starts, P , limk→∞ Pk|k−1
and K , limk→∞Kk = PCT (CPCT +R)−1.

B. Conventional χ2–Detector

This detector has been widely used in both fault detection
problems and recently in security in cyber-physical context.
In fact, this method is originally highly applicable in fault
detection problems but due to its simplicity and effectiveness,
researchers have recently started using it in cyber-security
problems as well.

Particularly, the residual vector is calculated based on the
estimation resulted from the Kalman filter,

rk = yk − ŷk = yk − Cx̂k5, (9)

which has a white Gaussian distribution in the absence of an
attack. The “power” of the residual vector is then calculated
at each time instant k as follows,

gk = rTkΣ
−1
r,krk, (10)

where Σr,k is the covariance matrix of the residual vector,

Σr,k = CPk|kC
T +R. (11)

The χ2–detector then contains a scalar statistical testing
which compares gk with a pre-specified threshold. The
threshold can be determined from the χ2 table corresponding
to the desired confidence interval and the degree of freedom.
If,

gk > threshold, (12)

then an alarm is triggered indicating that an attack is under-
way.

In this paper we propose two different algorithms compris-
ing modified Kalman filtering. In the first one, namely the
RWD, we employ a modified version of Kalman filter along

5For notational convenience, we sometimes denote x̂k|k and ŷk|k by x̂k
and ŷk , respectively in the rest of the paper.

with a simple developed statistical testing to reveal individual
random attacks if any is underway. In the latter, namely the
NRD, we utilize the modified Kalman filter along with a
modified χ2–detector in order to detect individual attacked
sensors. We show that our developed algorithms are also able
to detect attacks in real-time in the stealthy attack case which
is of more interest to the cyber-security community. These
two algorithms are then invoked to perform a secure state
estimation with a relatively low estimation error.

IV. PROPOSED ATTACK DETECTION ALGORITHMS

As was described before, cyber-physical systems are prone
to be attacked by different adversaries who compromise the
sensor readings to deceive the estimation procedure. More
sophisticated attackers have access to a subset of the sensors
and are able to inject false data to those measurements
causing deterioration in the system performance.

In this section, we will explain our two novel developed
algorithms which firstly provide the knowledge of whether
or not any attack is underway. Subsequently, the proposed
algorithms try to detect individual sensors under attack.
The algorithms are based on Kalman filtering and can be
regarded as modified Kalman filter-based attack detection.
Then this allows us to securely estimate the states of
the system with a relatively low estimation error. A key
advantage of the proposed methods is their functionality
in the particularly interesting stealthy case, together with
their simplicity and low computational complexity mainly
compared to the recently proposed method, Imhotep-SMT
[13]. This advantage is highly notable to be exploited in
the real-time applications. Besides, Imhotep-SMT uses only
a finite number of measurements to perform the secure
estimation, namely n last measurements where n is the order
of the dynamical system, while our proposed methods are
based on Kalman filtering which incorporates all previous
information from the beginning up to the current point. This
essentially results in much smoother estimates of the states
of the system which empowers the algorithms to detect the
attacks more efficiently.

A. RWD Attack Detector

1) RWD Overview: Here we explain our first developed
algorithm which employs a modified version of the Kalman
filter to effectively detect the individual sensors under attack.
One of the key advantages of this algorithm is its simplicity
and flexibility which provides the ground for the user to
specify his own window length depending on a trade-off
between the speed and accuracy of the detection.

The main idea behind RWD is to compare the cu-
mulative sum of the matrices in the form P̄k|k =

E
[
(yk − ŷk) (yk − ŷk)

T
]

with the corresponding Σr,k ma-
trix predicted by the Kalman filter over a rolling window
with finite length T . Intuitively, as the attacker injects an
arbitrary random sequence to the sensor measurements, this
will corrupt the estimated states (followed by the estimated
outputs) at the attack time. As the Kalman filter is a recursive
algorithm, it takes time for the filter to reconstruct the



estimates using the error covariance matrix Pk|k. The error
covariance matrix Pk|k represents the following expected
value representing how close the estimated states are to the
actual states in the presence of the attack and is predicted
over the whole time horizon on which the Kalman recursions
(4)-(8) perform,

Pk+1|k+1 = E
[
(xk+1 − x̂k+1) (xk+1 − x̂k+1)

T
]
. (13)

