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Abstract— Feedback-based online optimization algorithms
have gained traction in recent years because of their simple
implementation, their ability to reject disturbances in real time,
and their increased robustness to model mismatch. While the ro-
bustness properties have been observed both in simulation and
experimental results, the theoretical analysis in the literature is
mostly limited to nominal conditions. In this work, we propose
a framework to systematically assess the robust stability of
feedback-based online optimization algorithms. We leverage
tools from monotone operator theory, variational inequalities
and classical robust control to obtain tractable numerical
tests that guarantee robust convergence properties of online
algorithms in feedback with a physical system, even in the
presence of disturbances and model uncertainty. The results
are illustrated via an academic example and a case study of a
power distribution system.

I. INTRODUCTION

Online optimization methods are traditionally well suited
for classical computer science tasks (recommendation en-
gines, classifications. etc.) but are not usually designed to
deal with the complex constraints and safety requirements of
physical systems affected by unknown disturbances. A pro-
totypical example of such system is the electric power grid,
where the system operator must optimally schedule power
generation while taking into account capacity constraints,
voltage/current safety constraints, and unknown disturbances
represented by uncontrollable loads and variable generation.
Traditionally, the optimal operation of such large scale engi-
neering systems is done via frequent re-optimization based
on complex models and disturbance forecasts. Recently, how-
ever, much simpler online (or feedback-based) optimization
methods have been proposed for constrained engineering
systems with tremendous success in applications ranging
from communication networks [1] to power systems [2]–[7]
to transportation [8].

The appeal of using feedback-based over off-line opti-
mization approaches is the same appeal of using feedback
over feedforward control: feedback optimization methods
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show superior robustness to model uncertainty and are able
to attenuate or reject unmeasured disturbances. While these
properties have been extensively observed in the literature,
the analysis of these algorithms is mostly performed under
nominal conditions. Some exceptions are [9], [10], where
robustness to linear unmodeled dynamics is considered.

In this work, we focus on a simple first-order online
approximate gradient descent, similar to those proposed
in [4], [7]. The novel contributions of the work are that we
• characterize the equilibria of the feedback interconnec-

tion of the physical system and the online optimization
scheme using methods from the literature on variational
inequalities [11] and monotone operators [12];

• propose a framework, based on classical robust control
theory [13]–[16] that allows us to systematically test
the robustness properties of the online algorithm by
guaranteeing robust stability with respect to a large class
of uncertain physical systems;

• validate our results both on an academic example and a
case study of a power distribution system, for which the
proposed methods allows us to verify robust stability for
a wide range of realistic operating conditions.

The robustness analysis in this work is partly inspired
by [17], even though we consider uncertainty in the model
of a physical system and not merely as a tool to characterize
the properties of certain nonlinear operators. The analysis in
this paper differs from [4] as it is not based on a bounded
error between the output of the real nonlinear system and the
one of an approximate linear system. This leads to sharper
convergence guarantees (to a point instead of a set). Similarly
to [4], [5] all results in this paper carry over to the time-
varying setting with minimal modifications.

Notation: For a symmetric positive definite P � 0,
〈·, ·〉P : Rn×Rn → R denotes the inner product 〈x, y〉P :=
xTPy, and the corresponding induced norm ‖·‖P : Rn →
R≥0 defined as ‖x‖P :=

√
xTPx. A map f : Rn → Rn is

L-Lipschitz w.r.t the inner product 〈·, ·〉P , if ∃L > 0 such
that ‖f(x)− f(y)‖P ≤ L ‖x− y‖P for all x, y ∈ Rn. If f is
differentiable, then ∂f(x) denotes its Jacobian matrix at x. A
function f : Rn → R is L-strongly smooth w.r.t 〈·, ·〉P , if it
is differentiable and its gradient is L-Lipschitz w.r.t 〈·, ·〉P .
Every mentioned set S ⊆ Rn is nonempty. For a closed
convex set C ⊆ Rn, the projection operator, ProjPC : Rn →
C ⊆ Rn, is defined as ProjPC (x) := arg miny∈C ‖x− y‖P . If
P is omitted it is assumed that P = I .

II. PRELIMINARIES

This section introduces some preliminary results from the
theories of monotone operators and variational inequalities
(VIs), which are central in many fields of applied mathemat-



ics, engineering and economics, We refer the reader to [18,
Chapter 1] for a gentle introduction and [11], [12] for a
comprehensive review. We begin by defining a monotone
operator.

Definition 1 (Monotone operator) Given P � 0 and ρ >
0, a map F : S ⊂ Rn → Rn is ρ-strongly monotone on S
w.r.t 〈·, ·〉P if, ∀x, y ∈ S, 〈x − y, F (x) − F (y)〉P ≥ ρ‖x −
y‖2P , We say F is monotone if the inequality holds for ρ = 0.

