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Abstract— This paper investigates the input-output perfor-
mance of secondary frequency controllers through the control-
theoretic notion of H2 norms. We consider a quadratic objective
accounting for the cost of reserve procurement and provide
exact analytical formulae for the performance of continuous-
time aggregated averaging controllers. Then, we contrast it with
distributed averaging controllers– seeking optimality conditions
such as identical marginal costs– and primal-dual controllers
which have gained attention as systematic techniques to design
distributed algorithms solving convex optimization problems.
Our conclusion is that while the performance of aggregated
averaging controllers, such as gather & broadcast, is indepen-
dent of the system size and driven predominantly by the control
gain, the plain vanilla closed-loop primal-dual controllers scale
poorly with size and do not offer any improvement over feed-
forward primal-dual controllers. Finally, distributed averaging-
based controllers scale sub-linearly with size and are indepen-
dent of system size in the high-gain limit.

I. INTRODUCTION

Power networks are designed to operate around a nominal
frequency (e.g., 50Hz or 60Hz) and deviations from this
nominal value indicate the global imbalance of power supply
and demand. Frequency is, therefore, arguably the most im-
portant measurement signal available within the grid, and is
taken as a controlled output for controller design over several
time-scales to balance supply and demand. To restore the
frequency to the nominal operating regime, three hierarchical
controls are typically in place. The primary control is a P-
control implemented at sources [1] or loads [2], operates
over fast time-scales, stabilising the grid to an off-nominal
frequency. The secondary control is an integral action which
drives the steady-state deviation from the nominal frequency
to zero. Such a control is carried out either through cen-
tralized approaches such as Automatic Generation Control
(AGC) or via decentralized local integral control and does not
usually preserve power sharing. The tertiary controls operate
on even slower time-scales and aim to minimise the cost of
generation, reserves and satisfying operational constraints.
This combined optimization problem is referred to as the
optimal frequency regulation problem (OFRP).

With the expanding integration of distributed generation
in the grid, there is a need to revisit the way OFRP is
solved as centralised approaches may no longer be efficient
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in this paradigm. Intermittent renewable sources lead to
fast fluctuations in power supply which must be balanced
by spinning reserves, which are currently– expensive, fast-
ramping natural gas generators. Frequency control too, needs
to be distributed across both the generation and load side
to enhance resilience. Controllable power electronic devices
offering such regulation need to respond based on min-
imal information and ideally without detailed knowledge
of system parameters or generation/load forecasts. In [3]
it was shown that the standard primary-secondary control
dynamics of a power network can themselves be interpreted
as a primal-dual algorithm for solving an OFRP. Other
related works include [4]–[6]. The shared characteristics of
these primal-dual control strategies are (a) a heavy reliance
on power system model information, (b) measurement of
power injections/demands or branch-wise power flows, and
(c) inter-bus communication of primal or dual variables.

An alternative approach to OFRP based on distributed
averaging was proposed in [7], and developed further in the
series of papers [8]–[10]; see also [11]–[14] for related work
on averaging-based secondary frequency controllers. Rather
than being derived from gradients of a Lagrangian, con-
trollers in this class are consensus-based, ‘seeking identical
marginal costs’, and designed such that the desired optimizer
is a stable equilibrium point. The shared characteristics
among these averaging-based controllers are (a) one or more
integral control states, and (b) a consensus term implemented
through inter-bus communication driving the source marginal
costs towards one another.

In broad strokes then1, we have three large classes of
stabilizing controllers which achieve optimal frequency reg-
ulation, the gather & broadcast averaging, the distributed
primal-dual method and finally leveraging distributed av-
eraging algorithms. Two natural questions arise: (1) when
implemented online as controllers, how well do primal-
dual algorithms reject disturbances and (2) how do these
disturbance rejection properties compare with the disturbance
rejection properties of the averaging-based controllers? Our
goal here is to assess and compare the quadratic input-output
performance (i.e., H2) of the OFRP for these three classes
of secondary controllers.

