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Abstract—Communication infrastructure (CI) in microgrids
(MGs) allows for the application of different control architectures
for the secondary control (SC) layer. The use of new SC
architectures involving CI is motivated by the need to increase
MG resilience and handle the intermittent nature of distributed
generation units (DGUs). The structure of secondary control is
classified into three main categories including centralized SC
(CSC) with a CI, distributed SC (DISC) generally with a low
data rate CI, and decentralized SC (DESC) with communication-
free infrastructure. To meet the MGs operational constraints
and optimize performance, control and communication must
be utilized simultaneously in different control layers. In this
survey, we review and classify all types of SC policies from
CI based methods to communication-free policies, including:
CSC, averaging based DISC, consensus-based DISC methods,
containment pinning consensus, event-triggered DISC, washout-
filter based DESC, and state-estimation based DESC. Each
structure is scrutinized from the view point of the relevant
literature. Challenges such as clock drifts, cyber-security threats,
and the advantage of event-triggered approaches are presented.
Fully decentralized approaches based on state-estimation and ob-
servation methods are also addressed. Although these approaches
eliminate the need of any CI for the voltage and frequency
restoration, during black start process or other functionalities
related to the tertiary layer a CI is required. Power hardware-
in-the-loop (PHiL) experimental tests are carried out to compare
the merits and applicability of the different SC structures.

Index Terms—Centralized control, decentralized control, dis-
tributed control, communication-free control, event-triggered
control, microgrids, secondary control.

I. INTRODUCTION

CONTROL objectives in islanded MGs are fulfilled by a
hierarchical control platform to set the FaV amplitudes

to desired values. PC, SC, and TC are the main control
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NOMENCLATURE

MG Microgrid
CI Communication infrastructure
DGU Distributed generation unit
CSC Centralized secondary control
DISC Distributed secondary control
DESC Decentralized secondary control
MGCC Microgrid central controller
PnP Plug and play
ETC Event-triggered control
IR Inertial response
PC Primary control
SC Secondary control
EC Emergency control
AGC Automatic generation control
TC Tertiary control
FaV Frequency and voltage
LPF Low-pass filter
MAS multi-agent system
BW bandwidth
PCC Point of common coupling
LBCL Low bandwidth communication link
SoC State of charge
PHiL Power hardware-in-the-loop

Variables:
GLPF Transfer function of the low-pass filter
ω∗ Nominal frequency of the system
v∗ Nominal Voltage of the system
ωc Cut-off frequency of LPF
s Laplace variable
αij coupling strength between adjacent DGUs
δui Correction term forwarded from SC
K Control gain matrix or gain
xi(t) State variable
N Number of MG’s DGUs
G MG’s communication digraph

layers which are introduced achieve stability and performance
requirements [1]–[4].

The first control layer in the hierarchical control platform is
the decentralized PC layer, typically consisting of inner current
and voltage control loops, a virtual impedance loop, and a
droop mechanism controller. Stabilization of the system’s FaV
amplitudes and power sharing between units are the main
control objectives in the PC layer. The FaV stabilization is
generally achieved by current and voltage control loops, and
power sharing is achieved by the droop control mechanism.
Voltage and current loops can also be embedded in a single
controller, which can dramatically improve the dynamic per-
formance of the system [5]. The virtual impedance loop as an
optional loop acts in MGs with mismatched inductive/resistive
feeder impedance, to enhance the power quality and power



TABLE I. SC POLICIES AND CONTROL STRUCTURES IN AC MGS.

SC Policy Control Method References
C

SC Centralized [30]–[47]
D

IS
C Averaging [14], [48]–[56]

Consensus [57]–[121]
Event-triggered [122]–[134]

D
E

SC

Washout-filter based [135]–[138]
Local measurement based [139]–[145]
State-estimation / observer based [146]–[152]

sharing accuracy of the MG [6]. Droop control is inspired
by conventional power systems, and mimics the steady-state
characteristics of a synchronous generator [7]. However, non-
droop methods have also been introduced as alternatives [8]–
[11].

Steady-state error and FaV amplitude deviations are the
drawbacks of the droop control mechanism. Therefore, SC is
introduced to eliminate the FaV deviations [12], [13]. Though
SC can also be used to improve reactive power sharing accu-
racy, suppress circulating currents, and harmonic elimination
[13], there are fundamental conflicts between accurate reactive
power sharing and voltage regulation [14].

Power management and coordination of DGUs at optimal
equilibrium points are responsibilities of MGCC, which also
determines EC commands due to load-shedding and inten-
tional/unintentional plug in/out of DGUs. Long-term operation
concerns such as economic issues and electricity markets are
controlled in the global control. Global control and MGCC
are located in TC layer in some references [1].

The objective of this survey is to provide an overview
of existing SC architectures and to highlight opportunities
for future research in this domain. There are some papers
that provide a review of the state of the art of MG mod-
elling [15], [16], MG control [17]–[23], MG stability and
protection [24], [25], power sharing methods [7], [26], [27],
and distributed secondary control [12], [28] with focus on
MAS-based approaches [29]. The present survey is distinct
from these surveys in that it comprehensively reviews the
SC architectures along with their recent challenges. These
architectures are categorized into three main classes: CSC,
DISC, and DESC. Several approaches are introduced for each
class and summarized in Table I.

Compared to the existing surveys, this paper provides the
following features:

• A precise SC architecture classification, based on the
required communication infrastructure, is presented. It
covers not only MASs, but also decentralized and event-
triggered based approaches.