Next we define the Clarke generalized Jacobian for non-
smooth locally Lipschitz maps.

Definition 2 (Clarke generalized Jacobian [19]) Let
S ⊆ Rn be a closed-convex set and F : S → Rn be a
locally Lipschitz map. The Clarke generalized Jacobian of
F at x ∈ S is defined as the set

∂CF (x) = co

{
J ∈ Rn×n : J = lim

xi→x
F (xi) differentiable

∂F (xi)

}
where co is the convex hull. For a continuously differentiable
function g : S → R, its Clarke generalized Hessian at x ∈ S
is defined as the set ∂2

Cg(x) = ∂C∇g(x).

For non-differentiable and locally Lipschitz maps, the fol-
lowing proposition characterizes monotonicity in terms of
the Clarke generalized Jacobian.

Proposition 1 (Characterizing monotonicity) Let S ⊆ Rn
be a closed-convex set and F : S → Rn be a locally
Lipschitz map. Then F is ρ-strongly monotone on S w.r.t
〈·, ·〉P if and only if

1

2

[
JTP + P J

]
< ρP (1)

for all J ∈ ∂CF (x) and all x ∈ S, and is monotone iff (1)
holds for ρ = 0.

Proposition 1 is a slight generalization to [20, Proposition
2.1] for monotonicity w.r.t 〈·, ·〉P . Next, we recall the idea
of a VI, which is an important tool for the rest of the paper

Definition 3 (VI Solution) Consider a set X ⊆ Rn and a
map F : X → Rn. A point x̄ ∈ Rn is a solution of the
variational inequality VI(X , F ) w.r.t 〈·, ·〉P if

〈F (x̄), x− x̄〉P ≥ 0, ∀x ∈ X .

The following algorithm can be used to find the solution of
VIs involving a strongly monotone operator F .

Proposition 2 (Convergence of the projection algorithm)
[11, Theorem 12.1.2] Let X ⊆ Rn be closed and convex, and
let F : X → Rn be ρ-strongly monotone and L-Lipschitz
on X w.r.t 〈·, ·〉P . Then the variational inequality VI(X , F )
admits a unique solution x?, and, for any x1 ∈ X , the
sequence {xk}∞k=1 generated by the projection algorithm

xk+1 = ProjPX (xk − τF (xk)) , x1 ∈ X .

with τ < 2ρ
L2 converges geometrically to x?, Moreover, the

best geometric convergence rate of 1 − (ρ/L)2 is achieved
with step size τ = ρ/L2.

III. FEEDFORWARD VS FEEDBACK OPTIMIZATION

In this work, we consider a physical system that maps an
input u ∈ U ⊆ Rn and an unknown disturbance w ∈ W ⊆
Rp to the output y ∈ Rm according to the map

y = π(u,w), (2)

where π : U × W → Rm is continuously differentiable
and locally Lipschitz continuous in u. A system operator
is responsible for managing the physical system (2), and is
interested in solving a optimization problem of the form

min
u∈U

f(u)

subject to y = π(u,w), y ∈ Y
(3)

to achieve optimal operation of (2). In (3) u ∈ Rn is the
decision variable that we apply to the system, w ∈ W is an
unknown disturbance, U ⊂ Rn is a closed convex set that
represents hard physical limits on the input u, f : U → R
is a strongly smooth convex function, and Y represents (for
example) safety constraints on the system’s output y.

A. The standard approach: feedforward optimization

Optimization problems of the form (3) are ubiquitous in
many engineering disciplines (e.g., optimal power or gas
flow, optimal traffic control, etc.) and are in general hard
to solve. This is because they are often of very large size,
non-convex (π is generally nonlinear) and they require a
precise knowledge of π and of the disturbance w, which
is often unavailable. In many real-world applications, the
system operator will have access to a linearized model of
the system (2) of the form

y ≈ Πu+ Πww

and to a forecast or guess ŵ for the disturbance w. The oper-
ator can then periodically solve the feedforward optimization
problem1

û = argmin
u∈U

f(u)

subject to y = Πu+ Πwŵ, y ∈ Y
(4)

in order to protect themselves from model uncertainty and
forecast error. Solving (4) and applying the solution û to the
system can be seen as analogous to applying feedforward
control to a dynamical system. The solution û is the best
solution we obtain based on the available model and forecast
of the disturbance w, but makes no use of the fact that for
a given u and w, the system operator can often measure
y. Recently, motivated by applications in power systems,
there has been a great effort to develop feedback based
optimization schemes that make use of the the measurement
y in real time in order to attempt to solve (4).

1Or perhaps a robust or chance-constrained version to account for model
mismatch and forecast error.