The main contributions of this paper are as follows. We
apply and extend some of our previous results in [16], [17] to
the OFRP for power systems. In Section III, we provide sim-
ple and exact analytical formulae for the H2 performance of
closed-loop aggregation-based algorithms subject to load and

1For completeness, we note that there are distributed strategies which
do not fit cleanly into either of the primal-dual or averaging categories of
controllers, such as the λ-iteration based controller in [15]. Here we will
focus only on primal-dual and averaging-based controllers.



generation disturbances by considering as controlled output,
the cost of the optimization problem. In Section IV-A and
Section IV-B we study the H2 performance of closed-loop
primal-dual and distributed averaging-based controllers for
the OFRP. Under some simplifying assumptions, we provide
exact analytical results showing that in the limit of high gain
consensus, the closed-loop system’s H2 performance under
distributed averaging-based controllers becomes completely
independent of system dimensionality, converging to the
performance of the broadcast controllers. In Section V we
provide a detailed discussion and comparison of primal-
dual, distributed averaging-based, and broadcast controllers.
Then, we take a numerical approach and examine system per-
formance for more general objective functions. The results
confirm the conclusions that distributed averaging-based,
broadcast controllers offer superior disturbance rejection than
primal-dual controllers.

II. POWER NETWORK MODELING AND H2 NORMS

A. Power Network Modeling

We model a power network as a weighted graph (V, E)
where V = {1, . . . , n} is the set of nodes (buses) and
E ⊂ V × V is the set of edges (branches) with associated
edge weights bij > 0 for {i, j} ∈ E . For each bus i ∈ V we
associate state variables (θi, ωi) corresponding to the voltage
phase angle and the frequency deviation from nominal.
Under the linear DC Power Flow approximation, the system
evolves according to the swing dynamics[

θ̇
Mω̇

]
=

[
0 In
−L −D

] [
θ
ω

]
+

[
0

P ? + p

]
, (1)

where M = diag(mi), D = diag(di), mi > 0 represents
inertia or inverter filter time constant, di > 0 models
damping and/or droop control, P ? is vector of constant
nominal active power injections, L is the network Laplacian,
p is the vector of control inputs corresponding to additional
power generation from reserves, and 0 is a matrix/vector
of zeros of appropriate dimension. Throughout, we ignore
reactive power and voltage dynamics; these assumptions are
standard in secondary frequency control studies.

When p = 0n, the dynamics (1) converge from ev-
ery initial condition to a common steady-state frequency
ω → ωss1n which can be easily calculated to be ωss =
(
∑n
i=1 P

?
i )/(

∑n
i=1 di). When ωss 6= 0, this represents a

static deviation from nominal, which we will eliminate by
appropriately selecting the reserve secondary power inputs
p. Moreover, since the variables P ?i will tend to vary, feed-
back control should be used to provide real-time frequency
regulation. To determine the steady-state values for pi, an
OFRP can be formulated as

minimize
p∈Rn

n∑
i=1

1

2
kip

2
i (2a)

subject to 0 = 1>n (P ? + p) , (2b)

where we seek to minimize the total cost2 (2a) of reserve
generation pi ∈ R, for some cost coefficients ki > 0.
The minimization is subject to network-wide balancing of
power injections (2b). One may deduce from (1) that the
constraint (2b) also ensures that ω = 0n in steady-state,
i.e., the frequency returns to its nominal value. The vec-
tor of optimal power inputs can be computed as popt =
−(1>nP

?/1>nK
−11n)K−11n, where K = diag(ki).