• An investigation on reactive power sharing and how
ETC can reduce the required communication BW, based
on different event-trigger conditions, is incorporated and
compared with general continuous data transmission.

• Time delay effect on DISC and DESC approaches are
highlighted, and its malicious effect which leads to insta-
bility in DISC approaches are shown.

• Experimental results are carried out to compare the
control structures and verify the applicability, merits and
drawbacks of different SC architectures.

The rest of this survey begins with the function and time
scale of the SC in Section II. Following, the CSC approaches
which mainly focus on harmonic elimination, are analyzed in
Section III. In Section IV, the DISC architectures are classified
in three main categories based on the CI data transmission, i.e.,
averaging, consensus, and event-triggered. Moreover, the CI
time-delay and clock drifts phenomenon are also considered.
In Section V, the DESC architectures are investigated and
their challenges are presented. Finally, in Section VIII, we
summarize the conclusion remarks of the survey.

II. TIME-SCALE AND FUNCTION OF THE SC
A. Time-scale of the Secondary Control in MGs

Unlike the conventional power systems, MGs employ
power-electronic interfaces. Although these interfaces are gen-
erally fast enough to provide a rapid control response to a
disturbance (such as load/generation changes or contingen-
cies), the activated power by DGUs has several limitations
[153]. Due to the low inertial feature of MGs and capacity
limitations of DGUs, a change in the load has a significant
impact on the system operation. For instance, the frequency
response of an MG and a huge power system is shown in Fig.
1. When a disturbance is applied at time t0, in the conventional
power systems the main control design concern is time-scale.
In MGs, both time-scale and the amount of activated power
need to be considered.

B. Description of the SC Functions

Droop control adjusts the FaV amplitudes by

ωi = ω∗ −miPi , Pi = GLPF(s)pi, (1a)
vi = v∗ − niQi , Qi = GLPF(s)qi, (1b)

where GLPF(s) = ωc(s+ ωc)
−1 is a low-pass filter with

cutoff frequency ωc for measuring power, and pi and qi are
the instantaneous active and reactive powers, calculated as

pi = vod,iiod,i + voq,iioq,i, (2a)
qi = voq,iiod,i − vod,iioq,i, (2b)

where vod,i, voq,i, iod,i and ioq,i are the output voltage and
current of DGUi in the dq frame, respectively. In (1), mi and
ni are the droop controller gains, and ωi and vi are the FaV
reference values for the inner voltage loop. Obviously, any
changes in active and reactive powers will change the FaV
reference values. This will lead to steady-state errors and to
inaccurate active and reactive power sharing between units.

The role of SC is to eliminate the deviations of ωi and
vi while simultaneously maintaining the stability of power
sharing, voltage, and frequency of the MG. If the set of DGUs
in the MG is labeled N = {1, . . . , N}, then this may be
expressed as

lim
t→tf

ωi(t) = ω∗, (3a)

lim
t→tf

vi(t) ≈ v∗, (3b)

lim
t→∞

(miPi(t)−mjPj(t)) = 0, (3c)

lim
t→∞

(niQi(t)− njQj(t)) = 0, (3d)
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Fig. 1. (a) A typical time-scale of frequency-related dynamics in conventional
power systems [154] , and (b) activation of frequency control loops following
a disturbance at t0 in an MG [155].

for all i, j = 1, . . . , N , where (3a), (3b), (3c), and (3d)
represent frequency restoration and voltage regulation in finite
time tf and power sharing in steady-state, respectively. In
order to share active and reactive power accurately, the voltage
values of DGUs must not be perfectly regulated to their
reference values, hence the ≈ symbol in (3b) [14].

Another way to formulate the frequency and active power
control objectives (3a) and (3c) is in terms of an optimization
problem which allocates the secondary control resources of
the system. A simple version is given by

minimize
Pi

∑
i∈N

1

2
miP

2
i , (4a)

subject to
∑
i∈N

Pi = Pload, (4b)

where Pload is the total load in the system. In the problem (4),
the quadratic cost (4a) should be minimized subject to balance
of active power in the MG, as given by (4b); note that (4b)
holds if and only if the frequency objective (3a) holds. It can
be shown [88] that the optimal solution of this problem leads
to (3a) and (3c). However, this optimization-based perspective
allows to specify more sophisticated (non-quadratic) cost
functions and constraints giving rise to principled nonlinear
controllers achieving the specifications (3) subject to dead-
zones, saturations, and alike [120]. We refer to [156], [157]
for analogous approaches relating voltage and reactive power
control with associated optimization problems.

The SC addresses the above limits by considering a correc-
tion term to the droop controller (1) as

ωi = ω∗ −miPi + δuω,i, (5a)
vi = v∗ − niQi + δuv,i, (5b)

where δuω,i and δuv,i are the control signals forwarded from
the SC. Sharing of data — such as FaV and active and reactive
power — between DGs can be used to design the SC control
signals achieve the control objectives above. In addition, power
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Fig. 2. Three main secondary control architectures: (a) CSC , (b) DISC, and
(c) DESC.

quality improvement and synchronization (when connecting
the MG to the main grid) are other functions introduced under
the name of SC [87], [119], [158]–[163]. Fig. 2 illustrates
centralized SC, DISC, and DESC architectures for achieving
this, which will be investigated in the following sections.

III. CENTRALIZED SECONDARY CONTROL

In the CSC structure, a central controller coordinates the
DGs and restores the FaV amplitudes, as shown in Fig. 2(a).
However, any failure whether in CI or CSC affects the overall
stability and performance of the MG. Active power manage-
ment, voltage control, reactive power management, frequency
restoration and harmonic cancellation are the main features of
the CSC. In this structure, all required data, i.e., the DGU’s
FaV, are generally transmitted through a high data rate CI.
Therefore, any deficiency in the CI or failure degrades the
MG efficiency.