Having projected the error covariance matrix onto the output
subspace (Rp), this results in the quantity called S in
the following. Mathematically, RWD adopts a limited size
window over which the following Σ̂k is calculated as the
time passes. Then, the following quantity, S, is evaluated in
each time instant k and is compared with a threshold matrix
H ,

S(T, k0) =
1

T

k0+T−1∑
k=k0

(yk − ŷk) (yk − ŷk)
T

︸ ︷︷ ︸
Σ̂k

−
(
CPk|kC

T +R
)︸ ︷︷ ︸

Σr,k

> H. (14)

Although this is a heuristic detection procedure, it is a
drastically easy evaluation and is of much lower computa-
tional complexity compared to several recently introduced
detectors, e.g., [13], [15].

2) RWD Algorithm Explanation: At first (and at each time
instant k), RWD makes a backup of the estimated state x̂k
(for the first time instant, this will be the initial estimate
which is chosen to be x̂0|−1 = 0n×1). Then it applies the
standard Kalman filter to obtain the state estimate x̂k. For
each sensor output, the RWD algorithm starts to calculate
the cumulative sum of the form Σ̂k defined in (14) up to
time T at each time instant k = k0. At the same time,
Σr,k is obtained by the Kalman estimation. Subsequently,
RWD compares the diagonal elements of S = Σ̂k − Σr,k
corresponding to each sensor output j with the corresponding
element of the threshold matrix H . If

(
Σ̂k −Σr,k

)
jj

>

Hjj , then RWD concludes that sensor j is under attack.
Thereupon, RWD modifies the measurement vector yk by
replacing the jth element of the measurement vector yk with
the jth element of the estimated measurement vector ŷk−1.
Subsequently, the Kalman filter re-estimates x̂k using the
backup variable made at the beginning of the algorithm and
the modified measurement vector yk. With this new modified
estimation, RWD modifies the previous state estimate and the
output estimate. This procedure continues until all the sensor
outputs are met. Finally, as in the standard Kalman filter, the
state estimate and error covariance matrix are projected to
the next time instant via time update equations (7) and (8).
The RWD algorithm with the above procedure runs over a
period of time to provide the attack detection and a secure
state estimation with a relatively low estimation error. RWD
algorithm is summarized in Algorithm 1.
Remark IV.1. It is worth noting that the selection of the
window length T entails a trade-off between the speed of

Algorithm 1 RWD ATTACK DETECTION

1: Initialize:
x0 ∼ N (0, Σ), x̂0|−1 = 0, P0|−1 = Σ, Q, R, T , H .

2: while k ≤ kfinal do
3: Make a backup of x̂k|k−1 in x̂k,backup.
4: for Each sensor j do
5: Apply standard Kalman filter and estimate x̂k|k
6: calculate: Σ̂k = 1

T

∑k0+T−1
k0

(yk − ŷk) (yk − ŷk)
T

7: calculate: Σr,k = CPk|kC
T +R

8: if
(
Σ̂k −Σr,k

)
jj
> Hjj then

9: Modify jth component of vector yk by replac-
ing it with the jth component of vector ŷk−1.

10: Re-estimate x̂k|k via (6) using x̂k,backup and
the new yk.

11: Re-estimate ŷk with the new x̂k|k.
12: end if
13: end for
14: Predict x̂k+1|k and Pk+1|k via (7) and (8).
15: end while

detection and its accuracy. The longer the window length
T is, the more accurate attack detection would be since it
incorporates more information. In fact, a larger T will cover a
longer period of time in which RWD has more time to do the
statistical comparison and reveals the compromised sensors
with more certainty. On the other hand, it takes a longer time,
which slows the detection procedure. Hence, the selection
of window length depends mainly on the application. If a
more accurate detection is desired and the resulting delay
in the detection does not matter too much, a larger T is
suitable, otherwise a shorter T need be chosen. Furthermore,
the speed of the dynamics of the plant has to be taken
into account while choosing T . In essence, the slower the
dynamical system is, the larger the value of T needed.
Remark IV.2. With the above trade-off in mind, selection of
the window length has to be short enough that P̄k0+T−1 '
P̄k0 (where P̄• denotes P̄•|•). On the other hand, it has
to be long enough for Σ̂k to be statistically meaningful
depending on the entire time horizon for the detector. This
remark together with the previous one suggest a lower and an
upper bound on T . Specifically, the lower bound is basically
entailed by the statistical significance of S and P̄ while
the upper bound is determined based on the user-specified
response time of the detection scheme to the attacks. Also,
the speed of the dynamics of the system has effect on both
the lower and the upper bounds.