B. Real-time feedback optimization - online approximate
gradient descent

Let us introduce a soft-constrained version of problem (3)

min
u∈U

f(u) + g(y)

subject to y = π(u,w),
(5)

where g is an appropriate convex, continuously differentiable
strongly smooth penalty function for the constraint y ∈ Y .
The approximation (5) is justified in many applications, as
the set Y often represents desired engineering constraints
(i.e., voltage or line current limits in a power networks)
for which small and/or infrequent violations carry no big
consequences. The hard constraints on the inputs U are not
relaxed, and will be enforced at all times. Next, we present
the standard (measurement-based) gradient descent for (5).

Algorithm 1: Gradient Descent (GD)
Input: k = 1, τ > 0, u1 ∈ U
Iterate

measure yk = π(uk, w)

dk = ∇f(uk) + ∂π(uk, w)T∇g(yk)

uk+1 = ProjU (uk − τdk)

apply uk to the system
k ← k + 1

End

In Algorithm 1, with a slight abuse of notation, we denote by

∂π(ū, w̄) :=
∂π(u,w)

∂u

∣∣∣∣
u=ū,w=w̄

the Jacobian of π with respect to u evaluated at a point ū, w̄.
Under suitable assumptions on the step size τ , Algorithm 1
converges to a KKT point of (5). Note that in order to
implement Algorithm 1, we no longer need a model of the
full map π, as π(uk, w) can be measured in real-time through
y. Instead, we need only its Jacobian with respect to the
decision variable u (which still depends π and w). In [4], [7],
the authors show promising results for various optimal power
flow problems where algorithms similar to Algorithm 1 reach
near-optimal solutions, reject time-varying disturbances de-
spite not using the exact Jacobian; these robustness properties
are precisely the well-known advantages of feedback over
feedforward control. In this work, we study robustness for
the simplest approximation of the Jacobian i.e.,

∂π(u,w) ≈ Π, ∀u ∈ U , w ∈ W. (6)

Using (6), Algorithm 1 becomes the Online Approximate
Gradient (OAG) algorithm (Algorithm 2).

Note that, Algorithm 2 can be implemented in a “online”
fashion using the approximate Jacobian Π and the system
measurements y (i.e., using feedback). No information on
the real system model π or the disturbance w is required.
This is illustrated in Figure 1. In fact Algorithm 2 can be
interpreted as a hybrid between an optimization algorithm
and a feedback controller that tries to steer the system close
to the optimal solution of Problem (5). The simple approx-

Algorithm 2: Online Approximate Gradient (OAG)
Input: k = 1, τ > 0, u1 ∈ U
Iterate

measure yk ← π(uk, w)

uk+1 = ProjU
(
uk − τ(∇f(uk) + ΠT∇g(yk))

)
apply uk to the system
k ← k + 1

End

OAG Algorithm

y1
y2 y3

u1

u2

w1

w2

physical system:
y = π(u,w)

Fig. 1. Online implementation of Algorithm 2: The update of x is computed
based on the measurement of y = π(x,w) and applied to the system.

imation (6) is consistent with the fact that, as discussed in
Section III-A, many system operators use linear models of
their physical systems for large-scale optimization problems.

In the remainder of the work we will make some assump-
tions on the Jacobian ∂π(u,w) in the set of interest U ×W
and we will try to analyze the stability and robustness prop-
erties of the OAG algorithm. In particular we are interested
in the following questions
• Can we characterize the set of points, if any, to which

the OAG algorithm converges?
• Can we guarantee that the OAG algorithm is robustly

stable (i.e., it converges for a large class of maps π)?

C. Characterizing the closed-loop equilibria of OAG

Observe that, while our goal is to solve the non-convex op-
timization (3) using feedback, the OAG algorithm uses only
an approximation Π of ∂π(u,w); we are therefore unlikely to
converge to a true optimizer of (3), but instead will be able
to converge to a point which is simultaneously consistent
with both the OAG algorithm and the physical system. We
formalize this idea as that of an online approximate solution.

Definition 4 (Online approximate solution) Given
Π ∈ Rm×n and a disturbance w ∈ Rq , a vector
ū = ū(w) ∈ Rn is an online approximate solution of (5) if

y = π(ū, w) (7a)
ū ∈ U , (7b)

−∇f(ū)−ΠT∇g(y) ∈ N ū
U , (7c)



where N ū
U is the normal cone of U at the point ū.

In other words an online approximate solution is a feasible
solution which would be a KKT point of (5) if the linear
model was locally accurate (i.e., ∂π(ū, w) = Π). This means
that if the decision maker believes her linearized model, she
has no incentive to change the solution2. The quality of an
online approximate solution depends entirely on the quality
of the linear model. Next, we provide a condition for which
the OAG algorithm converges to an online approximate
solution. To do so, we assume, without loss of generality,
a specific structure for the set U .