The main challenges in the CSC architecture have been
identified to be harmonic cancellation, unbalanced current
reduction, and other power quality and management issues to
enhance the system performance. The employed controllers
for this architecture with its control goal are tabulated in
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Fig. 3. CSC scheme for voltage unbalance compensation [32].

TABLE II. LITERATURE REVIEW ON CSC GOAL SATISFACTION.

Ref. Main Contribution Complexity Physical Insight Necessity of Assumption PnP Verification Controller type
[30]–[36] Harmonic cancellation Low High Low Yes PI
[36], [43] Voltage unbalance compensation Low Medium Low No PI
[45] Voltage unbalance compensation Low Medium High No Cost Function
[42], [46] Reactive power management Medium Medium Low No Cost Function
[37], [40] Stability enhancement High Medium Low No Adaptive
[41] SoC considerations in the SC High Medium High Yes PI
[44] Considers model of time delays Medium High low No Gain Scheduling
[39] Incorporates technical constraints High High Low No Optimal-Convex
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Fig. 4. Harmonic elimination by CSC. (a) Voltage THD reduction, and (b)
voltage wave forms.

Table VI. Moreover, its SC is implemented as Fig. 3 to
harmonic elimination. Fig. 3 shows the CSC structure for
the harmonic compensation in the studied MG shown in Fig.
10(b). The CSC compensates for the MG harmonics at the
point of common coupling (PCC) by sending the harmonic
elimination efforts to the DGUs primary controllers through a
low bandwidth communication link (LBCL). Fig. 4 shows the
simulation results for the harmonic compensation performance
of the CSC. As it can be seen, before the CSC activation, the
total harmonic distortion (THD) at the PCC is around 10%,
while, after CSC activation at t=0.75 s, the THD decrease
by 2% which shows the performance of CSC for harmonic
compensation.

The CSC architecture is applied in the literature to address
harmonic cancellation, unbalanced current reduction, and other
power quality and management issues to enhance the system
performance. The employed controllers for this architecture
with its control goal are tabulated in Table II.

IV. DISTRIBUTED SECONDARY CONTROL

As units in a MG are heterogeneous and spatially dis-
tributed, distributed control or MAS network controls are a
promising approach to enhance MG stability and performance
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while addressing reliability and enhancing scalability of MGs.
In distributed control of MASs, such as an MG, a number of
DGUs (as agents) work together to cooperatively control the
MG and fulfill a set of objectives.

In this case, the behavior of the MG depends on the agent
(i.e., DGU) dynamics and the topology of the employed CI.
In the following, DISC policies are classified into averaging,
distributed consensus, and event-triggered methods.

The basic preliminary for distributed cooperative control is
an appropriate knowledge about the CI and its topology. Thus,
in this section a brief review on CI modelling and networks
are presented, firstly. In an MG system with N DGUs, which
characterized by a state variable xi(t) ∈ Rn subject to a
control input ui(t) ∈ Rn given as follows:

ẋi(t) = Axi(t) +Df(t, xi(t)) +Bui(t),

yi(t) = Cxi(t), (6)

where i = 1, 2, ..., N , and yi(t) stands for the output variables
which need to be synchronized or regulated on a desired value.
Cooperative control means to implement a distributed protocol
by employing the CI such that a desired subset of the state
variables can reach an agreement as t→∞; that is

lim ‖yi(t)− yj(t)‖= 0, ∀ i, j = 1, 2, ..., N. (7)

The communication network of an MAS can be expressed by
a directed graph (digraph) G, which it is usually modelled as
G = (VG , EG ,AG) with a nonempty finite set of N nodes
V = {ν1, ν2, ..., νN}, a set of edges or arcs EG ⊂ VG × VG ,
and the associated adjacency matrix AG = [αij ]N×N . In a
MG, DGUs are considered as the nodes of the communication
digraph, i.e., V , and the edges of the corresponding digraph
G of the communication network denote the communication
links.

A. Average-based DISC

In the averaging-based structure, each DGU measures its
FaV amplitudes and communicates them to all other DGUs.

DISC:
(Pinning) Consensus

Methods

PI:
[55],

[57]–[79],
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Adaptive:
[80]–[82]
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[89]–[96]
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[97]–[101]
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[102]–[104]

H∞ / LMI :
[105]–[107]

Intelligent/
Other:

[108]–[114]

Event-
triggered:

[122]–[133]

Fig. 7. Distributed consensus secondary control methods.

Let xi denote a variable of interest (frequency, voltage, active
power, etc.), with nominal value x∗. By averaging the values
received from other DGUs, a control signal can be built as

δui = Ki(s)

(
x∗ − 1

N

∑
i∈N

xi(t),

)
(8)

to form the SC inputs in equation (5) [14], [48]–[51], [53],
[54], [88], [120]. The controller Ki(s) can be designed in
different ways (e.g., PI) and tuned for dynamic performance.

Fig. 5 and Fig. 6 show the MG frequency restoration and
voltage recovery performance of a high bandwidth averaging
DISC proposed in [49], respectively.