B. NRD Attack Detector

1) NRD Overview: In the NRD algorithm we exploit the
modified Kalman filtering as in RWD. In addition, we make
use of an extended version of the χ2–detector for individual
sensor attack detection.

2) NRD Algorithm Explanation: NRD exploits both the
conventional and an extended version of the χ2–detector to
mitigate the attack effects and perform a secure detection and



Algorithm 2 NRD ATTACK DETECTION

1: Initialize:
x0 ∼ N (0, Σ), x̂0|−1 = 0, P0|−1 = Σ, Q, R.

2: while k ≤ kfinal do
3: Make a backup of x̂k|k−1 in x̂k,backup.
4: Apply standard Kalman filter and estimate x̂k|k
5: calculate: gk = rTkΣ

−1
r,krk

6: if gk = rTkΣ
−1
r,krk > threshold1 then

7: for Each sensor j do
8: calculate: gj,k = r2k/ (Σr,k)jj
9: if gj,k = r2k/ (Σr,k)jj > threshold2 then

10: Modify jth component of vector yk by
replacing it with the jth component of vector ŷk−1.

11: Re-estimate x̂k|k via (6) using x̂k,backup
and the new yk.

12: Re-estimate ŷk with the new x̂k|k.
13: end if
14: end for
15: end if
16: Predict x̂k+1|k and Pk+1|k via (7) and (8).
17: end while

state estimation. first of all, the residual vector defined by (9)
is calculated at each time instant k and its power expressed
by (10) is compared to the threshold obtained from the χ2

distribution table (denoted by threshold1 in the Algorithm 2).
This discloses the occurrence of an attack underway if there
exists any. The next step is to detect the individual attacked
sensors. To aim at this objective, we make use of a scalar
statistical testing which exploits the power of the residual
in a scalar manner. Specifically, we focus on the following
quantity corresponding to the jth sensor output,

gj,k = r2k/ (Σr,k)jj . (15)

Evaluation and comparison of (15) with the corresponding
threshold can effectively help us detect individual attacked
sensors. This is followed by a similar approach described
in Algorithm 1. In particular, after having individual sensors
detected, a crucial step is to modify the previous corrupted
estimation. NRD is outlined in Algorithm 2.
Remark IV.3. It is worth mentioning that choosing both the
threshold matrix H (in RWD) and the threshold to which (15)
has to be compared, essentially implies a trade-off between
the false alarm rate and the sensitivity of the system against
attacks. Particularly, a higher threshold results in a lower
false alarm rate while in a less sensitive system to the attacks,
i.e., a lower true positive rate.
Remark IV.4. In RWD and NRD, we have not used the
last measurement in lines 9 and 10 of the algorithms,
respectively. This is because of the possible existence of
False Negatives (FNs). In fact, there might have been an
undetected attack on the jth sensor output of the previous
time instant. Thus, the algorithms safely assure a correct
modification by using the last estimated value for the jth

sensor output.

Fig. 1: IEEE 14-bus power grid test system [16]

V. SIMULATION RESULTS

IEEE 14-bus power grid system: In this section we verify
the effectiveness of RWD and NRD on an IEEE 14-bus
power grid system shown in Fig. 1. This system has n =
10 states equipped with p = 35 output sensors and the
input is assumed to be zero. The system is composed of
5 synchronous generators and 14 buses. States of the system
denote rotor angles δi and the frequencies ωi = dδi/dt of
the generators. Similar to [16] we assume 14 sensors are
measuring the real power injected at the 14 buses and 20
sensors are deployed to measure real power flows along
every branch. One sensor is also measuring the rotor angle at
generator number 1. With some simplifying assumptions, the
evolution of the states of this system can be captured with a
linear discrete-time state-space model of the form (1).6 It is
also assumed that a random subset of sensors are attacked by
an intruder by injecting false data in the form of Gaussian
distributed random variables to those sensors during time
intervals 30 ≤ t ≤ 50 and 70 ≤ t ≤ 90. We investigate three
different scenarios, namely the stealthy, the unstealthy, and
the very unstealthy scenarios (see Fig. 2 for unstealthy and
stealthy cases). This subset has been chosen as sensors 2, 8,
15, 16, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31 and is fixed
during the simulations. It is shown in [6] that the rotor angle
sensor must be secured for the system to remain stable. As a
test bench, we compare our results with the recently proposed
powerful estimator, namely Imhotep-SMT [13]. The authors
in [13] proposed a Satisfiability Modulo Theory (SMT)
approach which contains solving a combinatorial problem
with a relatively high computational complexity. Opposed to
[13], both RWD and NRD provide a much faster detection
and estimation solution as they are using modified/extended
version of conventional methods such as Kalman filtering
and χ2–detector. It is remarkable that the main reason for the
comparison of the proposed methods with Imhotep-SMT in
the subsequent simulations is that Imhotep-SMT turns out to
be one of the most prominent recent methods which is proved
to be able to detect individual attacked sensors followed by
secure state estimation. It is also important to keep in mind
that although the proposed methods are much faster, they