B. System Performance in the H2 Norm

We very briefly review H2 norms of a linear system,
which is used to evaluate the performance of the secondary
frequency controllers. Consider the MIMO continuous-time
LTI system, G = (A,B,C) with a state-space description

ẋ = Ax+Bη

y = Cx ,
(3)

where η, y are the input, output respectively, and A is
Hurwitz. If (3) is input-output stable, its H2 norm, ‖G‖H2

measures the steady-state output variation under stochastic
disturbances, i.e.,

‖G‖2H2
= lim
t→∞

E[y(t)>y(t)] ,

when each component of η(t) is stochastic white noise
with unit covariance (i.e., E[η(t)η(τ)>] = δ(t − τ)I). A
convenient formula for the H2 norm is [19, Chapter 6]

‖G‖2H2
= Tr(B>XB) , (4)

where X = X> > 0 is the observability Gramian satisfying

XA+A>X + C>C = 0. (5)

If the pair (C,A) is observable, then (5) is solvable for the
unique, positive-definite observability Gramian.

NEXT, we will derive results on the H2 performance for
different algorithms under disturbances by explicitly solving
(5) for particular cases. Recent applications of the H2 norm
to power system performance may be found in [20], [21].

III. BROADCAST ALGORITHM PERFORMANCE FOR
OPTIMAL FREQUENCY REGULATION

In this section we examine the H2 performance of closed-
loop centralized algorithms for the OFRP (2). In particular,
we examine the performance of the centralized frequency
averaging algorithm. These centralized results will serve as
useful benchmarks for later comparison to results derived for
distributed algorithms.

Beginning from the OFRP (2) and partially following [2],
the Lagrangian of (2) is given by

Lg(p, µ) =
1

2
p>Kp+ µ1>n (P ? + p) ,

where µ ∈ R is a multiplier. On computing the
argminp L

g(p, µ), one finds that popt = −µK−11n is the

2A linear term could also of course be added to the cost, but we omit
it here for simplicity. We assume that any inequality constraints on p are
non-binding, and subsequently drop them from the problem (2), which is
then similar to the classic economic dispatch (see [18]).



unique minimizer. Next, we assume the existence of a central
aggregator [9], [11], [14] which collects frequency measure-
ments from each bus in the network. The aggregator averages
the frequency errors, integrates the result, and broadcasts
control signals back to each bus via

τµµ̇ =
∑n

j=1
rjωj , (6a)

p = −µK−11n (6b)

where τµ > 0 is a scalar gain and {ri}ni=1 are a set
of convex coefficients. Note that the dynamics in (6) en-
capsulate Automatic Generation Control (ACG), Centralised
Averaging PI (CAPI), and Gather & Broadcast schemes.
Now consider the interconnection of the central averaging
controller (6) with the power system dynamics (1). One
may verify without much effort that (θopt, ωopt, µopt) =
(θopt,0n,1>nP

?/(1>nK
−11n)) is the unique3 stable equilib-

rium point of the interconnection and µopt is optimal for
(2). We therefore obtain frequency regulation. To study the
input-output performance, we translate this equilibrium to the
origin and assume that the power injection vector P ? is cor-
rupted by an additive noise (modeling fluctuating generation/
load, noise, or other uncertainties) B1η, for B1 ∈ Rn×n. As
the performance output, we select ‖y(t)‖22 = p>Kp. Under
this scenario, the closed-loop input-output dynamics, with
the transformation ϕ = E>θ in vector form is ϕ̇

Mω̇
τµµ̇

 =

 0 E> 0n−1
−E −D −K−11n
0>n−1 1>nR 0

ϕω
µ

+

 0
B1

0

 η,
y = −(K−

1
2 1n)µ ,

(7)
where E is the incidence matrix, R = diag(r1, . . . , rn).

Assumption 1 (Uniform Parameters): Throughout the pa-
per we assume uniform parameters, i.e., M = mIn, D =
dIn, B1 = bIn, and R = 1

nIn. While the assumption is
restrictive, it allows us to derive some benchmark results.