B. Consensus-based DISC

For MASs, the CI structure shows the direction and infor-
mation of the agents as DGUs in a MG. Algorithms leading to
agreement among all DGUs are called consensus, agreement,
or distributed averaging algorithms [169]. Robustness of this
technique is proved in several research works even in the
presence of communication delays [44], [53], [116], [121],
[170]. In order to restore the FaV in the MG applying the
consensus-based techniques, the following distributed protocol
is used [14], [55], [88], [164], [168]

δui = Ki(s)
∑

j∈N ,j 6=i

αij(xj(t)− xi(t)) (9)

to produce the control signals in (5). Fundamental performance
limitations of such controllers have been examined in [165]–
[167]. If the controller Ki(s) in (11) contains integral control,
then in steady-state it will hold that xi = xj for all i, j ∈ N .
As a concrete example, this could correspond to active power
sharing if xi = miPi, which would meet the control objective



in (3c). In (11), the coefficients αij are nonnegative and are
the elements of the so-called adjacency matrix of the graph
describing the CI. DGUs i receives information from DGU j if
αij 6= 0; see [169] for more details. The summary of methods
employing consensus protocols in the SC design procedure is
illustrated in Fig. 7.

In order to control an MAS such as an MG converging to a
given desired value, the distributed pinning consensus protocol
is presented [177]. The term “pinning control” in distributed
cooperative control means merely a fraction of nodes in the
studied network, which are pinned by the designer to the
objective trajectory and the rest of the nodes communicate
with each other to achieve the expected networked tracking.
A DISC problem is to find correction terms δuv,i and δuω,i in
(5) such that satisfy (3). To this end, the cooperative objectives
can be expressed in terms of the local neighborhood tracking
error,

ei =
∑
j∈N

αij(xj(t)− xi(t))− gi(xi(t)− x∗), (10)

and the correction term can be calculated as:

δui = −cKiei, (11)

where i = 1, 2, ..., N , the pinning control gain gi ≥ 0 and
gi = 0 shows there is no control over the DGUi, x∗ is the
desired value for the consensus state i, c ∈ R is the coupling
gain and Ki is the feedback control vector. This approach
has been employed as pinning-consensus (or leader-following
consensus) problems in secondary layer of the MGs. [86], [87],
[109], [113],

Unlike the leader-following consensus control, where there
exists only one leader in the MG as a MAS, containment
control protocol is presented in the presence of multiple
leaders and followers in an MAS such as MG [66]. For
MGs with many DGUs, conventional consensus is often not
sufficient, as the CI topology may be very dynamic. There
are many open research challenges in this direction, such as
choosing the (optimal) pinned DGUs, convergence rate based
on the MG scale, the optimal number of follower DGUs,
and switched-CI challenges for networked MGs. The role of
containment control can be highlighted in the presence of
multiple leaders and multiple followers in an MAS, where the
control objective is to bring all the followers into a convex
hull spanned by the leaders. The containment control of N
nonlinear agents in (6) with the dynamic of ith agent can be
expressed as follows:

ẋi(t) = Axi(t) +Df(t, xi(t)) +Bui(t), i ∈ VF (12)
ẋi(t) = Axi(t) +Df(t, xi(t)), i ∈ VL (13)

where VF
∆
= {1, ...,M} and VL

∆
= {M + 1, ..., N} stand

for the followers’ and the leaders’ sets, respectively. Similar
to (11), the containment protocol for the followers in (IV-B)
can be calculated as

δui =

N∑
j=1

(xj(t)− xi(t)), i ∈ VF . (14)

Finally, there is a large independent literature developing
distributed consensus-based secondary control strategies de-
riving from distributed algorithms to solve the optimization
problem (4), see [28, Section IV.C] for a review.

C. Event-triggered DISC

Over the past years, the ETC has been increasingly em-
ployed at the SC level of MG control, as it reduces information
exchange among DGUs while retaining stability [122]–[133].
Practically, instead of continuous data exchange among DGUs,
the required data can be shared when a criteria is satisfied or
an event is triggered. Then, a sampled-data control method is
performed, and data is exchanged by a designed mechanism
on ETC [171], [184]. As illustrated in Fig. 8, time-triggered,
event-triggered, and self-triggered sampling methods are three
presented approaches to realize ETC methods.

In time-triggered SC, the control is driven by a clock [185].
This periodic paradigm can be seen as an open-loop sampling
(see Fig. 8(a)). In the event-triggered SC, a signal is sent
to the SC if an event has occurred, rather than a continuous
signal transmission. This can be considered as an introducing
feedback in the sampling process (see Fig. 8(b)). It requires
the permanent monitoring of the state(s) to determine current
performance. Finally, in the self-triggered control, the current
state is employed not only to compute the control signal (the
input to the system), but it should be calculated the next time
for recomputation of control law. Though this mechanism is
still closed-loop based on the current performance, permanent
monitoring of the state(s) is no longer required (see Fig. 8(c)).
A common structure of the ETC can be computed based on
the errors between the current instant and the last event of
the state variable. The errors are based on the observed and
measured value of the state variable [186].

In the ETC designs, the following practical issues should
be considered:

1) Event Mechanism: Design of a mechanism for event
detection is a key challenge for computing event time instants,
which directly depends on reducing the recomputation of
control law and communication of neighbors. Basically, the
structure of the event mechanism should be physically explain-
able and easy to implement from a practical perspective. As an
open research problem, in the MG applications, estimation and
observation approaches can be utilized to reduce the employed
CI by designing a event mechanism for the SC [187], [188].

2) Consensus ETC: If ETC is combined with consensus,
the measurements of neighboring DGUs are available only
at event time instants. Therefore, an important concern for
consensus-ETC designs is how to efficiently employ such in-
formation to recompute control law under the designed ETCs.
Besides, it is a great challenge to design both the controller
in (11) and a threshold-based mechanism for event detection
in a unified framework, while the stability of the system must
be maintained without occurring Zeno phenomenon.