Assumption 1 The set U is partitioned as U = U1 × U2 ×
U3, where U1 := Rn1 , U2 ⊂ Rn2 is a box constraint i.e.,
U2 := {u2 ∈ Rn2 |u2,i ≤ u2,i ≤ ū2,i, i = 1, . . . , n2} −∞ ≤
u2,i ≤ u2,i ≤ ∞ and U3 ⊂ Rn3 is a general closed convex
set and n1 + n2 + n3 = n.

Next, we define the set

P :=

P � 0

∣∣∣∣∣P =

P1

P2

In3

 , P1 ∈ Rn1×n1

P2 ∈ Dn2


where Dn is the set of n× n diagonal matrices.

Proposition 3 (Convergence of OAG) Let U satisfy As-
sumption 1. For P ∈ P , assume that Fw(u) := ∇f(u) +
ΠT∇g(π(u,w)) is ρ−strongly monotone and L−Lipschitz
continuous w.r.t 〈·, ·〉P . Then if τ < 2ρ

L2 , the OAG algorithm
converges geometrically to the unique online approximate
solution.

Proof: By the definition of normal cone, an online ap-
proximate solution ū satisfies Fw(ū)T(u− ū) ≥ 0, ∀u ∈ U .
or equivalently ū = ProjU (ū−τFw(ū)), and therefore solves
VI(U , Fw) with respect to the standard Euclidean norm. By
applying the definition of projection, it is easy to see that,
under Assumption 1, if P ∈ P , then ProjPU (u) = ProjU (u)
for all u ∈ Rn. By Proposition 2, VI(U , Fw) has a unique
solution ū (an online approximate solution) and the OAG
converges geometrically to ū for any initial condition u1.

With the following proposition, we show that the intuition
behind an online approximate solution is indeed correct
and we can bound the distance of an online approximate
solution to a KKT point u? of (5) based on the Jacobian
approximation error ‖Π− ∂π(u?, w))‖.

Proposition 4 (Approximation error) If P ∈ P and
Fw(u) := ∇f(u)+ΠT∇g(π(u,w)) is ρ−strongly monotone
w.r.t 〈·, ·〉P , then

‖ū− u?‖P ≤
1

ρ
‖(Π− ∂π(u?, w))T∇g(π(u?, w))‖P

where ū is the unique online approximate solution satisfying
(7) and u? a KKT point of (5).

Proof: Let us define F ?w(u) := ∇f(u) +
∂π(u,w)T∇g(π(u,w)). The result follows from noting that

2This is assuming that the decision maker is after a KKT point, which is
reasonable given that (4) is a non-convex problem

u? solves VI(U , F ?w) and applying [21, Theorem 1.14].

IV. ROBUST MONOTONICITY OF UNCERTAIN OPERATORS

We are now interested in developing conditions to check
whether — given a suitable choice of Π — the OAG
algorithm (Algorithm 2) is robustly stable when implemented
on the uncertain physical system described by π(u,w). To
do so, we begin by abstracting the OAG algorithm by writing
the u update compactly as

uk+1 = ProjU (uk − τFw(uk))

where
Fw(u) := ∇f(u) + ΠT∇g(π(u,w)).

According to Proposition 2, if Fw is strongly monotone and
Lipschitz continuous, then the OAG algorithm converges
geometrically for τ < 2ρ/L2. Instead of directly mod-
elling π(u,w) as uncertain, we will consider uncertainty on
the map Fw, and develop conditions under which (strong)
monotonicity can be guaranteed robustly with respect to this
uncertainty. Inspired by Proposition 1, we will parametrize
uncertainty on Fw by defining an uncertainty set J , and
imposing that ∂CFw(u) ⊂ J , for all u ∈ U and all w ∈ W .
We investigate the simple case in which J is a polytope and
the more interesting case in which J is parametrized by a
Linear Fractional Transformation (LFT).

A. Polytopic uncertainty in the Jacobian

We begin with the simple case where

J poly := co {Ji, i = 1, . . . , ν} . (8)

Then, given the set U , we define the set of functions

Fpoly := {Fw | ∂CFw(u) ⊆ J poly,∀u ∈ U}. (9)

The following proposition provides a numerical test to
guarantee that strong monotonicity holds robustly for all
Fw ∈ Fpoly.

Proposition 5 Given P � 0 and a constant ρ > 0, the
following two statements are equivalent:

(i) all operators Fw ∈ Fpoly, are ρ−strongly monotone
w.r.t 〈·, ·〉P on the set U;

(ii) the following Matrix Inequality holds true

1

2

[
JT
i P + PJi

]
� ρP, i = 1, . . . , ν. (10)

where Ji as in (8).
Moreover, if ρ = 0, then the the preceding statements are
equivalent with “monotone” replacing “strongly monotone”.