Assumption 2 (Communication Topology): We assume
that the communication through which the controller is
implemented has the same structure as the underlying
electrical network modulo a constant factor γ > 0, i.e.,
Lc = EcE

>
c = γEE> = γL. Furthermore, we assume

the the underlying network is acyclic for simplicity. This
assumption can be relaxed without affecting the conclusions.

Assumption 3 (Identical Costs): We assume that the cost
of reserve procurement is identical, i.e., K = kIn.

The following result characterizes the H2 norm of the
system for a simplifying choice of parameters.

Theorem 3.1 (Performance of Broadcast Algorithm):
We consider the centralized averaging OFRP dynamics
(7) with disturbances η and performance outputs y. Under
Assumptions (1)–(3) and for some τµ, b > 0, we have that
the squared H2 norm of (7) is

‖G‖2H2
=

b2

2τµ

1

d
. (8)

3Up to a uniform translation of all phase angles.

Proof: Please refer to [22] for the proof.
Note that the broadcast averaging algorithm does not scale

with the system size, further for sufficiently large networks
and moderate damping coefficients, the performance im-
provement in terms of disturbance rejection over the plain
vanilla gradient ascent algorithm in [17] is significant.

IV. DISTRIBUTED ALGORITHM PERFORMANCE FOR
OPTIMAL FREQUENCY REGULATION

In this section we assess the performance of distributed
primal-dual and averaging-based frequency controllers for
power systems.

A. H2 Performance of Primal-Dual Frequency Controllers

We recall from the Lagrangian of (2) that the dual function
Φ(µ) = infp∈Rn Lg(p, µ), and the OFRP becomes

maximize
µ∈R

Φ(µ) =

n∑
i=1

µP ?i −
1

2ki
µ2 , (9)

where we seek to maximize Φ(µ) over µ ∈ R. On intro-
ducing local variables µi ∈ R for each bus and a consensus
constraint, the problem (9) is again equivalent to

maximize
µ∈Rn

∑n

i=1
µiP

?
i −

1

2ki
µ2
i

subject to 0 = µi − µj , {i, j} ∈ Ec ,
(10)

where Ec is the edge set of a connected, undirected, and
acyclic communication graph (V, Ec) between the buses. The
additional constraints µi − µj = 0 force the local variables
µi to agree at optimality. By letting Ec ∈ Rn×|Ec| denote the
incidence matrix [23] of the communication graph, the dual
OFRP (10) is written in vector notation as

minimize
µ∈Rn

1

2
µ>K−1µ− (P ?)>µ

subject to 0|Ec| = E>c µ ,

(11)

where now µ = (µ1, . . . , µn). The problem (11) is a linearly
constrained, strictly convex quadratic program. The corre-
sponding Lagrangian is Lg(µ, ν) = 1

2µ
>K−1µ− (P ?)>µ+

ν>E>c µ, where ν ∈ R|Ec| is a vector of multipliers. The
primal-dual algorithm [16] with control p thus becomes

Tµµ̇ = −K−1µ+ P ? − Ecν ,

Tν ν̇ = E>c µ, p = −K−1µ ,
(12)

where Tµ and Tν are positive diagonal matrices of controller
gains. We note that the algorithm (12) does not make use of
any real-time state information from (1), but instead requires
knowledge of the nominal power injections P ? to determine
the optimal feed-forward set-point for p.

A common variation (see, for example, [6]) on the primal-
dual frequency controller (12) is to add frequency deviation
feedback to the state equation for µ as

Tµµ̇ = −K−1µ+ P ? − Ecν + αK−1ω , (13)



where α > 0 is a gain (typically equal to one). In vector
form, the closed-loop dynamics now read as

ϕ̇
Mω̇
Tµµ̇
Tν ν̇

=


0 E> 0 0
−E −D −K−1 0
0 αK−1 −K−1 −Ec

0 0 E>c 0



θ
ω
µ
ν

+


0
B1

B1

0

 η
y = −K− 1

2µ,
(14)

where the output is same as in (7). We denote the associated
input-output map of this modified system (14) by G(α).
When we set α = 0, the system (14) reduces to the
cascade of the primal-dual algorithm with the power system
dynamics (1), and for Tµ = τIn, Tν = τIn, the H2 norm
‖G(0)‖2H2

= (b2/2τ)n [17, Theorem 4.1]. While naively
one may expect that adding real-time frequency information
to the algorithm should improve performance, observe that
a non-zero α term introduces additional skew-symmetric
structure in the system matrix of (14) (for α = 0 (14) is
a simple cascade system), suggesting additional oscillations
and therefore, worse transient performance.