3) Zeno Phenomenon: When the ETC generates an infinite
number of sampling instants (events) during a finite time, Zeno
phenomenon occurs [189] and makes the solution inapplicable
for the real-world systems. This concern should be considered
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TABLE III. TYPICAL ETC MECHANISMS FOR MASS.

Threshold Mechanism Ref. Complexity BW Reduction (% )
Fixed threshold ‖ei(t)‖ ≥ δi [171] Low more than 50
Time-dependent threshold ‖ei(t)‖ ≥ c0 + c1e−µi(t)t [172] Medium more than 70
Continuous state dependent ‖ei(t)‖ ≥ σi ‖Xi(t)‖ [173] Medium more than 70
Sampled state-dependent ‖ei(t)‖ ≥ σi

∥∥Xi(sik)
∥∥ [174] Medium more than 70

Sampled state-dependent and a positive offset ‖ei(t)‖ ≥ σi
∥∥Xi(sik)

∥∥ + δi [175] High more than 80
Sampled state-dependent and a time-dependent positive offset ‖ei(t)‖ ≥ σi

∥∥Xi(sik)
∥∥ + c(t) [176] High ≈ 90

TABLE IV. CLOCK DRIFT PHENOMENON LITERATURE.

Ref. SC Policy Main Achievements drawbacks
[178] Without SC Robust against clock drift - Huge computations
[179] Droop free + Experimental verification - Not considered PnP challenges

[180]–[182] DISC
+ Derive tuning criteria for zero steady-state frequency deviations
+ Low inertia system is considered
+ Experimental validation is done

- Not considered sufficient criteria

[183] DESC + PI based DESC investigation - Not considered PnP challenges
- Slow transient response

TABLE V. LITERATURE REVIEW ON DESC GOAL SATISFACTION.

Ref. DESC type Controller type Complexity Stability Analysis PnP Verification
[135], [136] Washout filter-based (15) Low Yes Yes
[138] Washout filter-based (16) Low Yes No
[139] Local Variable Time-dependent switched PI High Yes Yes
[143], [144] Local Variable Linear quadratic regulator Low Yes Yes
[141] Local Variable Integrator based Medium No No
[146] Nonlinear observer PI High Yes No
[147] Observer-based MPC High Yes No
[149] Sliding-mode estimator Averaging integrator High Yes No

in the control design procedure. To achieve this goal, switching
approaches are addressed which by finding a waiting time
guarantees a lower bound for the inter-event times in the event
mechanism [190].

In what summarized in Table III, a number of typical ETC
mechanisms developed for consensus protocols of MASs in
the existing literature are classified. Nonetheless, we may
concentrate on various definitions of the sampling error, e.g.,
see the tracking error in (10), and threshold without further
investigation on their Zeno behavior features because most of
them can rule out this phenomenon.

D. Problem Based DISC

In this subsection, the works mainly focused on the chal-
lenges associated with the SC are presented. These challenges
are investigated in the following items.

1) Voltage stability and reactive power sharing: Unlike the
P/ω droop (5a), the power sharing performance of Q/v droop
(5b) is generally unsatisfactory. This is due to the fact that volt-
age is a local variable, and is in a direct conflict with reactive

power. Due to the circulating reactive power and inaccurate
reactive power sharing, this issue should be considered in a
conservative manner. This challenge, as another SC function,
is addressed in [10], [14], [92], [115]–[117], [119] and [125].

2) Clock drifts: A key challenge towards a DGU syn-
chronization, connecting an MG to grid, simultaneous FaV
regulation, and accurate power sharing in an MG is the
implementation of the designed controller through appropriate
hardware. Since each converter in the converter-based MGs
operates based on the clock of its processor, a prevalent
phenomenon in digital control implementation is clock drift
[191]–[193], which may degrade the performance of the
system (for example see [194] for recognition of clock syn-
chronization challenges). Because of the popularity of crystal
oscillator-based clock processors, with nominal frequency fc,
a small uncertainty in clock drift makes the clock cycle of the
processor as ∆tc = 1/fc(1 + µ), where µ is the relative drift
of the crystal-oscillator of processor clock [195].

Several papers investigate clock drifts influence on the SC
policies. Clock drift phenomenon in the MG was modeled
and investigated firstly in [178]. Then, in [63] and [196] a
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comprehensive analysis of the performance of SC policies
with respect to clock drifts are presented. However, all the
reviewed models are based on the PI controller in Table IV,
where the main achievements and drawbacks of clock drift
studies are listed. Considering this phenomenon in different
secondary controllers and different conditions such as PnP is
an open area for research.

V. DECENTRALIZED SECONDARY CONTROL

In DESC approaches, CIs are not used for FaV restoration;
Each DGU restores its FaV amplitudes to nominal values
separately. Although the CI is not applied in the SC operation,
the CI is required for transferring data from the TC and MGCC
layers [197]. For instance a global CI is required for coordi-
nation of the DGUs during black start and PnP processes,
real-time monitoring or functionalities of the MGCC, and
TC higher control loops. Design procedures employed in this
structure are divided into the three main categories, as follows.