The proof is simple and is omitted for reasons of space.
Since (10) is a LMI in P , Proposition 5 allows to test the
hypothesis of Proposition 3 and thus can be used to guarantee
that the OAG algorithm converges robustly for all operators
Fw ∈ Fpoly. In Section V we will show how Proposition 5
can be applied to the operator that arises from the OAG
algorithm with a prototypical soft-constrained optimization
problem of the form (5). Not surprisingly, the number of
constraints in the LMI (10) can be very large in practical



problems. For this reason in the next section we will consider
an arguably better way to parametrize uncertainty in the
Jacobian, which, at the expense of an increased modeling
effort, leads to a more elegant test involving a single LMI.

B. LFT uncertainty in the Jacobian

We now consider a different parametrization for the un-
certainty set of the Clarke generalized Jacobian of Fw.
Given a set of matrices ∆ ⊂ Rs×z and fixed matrices
A ∈ Rn×n, B ∈ Rn×s, C ∈ Rz×n and D ∈ Rz×s, define

J lft :=
{
A+B∆(Iz −D∆)−1C : ∆ ∈∆

}
,

where we assume that (Iz−D∆) is invertible for all ∆ ∈∆.
In addition, we suppose we have access to a convex cone of
matrices Θ ⊂ R(s+z)×(s+z) such that

p = ∆ q, ∆ ∈∆ =⇒
[
q
p

]T
Θ

[
q
p

]
≥ 0, ∀Θ ∈ Θ . (11)

The parametrization of uncertainty and the positivity criteria
(11) is borrowed from the literature on robust control [13]–
[16]. This parametrization might seem unnatural at first but
it is extremely powerful in modeling a large set of common
uncertainty classes; unfortunately it requires a steep learning
curve to get accustomed to. As we did in (9), we let F lft

denote the set of functions such that ∂CFw(u) ⊂ J lft for all
u ∈ U . The next result shows that robust monotonicity in
this set can be tested with a single LMI.

Proposition 6 If there exists P � 0 and Θ ∈ Θ such that[
AT
ρP + PAρ PB
BTP 0

]
−
[
C D
0 Is

]T
Θ

[
C D
0 Is

]
< 0 (12)

where Aρ = A − ρIn, then all operators Fw ∈ F lft are
ρ−strongly monotone w.r.t 〈·, ·〉P over U , or are simply
monotone if (12) holds for ρ = 0.

Proof: Given any x ∈ Rn and ∆ ∈ ∆, let us define
q = Cx + Dp and p = ∆q. Pre and post multiplying (12)
by [xTpT]T, we obtain[

x
p

]T [
AT
ρP + PAρ PB
BTP 0

] [
x
p

]
−
[
q
p

]T
Θ

[
q
p

]
≥ 0 (13)

Since p = ∆q, (11) implies that the first term in (13) must
be nonnegative. Therefore,

xTPAρx+ xTPBp ≥ 0,

∀x ∈ Rn and q = Cx+Du , p = ∆q.
(14)

We conclude that p = ∆(Iz −D∆)−1Cx. Substituting into
the first inequality, we obtain

1

2

[
JT

∆P + PJ∆

]
� ρP (15)

where J∆ = A + B∆(Iz − D∆)−1C ∈ J lft. Hence, all
elements of J lft satisfy (15), and therefore all functions
Fw ∈ F lft are ρ-strongly monotone w.r.t 〈·, ·〉P .
Since (12) is a LMI in P and Θ, Proposition 6 allows to
verify the Proposition 3 numerically. Thus it can be used to

guarantee that the OAG algorithm converges robustly for all
operators Fw ∈ F lft

Remark 1 Proposition 3 requires Lipschitz continuity of Fw
w.r.t 〈·, ·〉P to guarantee stability. Note that, in our case Fw
is robustly L-Lipschitz w.r.t 〈·, ·〉P if, for all J ∈ J , JTPJ−
L2P 4 0. This can be tested using LMIs both for J poly and
J lft. This analysis is omitted for reasons of space.

C. Quick recipes for LFT modeling
The hard work in applying Proposition 6 typically comes

in writing down a useful cone of matrices Θ such that
the positivity condition in (11) holds. Luckily, there are
standard recipes for doing this for some practically important
uncertainty sets ∆. While LFT modeling is applicable to
uncertain nonlinear operators (see [15, Chapter 6] for a com-
plete treatment), in this section we will limit the treatment to
uncertain matrices as they suffice to model the uncertainty
in ∂CFw described in Section IV-B.

1) Unstructured, norm-bounded uncertainty: Given γ ≥
0, let ∆u,nb(γ) := {∆ ∈ Rs×z | ‖∆‖2 = σmax(∆) ≤ γ}
which is the set of unstructured matrices with induced norm
less than or equal to γ. A cone Θ that achieves the required
positivity condition in (11) is

Θu,nb =
{
θ
[
Is 0
0 − 1

γ2
Iz

] ∣∣∣ θ ≥ 0
}
.