6The interested reader is referred to [6], [17] for the details of the model
derivation.



(a) Measurement and attack signal
for the unstealthy case

(b) Measurement and attack signal
for the stealthy case

Fig. 2: Measurement and attack signal for the unstealthy and
stealthy cases

are not always as precise as Imhotep-SMT. This will be
discussed in more details through False Positive (FP) and
False Negative (FN) notions in the simulations.

A. The Unstealthy Case

For an unstealthy attacker we assume that the measure-
ment noise power and the attack power equal σw = 1.1 and
σa = 2.6, respectively (Fig. 2).

1) RWD Algorithm: To simulate the RWD algorithm the
threshold matrix H has been chosen with diagonal elements
equal to 10. Running RWD with T = 10 along with the
Imhotep-SMT and also a standard Kalman filter not equipped
with a detection scheme on the system under attack results in
the estimation error shown in Fig. 3a. The estimation error is
calculated as the Euclidean norm of the difference between
the vector of actual states and its estimation,

Estimation error = ‖xk − x̂k‖2. (16)

As one can easily see from Fig. 3a, RWD gives a more
accurate estimation. In this case, the detected sensors with
RWD and Imhotep-SMT are sensors 2, 8, 15, 16, 19, 21,
22, 25, 26, 27, 29, 30, 31 and sensors 2, 8, 15, 19, 21,
22, 24, 25, 26, 29, 30, 31, respectively. It can be seen that
RWD has one FN (sensor 24) with no FPs and Imhotep-
SMT has two FNs (sensors 16 and 27) with no FPs. It can be
seen that RWD could effectively improve the precision of the
estimation. The quantity calculated via (14) for the individual
attacked sensor detection is shown in Fig. 4 for several
compromised and uncompromised sensors. As seen form this
figure, the algorithm could detect the attacks immediately
after the attacks occurred. We also note that one may ask
why he can see no evident sign of the attacks performed on
the system in Fig. 3. This will be answered with complete
details in Sec. V-C.

2) NRD Algorithm: The test system for NRD algorithm
is the same as for RWD with the same attacked sensors and
the same attack time intervals. In this case the confidence
interval has been chosen as 95%, i.e., the error rate is chosen
to be less than 5%. The detected sensors with NRD are
sensors 2, 8, 15, 16, 19, 21, 22, 24, 25, 26, 27, 29, 30,
31 with no FNs and no FPs. Detected sensors by Imhotep-
SMT are the same as before. Fig. 3b depicts the estimation
error of NRD and Imhotep-SMT. It is seen from the figure
that in this case NRD can improve the state estimation even

(a) Estimation error for RWD vs
Imhotep-SMT on the attacked IEEE
14-bus power grid system for the
unstealthy case

(b) Estimation error for NRD vs
Imhotep-SMT on the attacked IEEE
14-bus power grid system for the
unstealthy case

(c) Estimation error for RWD vs
Imhotep-SMT on the attacked IEEE
14-bus power grid system for the
stealthy case

(d) Estimation error for NRD vs
Imhotep-SMT on the attacked IEEE
14-bus power grid system for the
stealthy case

Fig. 3: Estimation error for RWD and NRD vs Imhotep-SMT on
the attacked IEEE 14-bus power grid system for the unstealthy and
stealthy cases