A. Washout Filter-Based DESC

This approach is implemented on the droop control layer,
as follows [137]:

ω = ω∗ −m
(

s

s+ kp

)(
ωc

s+ ωc

)
p (15a)

v = v∗ − n
(

s

s+ kq

)(
ωc

s+ ωc

)
q (15b)

If the MG is stable, then by applying the final value theorem
to the equations (15), one can show that ωi and vi converge
to their reference values. A simplified generalized band-pass
washout filter SC is introduced in [136] as



ω = ω∗ − m

kpω + 1
· ωc

s+ ωc︸ ︷︷ ︸
low-pass

· s

s+
kiω

kpω + 1︸ ︷︷ ︸
high-pass︸ ︷︷ ︸

band-pass filter

·p (16a)

v = v∗ − n

kpv + 1
· ωc

s+ ωc︸ ︷︷ ︸
low-pass

· s

s+
kiv

kpv + 1︸ ︷︷ ︸
high-pass︸ ︷︷ ︸

band-pass filter

·q . (16b)

By adopting appropriate values for the high pass filter as
kpω = kpv = 0, kiω = kp, and kiv = kq , the washout filter
based SC (15) can be implemented as well. The generalized
band-pass washout filter for the SC is realized by cascading
a low-pass filter and a high-pass filter. Its frequency charac-
teristics affect the SC transient response. An analogy between
angle droop and frequency droop with new perspectives on
virtual impedance regarding the washout filter has been done
in [136]. In addition, in [145] the effect of fully decentralized
integral control through leaky integral control is studied and
the authors provided a comprehensive performance and robust-
ness analysis as well as optimal tuning recommendations for
local PI based SC.

A second-order washout filter based power sharing approach
for UPS with stability analysis is introduced in [138] for Q/ω
and P/v droop control strategy as follows:

ω = ω∗ + nq
s

Aωs2 +Bωs+ Cω

(
ωc

s+ ωc
· q
)

(17a)

v = v∗ −mp
s

Avs2 +Bvs+ Cv

(
ωc

s+ ωc
· p
)

(17b)

Similar to [145] the effect of fully decentralized second-
order washout filter based can be investigated for the future
researches by providing a comprehensive performance and
robustness analysis as well as optimal tuning of the coefficients
of the filter.

B. Local Variable-Based DESC

In [140] authors used local signals to design a SC without
any CI according to a time-dependent protocol. An optimal
linear quadratic regulator based DESC for frequency restora-
tion is also presented in [143], [144], [198].

C. Estimation-Based DESC

Recently, several papers have presented fully DESC
schemes utilizing the state estimation methods in autonomous
MGs [149]–[152]. To deal with the associated challenges of
the global cooperative control in DESC structure, state variable
estimation approaches have been recommended [199]–[201].
Recently, a decentralized state estimation method has been
introduced for the hybrid AC/DC MGs [150]. Generally, esti-
mation methods deserve significant attention because of their
communication-free feature. However, in the MG applications,
estimation/observation methods depend on the modelling of
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Fig. 10. Laboratory environment and setup circuit diagram. (a) The Center
for Research on Microgrids, Aalborg University, Aalborg, and (b) circuit
schematic for the experimental tests.

the system. They serve as alternatives to CIs to inform the
dynamics of the rest of MG to the local SC units. In addition,
[146] and [149] have addressed a nonlinear and Luenberger-
like observers for DESC approaches by replacing the measure-
ments in (11) with estimates as

δui = Ki(s)
∑
j∈N

αij(x̂j − xi) (18)

where x̂j(t) is the estimated value of variable xj(t) to design
the DESC. Specifications of the reviewed DESC approaches
are introduced in Table V. In addition, a simple overview of
the SC implementation for master-slave, averaging, consensus
and estimation based control architectures is demonstrated in
Fig. 9. Based on the presented SC architectures, the controller
Ki(s) can be designed considering stability and performance
issues.

VI. RESULT COMPARISON

In order to scrutinize the performance of the defined control
structures, an autonomous four-units test MG is implemented.
The case study MG comprises four VSCs connected to the
common bus through dedicated LC filters shown in Fig.
10. The rated frequency and voltage are 50 Hz and 325 V,
respectively. The control parameters and more details of the
MG are shown in Table. VI.

Fig. 11(a) and (b) shows the reactive power sharing perfor-
mance of the consensus based DISC and ETC based DISC
(inspired from [125]), respectively. At t=12 s the secondary
controller is activated and the reactive power is shared properly
among DGUs. In both cases, i.e., consensus based DISC and
ETC based DISC, the reactive power sharing is carried on
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properly. However in ETC based DISC the transmitted data
rate is lower than the consensus based DISC. It is worth to note
that the reactive power error and its thresholds is illustrated in
Fig. 12(b).

Fig. 12 shows evaluation of measurement errors of DGU1

under four different ETC mechanisms. In order to a fair
comparison, all the for mechanisms have been normalized.
It is shown how varies the number of events in different ETC
structures with a fixed or adaptive thresholds. In Fig. 12(a) a
constant threshold is applied, hence, if the error exceed the
predefined threshold, an event signal is transferred. In Fig.