To see this, note that if ∆ ∈ ∆u,nb, then ‖p‖22 = ‖∆q‖22 ≤
γ2‖q‖2, and therefore θ(‖q‖22− 1

γ2 ‖p‖22) ≥ 0 for any θ ≥ 0.
2) Repeated scalar norm-bounded uncertainty: Given

γ ≥ 0 let ∆rs,nb(γ) := {∆ = δI | δ ∈ R, |δ| ≤ γ} denote
the set of uniform diagonal matrices with diagonal entries
bounded in magnitude by γ. A cone Θ that works is

Θrs,nb =
{

Θ =
[

Φ Ψ
ΨT − 1

γ2
Φ

] ∣∣∣ Φ < 0, Ψ = −ΨT
}
.

as may be verified by direct computation. Note that since
we know more about the structure of the uncertainty, we can
use a larger cone of matrices Θ; this reduces conservatism.

3) Unstructured monotone and Lipschitz uncertainty:
Given ρ, L ∈ R satisfying 0 ≤ ρ ≤ L <∞, let ∆u,ρL denote
the set of matrices ∆ ∈ Rs×s such that ρI 4 ∆ 4 LI . A
cone that works for this case is

Θu,ρL =
{

Θ = ϕ
[
−2ρL ρ+L
ρ+L −2

]
⊗ Is

∣∣∣ ϕ ≥ 0
}
.

as may be verified again by direct calculation.
4) Repeated scalar monotone and Lipschitz uncertainty:

Given ρ, L ∈ R satisfying 0 ≤ ρ ≤ L < ∞, let ∆rs,ρL

denote the set of diagonal matrices ∆ = δI with ρ ≤ δ ≤ L.
A cone that works for this case is

Θrs,ρL =
{

Θ = ϕ
[
−2ρLΦ (ρ+L)Φ
(ρ+L)Φ −2Φ

] ∣∣∣ Φ < 0
}
.

5) Block-structured uncertainty: Consider now the block-
diagonal uncertainty set

∆blk :=
{

∆ = blkdiag(∆1, . . . ,∆r)
∣∣ ∆i ∈ Rsi×zi ,

∆i ∈∆u,nb or ∆rs,nb or ∆u,ρL or ∆rs,ρL

}
.

where each block satisfies one of the previous criteria.
Then the previous cones may be used individually for each
corresponding block of the uncertainty.



V. APPLICATION TO FEEDBACK OPTIMIZATION

Consider the following optimization problem

min
u∈U

uTHu+ hTu+ η

m∑
i=1

{
max(0, yi − yi, yi − yi)

}2

s.t. y = π(u,w). (16)

in which the max functions encode soft versions of the
constraints yi ∈

[
yi, yi

]
and H � 0. Given an approximator

Π of ∂π, if we run the OAG algorithm applied to (16), the
approximate gradient Fw takes the form

Fw(u) = Hu+ h+ ηΠTsy,y(π(u,w)) , (17)

where sy,y is the (vectorized) soft-thresholding function (lin-
ear with unit slope for yi 6∈

[
yi, yi

]
, zero otherwise). We now

illustrate how to use the LMI conditions of Propositions 5
and 6 to guarantee robust stability of the OAG algorithm
applied to (16).

A. Polytopic uncertainty

We begin with polytopic uncertainty to show how this
parametrization of the uncertainty, despite being the most
intuitive, can quickly lead to an intractable number of
constraints. Suppose the Jacobian ∂π of π(·, w) lies in the
convex hull of a set of known matrices

∂π(u,w) ∈ co
{

Π̃i, i = 1, ..., ν
}
, ∀u ∈ U , w ∈ W,

then, for all w ∈ W the Clarke generalized Jacobian of the
approximate gradient Fw defined in (17) is satisfies ∂CFw ∈
J poly, with

J poly := co
{
H + ηΠTQjΠ̃i, i = 1, ..., ν, j = 1, ..., 2m

}
,

where the matrices Qj are diagonal with all possible com-
binations of diagonal elements in {0, 1}. Let Mji = QjΠ̃i,
from Propositions 3 and 5 we know that, under Assump-
tion 1, if we find P ∈ P such that

(H + ηΠTMji)P + P (H + ηΠTMji)
T < ρP (18)

for i = 1, ..., ν, j = 1, ..., 2m, then the OAG algorithm
converges to the unique online approximate solution. Even
for this simple example, we obtain condition (18) with p ·2m
LMI constraints, which become intractable even for fairly
low-dimensional problems.