Theorem 4.1 (Primal-Dual Performance): We now con-
sider the closed-loop primal-dual dynamics (14) with dis-
turbance inputs η and performance outputs y, and with
additional frequency feedback. We assume that Assumptions
(1)–(3) hold and that Tν , and Tµ are multiples of the identity
matrix. Then for α ≥ 0, the H2 norm of (14) satisfies

‖G(α)‖2H2
≤ b2

2τ
n+

b2αn

2m
.

Proof: Please refer to [22] for the proof.
Theorem 4.1 indicates that in the special case considered

— the additional frequency feedback considered in (13) does
not improve controller performance, and in fact worsens it
compared to the original feed-forward design (12). We refer
the reader to Table I for a numerical analysis.

B. H2 Performance of Distributed Averaging-Based Fre-
quency Controllers

An alternative approach for optimal frequency regulation
of power systems was proposed in [7], based on distributed
averaging algorithms. To begin, we return to the OFRP (2),
and we note that the constraint (2b) is satisfied if and only
if there exists a vector v ∈ Rn such that 1>n v = 0 and
P ? + p− v = 0n. Moreover, any such v is in the image of
the network Laplacian matrix L, and hence can be written
(with some notational foresight) as v = Lθ for θ ∈ Rn. The
OFRP (2) is therefore equivalent to

minimize
θ∈Rn, p∈Rn

∑n

i=1

1

2
kip

2
i (15a)

subject to 0n = P ? − Lθ + p . (15b)

Comparing the dynamic equations (1) and the hard constraint
(15b), we see that in steady-state ω = 0n, and therefore
frequency regulation is achieved. The optimal points of (15)
can in fact be exactly determined as follows, the proof of
which follows from applying the KKT conditions.

Proposition 4.2 (Optimal Secondary Inputs and States):
The unique4 primal optimizer (popt, θopt) of the OFRP (15)
is given by

popt = − 1>nP
?

1>nK−11n
K−11n, θopt = L†(P ? + popt), (16)

where L† is the pseudo-inverse of the network Laplacian L.
In contrast to primal-dual algorithms which derive from

gradients of the desired cost function, averaging-based strate-
gies are carefully designed to converge to the optimal points
(16) such as identical marginal costs. The secondary control
input p = K−1λ in (1) is designed component-wise as

τiλ̇i = −ωi −
∑n

j=1
aij(λi − λj), (17)

where τi is a controller gain, ki is the cost coefficient from
the optimization problem (15), and the coefficients aij =
aji ≥ 0 are the elements of a symmetric adjacency matrix
Ac = A>c ∈ Rn×n describing a weighted, undirected and
connected communication network (V, Ec) among the buses.
The first term in (17) integrates the frequency error, while
the second term uses inter-bus communication to drive the
unconstrained marginal costs kipi for each bus towards one
another. In vector notation, the controller (17) reads as

TKṗ = −ω − LcKλ, (18)

where T = τIn is a diagonal matrix of controller gains
and Lc = diag(Ac1n)−Ac = γL is a symmetric Laplacian
matrix for γ > 0. The following result indicates convergence
of these dynamics to the global minimizer of (15); see [10]
for a proof using first-order inverter dynamics.