(a) Compromised
sensor 8 with
RWD

(b)
Uncompromised
sensor 9 with
RWD

(c) Compromised
sensor 15 with
RWD

(d)
Uncompromised
sensor 34 with
RWD

(e) Compromised
sensor 8 with
NRD

(f)
Uncompromised
sensor 9 with
NRD

(g) Compromised
sensor 15 with
NRD

(h)
Uncompromised
sensor 34 with
NRD

Fig. 4: The quantity and the individual residuals calculated via (14)
and (15) for the individual attacked sensor detection for several
compromised and uncompromised sensors for RWD and NRD
algorithms for the unstealthy case

better than RWD. The scalar statistic calculated via (15) for
the individual attacked sensor detection is shown in Fig. 4
for several compromised and uncompromised sensors. As
seen form this figure, the algorithm could detect the attacks
immediately after the attacks occurred.

B. The Stealthy Case

To model a stealthy attacker we assume the measurement
noise power and the attack power are equal. Let us choose



(a) FNR for Imhotep-SMT (b) FNR for NRD

Fig. 5: FNR for Imhotep-SMT and NRD

σw = σa = 1.1, (a strictly stealthy attacker) (Fig. 2). In
this way, the stealthy attacker tries to remain undetected by
having himself hidden in the measurement noise.

1) RWD Algorithm: In this case, the threshold matrix H
has been chosen with diagonal elements equal to 2. T is fixed
to 10 as in the unstealthy case. The estimation error of RWD
versus Imhotep-SMT is illustrated in Fig. 3c. The detected
sensors with RWD in this case are sensors 1, 2, 3, 6, 7, 8,
15, 16, 19, 21, 22, 24, 25, 26, 27, 29, 31, 32 which contain
five FPs (sensors 1, 3, 6, 7, and 32) and one FNs (sensor 30).
The substantial feature of RWD (and NRD) comes in here.
In the stealthy case which is of high significance, Imhotep-
SMT could not detect any of the attacked sensors. Besides,
although RWD contains some FPs (together with a single
false alarm at the beginning of time course for compromised
sensor 15 and one FN, it still could detect a majority number
of attacked sensors along with reducing the estimation error.

2) NRD Algorithm: The estimation error for this case
is depicted in Fig. 3d. In this case, the detected corrupted
sensors are 2, 4, 8, 10, 15, 16, 19, 21, 22, 24, 25, 26, 27,
29, 31 (despite there is no alarm for compromised sensor 8
during the time interval 30 ≤ t ≤ 50. This includes two FPs
(sensors 4 and 10) and one FN (sensor 30). Again, Imhotep-
SMT was not able to detect any of the attacked sensors. The
quantity calculated via (14) and the scalar statistic calculated
via (15) for the individual attacked sensor detection are
omitted due to space limitations.

C. The Very Unstealthy Case

Although this case might not be a very favorable situation
from the detection point of view, it will answer the question
of why one can not see an obvious indication of the attacks in
Fig. 3. It might be questionable that why there is no apparent
sign of the attacks in the aforementioned time intervals in
Fig. 3. This makes really sense for the stealthy case, as in
this case the attack power is close to the measurement noise
power (in the strictly stealthy case they are equal) which
prevents to reveal any substantial estimation error or state
estimation deviation during the attack intervals. In fact, as
was explained in deep details before, in this case the stealthy
attacker attempts to remain undetected by concealing himself
inside the measurement noise. This in turn results in no
apparent jump neither in the estimation error nor in the state
estimation trajectories. This holds for even a huge amount of
attack power, i.e., a powerful stealthy attacker where again
Imhotep-SMT can detect none of the compromised sensors

(a) Estimation error for RWD vs
Imhotep-SMT and standard Kalman
filter on the attacked IEEE 14-bus
power grid system for a very un-
stealthy attacker

(b) Estimation error for NRD vs
Imhotep-SMT and standard Kalman
filter on the attacked IEEE 14-bus
power grid system for a very un-
stealthy attacker

(c) Actual state x7 and its estimation
x̂7 with RWD for a very unstealthy
attacker

(d) Actual state x7 and its estimation
x̂7 with NRD for a very unstealthy
attacker