B. LFT uncertainty

Let us now consider a different parametrization for the
uncertainty in the map π. Suppose that for all w ∈ W , u ∈ U

∂π(u,w) = Πnom + ∆π(u,w), ‖∆π(u,w)‖ ≤ γ , (19)

where Πnom is a nominal value or “best guess” for ∂π
at normal operating conditions. By differentiating (17), one
may deduce that for all w ∈ W the Clarke generalized
Jacobian of the mapping Fw defined in (17) satisfies ∂CFw ∈
J lft, where

J lft := {H + ηΠT∆q(Πnom + ∆π) |
∆q ∈ Dm, 0 4 ∆q 4 Im, ‖∆π‖ ≤ γ}.

One can verify that each element J of J lft can be written
as J = A+B(I −∆D)−1∆C with[

A B
C D

]
=

 H ηΠT 0
Πnom 0 Im
In 0 0

 (20)

and ∆ = blkdiag(∆1,∆2) with ∆1 = ∆q and ∆2 = ∆π .
Using the recipes from Section IV-C, since the jth diagonal
element of ∆1 is an independent scalar uncertainty in [0, 1]
and ∆2 is unstructured and norm-bounded, we can show that
all ∆ ∈∆ satisfy (11) with Θ of the form

Θ :=


m∑
j=1

Θj

∣∣∣∣∣ϕj ≥ 0, θ ≥ 0

 , (21)

with

Θj :=

 0 0 ϕj eje
T
j 0

0 θ
m In 0 0

ϕj eje
T
j 0 −2ϕj eje

T
j 0

0 0 0 − θ
mγ2

Im

 ,
where ej is the jth canonical vector in Rm. From Propo-
sitions 3 and 5 we know that, under Assumption 1, if we
find P ∈ P and Θ ∈ Θ such that the single LMI (12) is
satisfied, then the OAG algorithm converges to the unique
online approximate solution.

VI. EXAMPLES AND APPLICATIONS

In this section we illustrate the robustness properties of
the OAG algorithm on a numerical example and on a timely
engineering application in the context of power systems.

A. OAG numerical example

In order to validate Propositions 3 and 5, we consider the
following physical system

y = π(u,w) =

{
u1 + u2

w1 sin(u1)− u1 + w2 cos(u2) + u2

where w ∈ W = [0, 1]2 is an unknown disturbance. Given
the set U = [−5, 5]2. We are interested in the following
optimization problem

min
u∈U

uTQ1u+ cT1u+ yTQ2y + cT2 y

y = π(u,w)
(22)

with Q1 = I,Q2 = 10I, c1 = [0,−9]T, c2 = [−10, 9]T. We
choose Π =

[
1 1
−1 1

]
to run OAG algorithm. It is easy to see

that ∂Fw ∈ J poly, where J ∈ J poly = I2 + 10 ΠTΠ̃ with

Π̃ ∈ co

{[
1 1
0 0

]
︸ ︷︷ ︸

Π̃1

,

[
1 1
0 2

]
︸ ︷︷ ︸

Π̃2

,

[
1 1
−2 2

]
︸ ︷︷ ︸

Π̃3

,

[
1 1
−2 0

]
︸ ︷︷ ︸

Π̃4

}
.

By inspection, we observe that ΠTΠ̃i + Π̃T
i Π < 0, i =

1, ..., 4 and therefore (10) is satisfied with P = I , ρ = 1.
By Proposition 3 the OAG algorithm converges to an online
approximate solution of (22) for any w ∈ [0, 1]2. The
evolution of the OAG algorithm (for w = [1, 1]T), which
uses the linear model and real-time feedback but does not



have information on w and π is shown if Figure 2, where
it is compared with evolution the standard gradient method
(Algorithm 1) (that uses full information about w and π) for
one hundred random initial conditions. Both algorithms were
implemented with a step-size τ = 0.01. As we observe in
Figure 2, since the operator Fw is strongly monotone, the
OAG algorithm always converges to a single point while the
gradient method can converge to different local minima.
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Fig. 2. Comparison of the OAG algorithm (Algorithm 2) and the standard
gradient method (GM Algorithm, 1). The OAG algorithm converges to
the unique online approximate solution, whose quality depends on the
choice of Π. The yellow (x) marks the solution of the approximate convex
program based on the linearization (i.e. the problem obtained by substituting
y = Πu in the constraints of (22)). Clearly, this naı̈ve solution is greatly
outperformed by the OPE algorithm. There is no visible difference between
the OPE algorithm and the GM in the number of iterations needed for
convergence.