12(b) the ETC presented by authors in [125] with its adaptive
threshold is applied. As it can be seen, in this ETS structure,
the number of transmitted signals and events in lower than
constant threshold. Fig. 12(c) and (d) show the self-triggered
mechanisms proposed in [134] to decrease the number of
transmitted data. In Fig. 13 a comprehensive comparison, in
terms of the transmitted data rate and required communica-
tion link among CSC and different DISC architectures i.e.
Averaging, consensus, event triggered and self triggered is
demonstrated. In this case, two signals i.e., reactive power
and voltage, are transmitted through different architectures.
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TABLE VI. PARAMETERS OF THE TEST SYSTEM

Electrical Parameters
Parameters Symbol Value
Output voltage of rectifier VDC 650 V
Nominal voltage magnitude Vi 325 V
Nominal Frequency f 50 Hz
Switching Frequency fs 10 kHz
Capacitance of LCL filter Cf 25 µ F
Inductances of LCL filter Li / Lo 1.8 mH
Load 1 Z1 43 Ω , 0.3 H
Load 2 Z2 124 Ω , 0.1 H
Line 1 Z12 0.4 Ω , 3.6 mH
Line 2 Z23 0.8 Ω , 1.8 mH
Line 3 Z34 0.4 Ω , 1.2 mH

Inner loop coefficients and other control Parameters
Control Parameters DGU: 2 and 4 DGU: 1 and 3
P − ω droop coefficient 0.001 rad/W.s 0.002 rad/W.s
Q− v droop coefficient 0.005 V/VAr 0.01 V/VAr
Current integral / proportional terms 1000 / 0.5 1000 / 0.5
Voltage integral / proportional terms 120 / 0.05 120 / 0.05
Control design gain c 200 200

As can be seen, lower rate of data transmission is required
for the event and self triggered DISC, while for the CSC the
higher rate of transmitted data is needed.

Fig. 14 shows a comparison between DESC and DISC
structure considering communication link time delay. A fre-
quent load change is applied at t=15 s and t=17 s. Fig. 14(a)
demonstrates the performance of the DESC structure and Fig.
14(b)-(d) shows the DISC structure performance with different
time delays. As the DESC don’t need the communication
infrastructure, time delay or communication disturbances have
no effect on the performance of DESC, while DISC and
obviously CSC structures relay on the transmitted data through
communication infrastructure. As can be seen from Fig. 14(b)-
(d), by increasing the time delay, the control performance of
DISC degrades.

VII. OPEN ISSUE CONCERNS

So far, challenges on event-triggered and pinning consensus
methods have been reviewed. More challenges can still be
noted in the following.

The effects of malicious cyber-attacks on CI such as denial-
of-service [108], [202]–[204], and false-data injection attacks,
as well as detection and localization of the attacked nodes and
links, and designing appropriate strategies beside the controller
should be further considered. In [205] a review of cyber
attacks for the power system is presented, which can be also
applied on the MG. The promise of observer/estimator based
controllers, in order to achieve stability margins and reliability
of the system under diverse uncertainty, will introduce new SC
architectures for the MG.

References [206] and [207] provide an approach towards
observability and controllability analysis of the networked lin-
ear systems subject to data losses. However, the time-varying
delays introduce negative effect on DGU synchronization after
PnP scenarios. This issue requires further research. Another
generally open issue is the performance and robustness of
secondary MG controllers, when the system is driven by
measurement noise and disturbances.

Multi-MG structures are also introduced as a more resilience
solution, which can have a static or dynamic topology and
interconnect on a same distribution feeder. The main difference
between the static and dynamic multi-MG is that the dynamic
multi-MGs have a changing point of interconnection. This can
be realized by smart static switches. Fig. 15(a) shows a static
multi-MG in which they can be networked with each other
by a static switch located in the common bus. Figs. 15(b) and
15(c) show two possible topology of a dynamic multi-MG.
As it can be seen, the multi-MG’s topology can change based
on the static switch situation. Another classification of Multi-
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MG systems can be done based on the interlink devices and
how MGs are connected with each other. However, multi-MGs
can be networked by controllable circuit breakers (CBs), e.g.,
smart switches (SSWs) with cost-efficient reasons, back-to-
back converters (BTBCs) are another solution which can be
employed for implementing extra functionalities by coopera-
tive control approaches. Networked multi-MGs through power
electronic interfaces can be constructed in various structures.
AC-DC Multi-MGs, AC-DC interlinking lines, interlinking
devices, distributed and decentralized control, as well as com-
munication methods, lead to different Multi-MG structures.
Apart from the stability analysis/requirements within a multi-
MG cluster, the distributed cooperation among multiple-MG
clusters is also essential to increase the reliability of the whole
multi MG-cluster system. In this way each MG will be able
to absorb power from its neighbors in an emergency situation.
To this end, several works have been done, which employed
decentralized/distributed secondary control approaches [208].
Self-healing capability of the distribution system after extreme
faults by designing a control framework for multi-MG sys-
tems, robust distributed control for more resilient energizing,
and power exchange strategies based on the instantaneous
static switch are some examples of control methods that can be
performed in secondary layer to improve the power exchange
among multi-MG systems. Nevertheless, the important role
of secondary control either in distributed or decentralized
manners for more resilience and improve the power exchange
is not addressed properly. Reducing the communication infras-
tructure by self-triggered, event-triggered, or even decentral-
ized approaches leads to a more secure-resilience multi-MG
system, which needs to employing efficient cyber-control study
as open issues to shed light.

VIII. CONCLUSION

This paper presented an overview of the secondary control
structures in the hierarchical control of autonomous MG. In
order to improve the reliability, energy management of the
MG, centralized SC is established. CSC is reviewed in detail

and merits and drawbacks of this structure, such as commu-
nication deficiencies, have also been summarized. Due to the
single point of failure of the centralized structure, distributed
structure is presented. DISC strategies are categorized based
on different communication structures and transmitted data
into the three main topologies: averaging based, consensus-
based, and event triggered based approaches. However, in
consensus structure, with increasing the number of DGUs, new
concerns are revealed and stated as open issues. Furthermore,
event based DESC structures, configurations and formula-
tions are scrutinized. Finally, DESC structures which are
entirely communication-free are presented. Design procedures
employed in this structure are divided into the three main
categories, i.e., washout filter based, local variable based and
estimation based approaches. Although DESC structure have
no communication challenges, i.e., CI delay and data dropout,
in order to achieve a comprehensive control, an accurate
estimation of neighbour DGUs variable is required. Voltage
stability, reactive power sharing, and clock drift challenges
of SC for experimental implementations are also summarized.
Finally, a comprehensive comparison, as well as control design
challenges, formulations and open issue concerns have been
presented.