As we did in Section IV-A for the primal-dual frequency
controller, we now study the input-output performance of
the distributed averaging controller when the nominal power
injections P ? are subject to disturbances. We again shift
to error coordinates, and as a performance output we take
the controller state p with weighting matrix K from the
optimization problem (15) by selecting y = K

1
2 p, such that

‖y(t)‖22 = p>Kp. The corresponding input-output dynamics
of (1), (18) are θ̇

Mω̇
TKṗ

 =

 0 In 0
−L −D In
0 −In −LcK

θω
p

+

 0
B1

0

 η
y = K

1
2 p,

(19)

where the output is same as in (7). In general, computing an
insightful analytic formula for the H2 norm of the system
(19) is difficult. Under Assumptions (1)–(3), however, the
norm can be computed in closed-form.

Theorem 4.3 (Distributed Averaging Performance):
Consider the closed-loop power system (19) under
the distributed averaging-based controller (18), with
performance output ‖y(t)‖22 = p>Kp and disturbance input
η ∈ Rn. Then the squared H2 norm of the system (19) is

‖G‖2H2
=
b2

2τ

1

d

n∑
i=1

1

z2λ2i + z1λi + 1
, (20)

4Up to a uniform rotation of all phase angles θ.



where z2 = mkγ2/τ , z1 = mγ/(dτ) + kdγ + kτ , and λi is
the ith eigenvalue of the grid Laplacian matrix L. Moreover,
the following special cases hold:

(i) Overdamped Limit: It holds that

lim
m→0

‖G‖2H2
=
b2

2τ

1

d

n∑
i=1

1

1 + (kτ + kdγ)λi
; (21)

(ii) High Averaging Gain: It holds that

lim
γ→∞

‖G‖2H2
=
b2

2τ

1

d
. (22)

Proof: Please refer to [22] for the proof.
While the general formula (20) is somewhat opaque, the

overdamped limit (21) is considerably simpler, and applies
when generators have small inertias or when measurement
and actuation delays at inverters are negligible [24]. In both
the general case (20) and the overdamped limit (21), the
squared H2 norm is given by a sum of network modes, with
the terms in the sum scaling inversely with the eigenvalues
of the grid Laplacian. Since in realistic networks the Lapla-
cian eigenvalues {0, λ2, λ3, λ4, . . .} are a rapidly increasing
sequence, this implies that the squared H2 norm (20) scales
sub-linearly with system size.

Of particular interest is the fact that the terms in the
sum scale inversely with γ, the gain on the averaging term
in the controller. The special case (ii) indicates that the
H2 norm can be suppressed by increasing γ sufficiently.
Note in particular that in the high-gain limit (22), the H2

norm is independent of system size and identical to the
broadcast performance (8). This appears to be a fundamental
difference between the averaging-based controllers and the
open-loop primal-dual controller (12). Intuitively, the high
averaging gain limit forces the agents to quickly agree on
their unconstrained marginal costs kipi, which immediately
minimizes the cost (2a) in the absence of the equality
constraint (2b). The remaining slow dynamics for p are one-
dimensional, driving the system towards feasibility of the
equality constraint (2b), and hence to frequency regulation.

V. DISCUSSION AND SIMULATIONS

We now make some general comments comparing the
three classes of controllers, delineating their relative advan-
tages and disadvantages.

The primal-dual based controllers are quite flexible, in that
they can be modified to handle hard inequality constraints
and strictly convex objective and lead to a systematic design
procedure. However, they typically require model informa-
tion such as inertia and damping coefficients, line suscep-
tances, or in the case of (12), disturbance measurements.
The resulting algorithms also tend to assign dynamic states
to edges of the network, requiring additional processors for
distributed implementation. The primal-dual controller (12)
is an online method to compute the optimal feed-forward
input p given measurements of the disturbances affecting
P ?, suggesting that it is potentially non-robust to modeling
errors and parametric uncertainties. It remains unclear to
what extent the modification (13) remedies this, or how
communication delays will influence algorithm stability.