B. Robust feedback optimization of a distribution feeder
In this section we illustrate how the LFT robustness test

introduced in Section V-B can be used to certify robust
stability of the OAG algorithm used to optimally manage
the operation of a distribution feeder with high renewable
penetration. The feeder, whose details can be found in [4],
is illustrated in Figure 3. We simulate ten hours using real
data from Anatolia, CA, USA, for solar irradiance and load
consumption with granularity of one second. Let u ∈ R36

collect all controllable active and reactive power injections
at the PV buses, w ∈ R70 collects all uncontrollable loads
and power injections (active and reactive) at every node and
y ∈ R35 collects the voltage magnitude at every node (except
the PCC). The lower and upper voltage limits are u = 0.95
p.u and u = 1.05 p.u. Given the available active power for

12

3 4

56

7

8910

11 12 13

14

1516

17

18

19

20

21

2223

24

25

26

272829

30

31

32

33

34 3536

Fig. 3. IEEE 37-node feeder. Node 1 is the Point of Common Coupling
(PCC). All other nodes are connected to a load and a voltage sensor. The
square nodes are equipped with PV systems. The OAG algorithm is used
to optimally decide curtailment of the PV systems in real-time in order to
limit over-voltage.

every PV {pmax
i }18

i=1 and the rated apparent power of every
PV inverter {srated

i }18
i=1, we define the closed convex power

constraint sets

Ui := {ui = [pi, qi]
T | 0 ≤ pi ≤ pmax

i , q2
i + p2

i ≤ srated
i },

and the set U = ×18
i=1Ui. Within normal operating ranges,

there exists a function y = π(u,w) that relates relates
power injections (controllable and uncontrollable) to voltage
magnitudes.3 We formulate the optimization problem

min
u∈U

‖u− uref‖2 +

m∑
i=1

{
max(0, y − yi, yi − y)

}2

s.t. y = π(u,w).

(23)

where uref ∈ R36 is equal to the available PV power pmax
i for

the element of u corresponding to pi and 0 for the element
of u corresponding to qi, for all i = 1, ..., 18.

We set Πnom ∈ R35×36 to be Jacobian of the power flow
equations of the feeder with the zero load profile and voltage
magnitude of 1 p.u. at the PCC. In order to obtain a bound
of the form (19), we sampled 10,000 operating points by
randomly choosing both u and w from the power injections
data and constructed the Jacobian from the controllable injec-
tions to the voltage magnitude using the method from [22].
The error ‖∂π(un, wn) − Πnom‖ of each sample is shown
in Figure 4. As a safety factor, we multiplied the maximum
empirical error observed by 1.1 to obtain γ = 1.43.

In order to certify the stability of the OAG algorithm for
all possible maps that satisfy (19), we follow the procedure
outlined in Section V-B. In particular, we construct the
matrices (A,B,C,D) as in (20) and the cone Θ as in (21).
We use Π = Πnom, and we can solve the single LMI (12)
for Θ ∈ Θ, with P = I and ρ = 0.45 (0.59 s using MOSEK
on 2.5 GHz Intel Core i7 processor).

By Proposition 3, the OAG algorithm is robustly stable
with respect to the uncertainty and reaches the unique online
approximate solution (which is, of course, different for every
w). Figure 5 shows a simulation of the OAG algorithm for
problem (23) applied to the IEEE37 bus system. The al-
gorithm uses feedback on voltage measurements, which are
computed by solving the AC power flow equations with

3Treatment of robust stability of the OAG algorithm over a manifold
0 = π(u,w, y) is beyond the scope of this paper.

John Simpson-Porco
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Fig. 4. In order to estimate a norm bound γ for the approximation error
‖∂π(u,w)−Πnom‖ we sampled 10,000 operating points (by changing both
u and w). The red line in the plot show the chosen value of γ = 1.43 used
for the LMI test. Since the LMI test is feasible, we can guarantee robust
stability for all π such that ‖∂π(u,w)−Πnom‖ ≤ γ.

MATPOWER at each time-step. The OAG is robustly stable
(as predicted by the solvability of the LMI (12) and Propo-
sition 3) and is able to significantly reduce over-voltage.

Fig. 5. Comparison of OAG vs no control for the IEEE37 test feeder. The
disturbance w (uncontrollable power injections and solar radiation) is taken
from real data from Anatolia CA.

VII. CONCLUSIONS

In this paper we studied a gradient-based optimization
algorithm applied in feedback to a physical system. We
characterized the equilibria of the feedback interconnection
and we proposed a framework based on robust control theory
to verify robust stability with respect to model mismatch
and external disturbances. The results were illustrated on a
realistic example from power systems. The first interesting
extension is to use the LMI conditions from this paper to
obtain linear approximations Π which are robustly stable
by design. Future work on will aslo focus on the robust
stability analysis of more complex online algorithms that
make better use of the available model information and
real-time measurements. Further, for the specific case of
power systems, we believe that combining tailored model
uncertainty descriptions and pre-processing to identify (and
remove) redundant constraints from the problem formulation

(see e.g. [23]) will certainly lead to less conservative robust
stability guarantees.
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