Fig. 6: Estimation error and state estimation for RWD and NRD
vs Imhotep-SMT and standard Kalman filter on the attacked IEEE
14-bus power grid system for a very unstealthy attacker

whereas the proposed methods can. Hence we need to focus
on the unstealthy case. For this case, it has to be noted that
we have not chosen very striking unstealthy attacks during
the former simulations, since such an attacker might be much
easy to be detected and is not of much significance from the
detection outlook. In spite of all that, to make our discussion
comprehensive and to highlight a worth noting point, we look
at the estimation error and the state estimation trajectories
of a very unstealthy attacker, i.e., σa � σw. For this, let
us choose σw = 0.1 and σa = 5. Like before, in this case
we also compare the estimation error of the algorithms with
that of a standard Kalman filter not equipped with a detection
scheme. To suppress the effects of the initial conditions and
to have a clearer insight on the comparisons, we have let
the system reach its steady state, and then performed the
attacks in the same intervals as before. The results are shown
in Fig. 6. As one can easily see from Fig. 6a and 6c, the
RWD begins mitigating the effect of the attacks immediately
after they occur. Besides, the mitigation procedure lasts for a
relatively much shorter period of time compared to the attack
intervals. This again highlights the real-time feature of the
proposed algorithm. Even better than that, Fig. 6b and 6d
show that the NRD has the ability to perfectly mitigate the
attacks and therefore there are no spikes in the estimation
error and the state estimation trajectory.
Remark V.1. Although a very unstealthy attacker might not
be of much interest from the detection perspective, this
is of high importance from the viewpoint of the amount
of performance degradation and system destruction that he



may cause. In other words, in this case it does not matter
for the attacker to remain undetected while performing his
action whereas his main objective is to carry out as much
devastation as possible on the system. From Fig. 6 we saw
that (although RWD has a little bit larger error than Imhotep-
SMT) both of our algorithms are able to mitigate this huge
attack efficiently with a much less computational complexity
compared to Imhotep-SMT which is regarded as another
advantage of RWD and NRD in this special case.
Remark V.2. It is notable that based on the mathematical
formulation of Imhotep-SMT [13], while it exploits a fixed
number of previous measurements (n previous measurements
where n is the order of the system) to perform the secure
estimation, RWD and NRD exploit all former measurements
from the beginning of the time horizon. This is due to the
nature of the Kalman filter recursive structure. This fact along
with the developed algorithms for RWD and NRD results
in a lower estimation error in both unstealthy and stealthy
scenarios.

Detection Rate Analysis: Having gotten a clearer insight
on the detection rate analysis, we can also carry out our
analysis in terms of other well-known metrics, namely False
Positive Rate (FPR) and False Negative Rate (FNR). Here we
have a brief investigation on the ability of Imhotep-SMT and
NRD for the attack detection based on the aforementioned
metrics. As was used in the previous results, some of the
most common metrics that can be applied here are FPR and
FNR. These metrics are defined as the following,

FPR =
FP

FP + TN
, FNR =

FN

FN + TP
. (17)

As a sample comparison of detection performance between
NRD and Imhotep-SMT we depict the FNR7 for these two
methods for different combinations of attack power and noise
power. The FNRs are shown in Fig. 5. From Fig. 5 one
can perceive that the NRD exhibits fewer false negatives for
almost all the combinations of the attack power and the noise
power. This is of much more particular importance that in
the stealthy scenarios, in which σw and σa are close to each
other, the NRD algorithm has a better detection performance
(lower FN) in comparison to Imhotep-SMT.

VI. CONCLUSION

In this paper we proposed two Kalman filter-based algo-
rithms for attacked sensor detection and secure state esti-
mation. The algorithms adopt a modified version of Kalman
filter along with simple statistical testings aiming to detect
individual sensors under attack. The performance of the
algorithms were assessed in both unstealthy and stealthy
cases. Using an IEEE 14-bus power grid system as the
test system, the ability of the algorithms in attack detection
and secure state estimation was demonstrated compared to a

7Counterparts of these notions, particularly True Positive Rate (TPR) and
True Negative Rate (TNR) are also applicable as follows,

TPR =
TP

TP + FN
, TNR =

TN

TN + FP
.

newly developed tool in the literature which is the only other
method that tries to detect individual attacked sensors. In
addition, as a deeper attack detection analysis, the FNR was
depicted for one of the algorithms compared to that of for
the previously presented tool for different combinations of
attack power and measurement noise power. In the simulation
results, the capability of the algorithms in both the unstealthy
and stealthy cases was demonstrated and their functionality
in the stealthy case, which is of much more significance
in the cyber-security context, was highlighted that could be
regarded as a key advantage of the developed algorithms.
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