IX. APPENDIX

The communication links of the studied MG for the
consensus DISC and ETC-DISC is given as follows:

AG = [αij ]4×4 =


0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

 .
By a simplified Q− v dynamics for DGUi, given as:

V̇i = ui
Qi = |Bii|V 2

i −
∑
m∈N

|Bim|ViVj (19)

where Vi is the output voltage amplitude of DGUi; ui is
the control effort; Bii is the shunt susceptance of DGUi. In



[125] an ETC-DISC for proportional reactive power sharing
is formulated by

ui(t) = − κ
χi
Vi(t)

∑
j∈N

αij

(
Qi(t

i
ki(t)

)

χi
−
Qj(t

i
kj(t))

χj

)
(20)

where ki(t)
∆
= arg maxk

{
tik|tik ≤ t

}
, χi and χj stand for the

Q−v droop coefficients of DGUi and DGUj . The ETC, which
determines the event times tik of DGUi, was designed as

|ei(t)|≤ ηχi

∣∣∣∣∣∣
∑
j∈N

αij

(
Qi(t

i
ki(t)

)

χi
−
Qj(t

i
kj(t))

χj

)∣∣∣∣∣∣ (21)

where ei(t) = Qi(t
i
k) − Qi(t), Qi(tik) stands for the trans-

mitted measurement of Qi(t) at the event time instant tik,
k ∈ N , and η is a positive constant and its maximum value can
be chosen lower than the maximum eigenvalues of Laplacian
matrix AG .
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[38] T. Dragičević, R. Heydari, and F. Blaabjerg, “Super-high bandwidth
secondary control of ac microgrids,” in Applied Power Electronics
Conf. and Exposition (APEC), IEEE. IEEE, 2018, pp. 3036–3042.



[39] X. Yang, Y. Du, J. Su, L. Chang, Y. Shi, and J. Lai, “An optimal
secondary voltage control strategy for an islanded multibus microgrid,”
IEEE Journal of Emerg. Sel. Topics Power Electron., vol. 4, no. 4, pp.
1236–1246, 2016.

[40] M. Savaghebi, Q. Shafiee, J. C. Vasquez, and J. M. Guerrero, “Adaptive
virtual impedance scheme for selective compensation of voltage unbal-
ance and harmonics in microgrids,” in Power & Energy Soc. General
Meeting, IEEE. IEEE, 2015, pp. 1–5.

[41] Y. Guan, J. C. Vasquez, and J. M. Guerrero, “Coordinated secondary
control for balanced discharge rate of energy storage system in islanded
ac microgrids,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 5019–5028,
2016.

[42] A. Micallef, M. Apap, C. Spiteri-Staines, J. M. Guerrero, and J. C.
Vasquez, “Reactive power sharing and voltage harmonic distortion
compensation of droop controlled single phase islanded microgrids,”
IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1149–1158, 2014.

[43] S. Acharya, M. S. El Moursi, A. Al-Hinai, A. S. Al-Sumaiti, and
H. Zeineldin, “A control strategy for voltage unbalance mitigation in an
islanded microgrid considering demand side management capability,”
IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2558–2568, 2018.

[44] S. Liu, X. Wang, and P. X. Liu, “Impact of communication delays on
secondary frequency control in an islanded microgrid.” IEEE Trans.
Ind. Electron., vol. 62, no. 4, pp. 2021–2031, 2015.

[45] L. Meng, F. Tang, M. Savaghebi, J. C. Vasquez, and J. M. Guerrero,
“Tertiary control of voltage unbalance compensation for optimal power
quality in islanded microgrids,” IEEE Trans. Energy Convers., vol. 29,
no. 4, pp. 802–815, 2014.

[46] A. Milczarek, M. Malinowski, and J. M. Guerrero, “Reactive power
management in islanded microgrid: Proportional power sharing in
hierarchical droop control,” IEEE Trans. Smart Grid, vol. 6, no. 4,
pp. 1631–1638, 2015.

[47] E. Smith, D. A. Robinson, and P. Ciufo, “Secondary control of voltage
& current unbalance in a multi-bus microgrid using cooperative adjust-
ment of q- droop gains,” in Universities Power Eng. Conf. (AUPEC),
2017 Australasian. IEEE, 2017, pp. 1–7.

[48] Q. Shafiee, T. Dragicevic, J. C. Vasquez, J. M. Guerrero, C. Ste-
fanovic, and P. Popovski, “A novel robust communication algorithm
for distributed secondary control of islanded microgrids,” in Energy
Conversion Congress and Exposition (ECCE), 2013 IEEE. IEEE,
2013, pp. 4609–4616.

[49] R. Heydari, T. Dragicevic, and F. Blaabjerg, “High-bandwidth sec-
ondary voltage and frequency control of vsc-based ac microgrid,” IEEE
Trans. Power Electron., 2019.

[50] Q. Shafiee, J. M. Guerrero, and J. C. Vasquez, “Distributed secondary
control for islanded microgrids—a novel approach,” IEEE Trans. Power
Electron., vol. 29, no. 2, pp. 1018–1031, 2014.
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