The broadcast-based controllers on the other hand are
comparatively simpler to understand. They rely on a single
system-wide integrator to average the frequency errors and
broadcast the control signals back to each bus. They do
not need model information for implementation and are
true feedback controllers measuring only the local frequency
and produces a corresponding control input, requiring no
disturbance measurement. Though easier to implement and
tune, the presence of only one controller renders them less
robust to communication malfunctions.

Distributed averaging strategies such as (17) are a concate-
nation of an integral control and an averaging of the marginal
costs. The implementation is comparatively simpler than the
primal-dual controllers, requiring only one control state to be
assigned to each bus. Similar to broadcast controllers, they
too do not need model information. Moreover, the consensus-
type algorithms on which these controllers are founded are
known to be quite robust to communication malfunctions
such as asynchronism, delays, and packet losses [25]. The
main disadvantage of distributed averaging controllers is that
it is yet unknown how to accommodate hard constraints.
Moreover, convergence of the algorithm for non-quadratic
cost functions (see [14, Equation 11]) in the OFRP remains
an open research problem.

Finally, primal-dual controllers tend to suffer from scala-
bility issues (see [17] for augmented Lagrangian implemen-
tation to counteract this) and feedback controllers based on
averaging approaches perform much better in large networks.

To numerically examine the various controllers discussed
in the paper, we consider an acyclic network of 5 nodes and
with identical parameters– m = 1, d = 1, τµ = τν = 6,
k = 4, and b = 1. Though we do not explicitly consider the
system frequency in the performance output y, we report
the numerical observations in Table I. The performance
‖G‖2H2

of the three controllers, with a modified objective
y = diag(K

1
2 p,Π

1
2ω) for Π = πIn is tabulated as a function

of the frequency penalty
√
π. Note that as we increase

the feedback gain α, the primal-dual performance degrades.
Further, the broadcast and the distributed algorithm (γ = 5)
have almost identical disturbance rejection.

TABLE I: The squared H2 norms for the primal-dual, broadcast,
and distributed controllers with a varying penalty on ω.

ω penalty Primal-Dual Primal-Dual Distributed Broadcast
√
π α = 0 α = 5 γ = 5

0.0 0.417 0.569 0.088 0.083
0.3 0.639 0.791 0.311 0.308
0.6 1.307 1.458 0.981 0.983
0.9 2.421 2.569 2.095 2.108
1.2 3.980 4.125 3.656 3.683
1.5 5.984 6.125 5.663 5.708

In Figure 1, we consider non-uniform parameters for M ,
D, K. Note that the system performance (measured as the
steady-state variance of the output y for white noise input
η) is in consonance with the theoretical results derived



previously for uniform parameters.

9,500 9,600 9,700 9,800 9,900 10,000
−1
−0.5

0
0.5
1

Primal-Dual

9,500 9,600 9,700 9,800 9,900 10,000
−0.3
−0.15

0
0.15
0.3

Broadcast

9,500 9,600 9,700 9,800 9,900 10,000
−0.3
−0.15

0
0.15
0.3

t(s)

Distributed

Fig. 1: The time series (steady-state) of the performance outputs
(note the scale difference) for primal-dual (α = 1), broadcast, and
distributed (γ = 1) controllers for white noise inputs and non-
identical M , K, D parameters.

VI. CONCLUSIONS

We have quantified the input-output performance of sec-
ondary frequency controllers of power systems and compared
the H2 performance of continuous-time primal-dual, dis-
tributed averaging, and broadcast methods providing explicit
formulae. Our findings indicate that the performance of
plain vanilla primal-dual controllers with frequency feedback
scales poorly with system size and does not improve per-
formance over the feed-forward open-loop implementation.
Further, for aggregated averaging (broadcast) algorithms, the
performance is predominantly determined by the control
gains and independent of the system size. Standard dis-
tributed averaging algorithms, seeking optimality conditions
such as identical marginal costs suffer from sub-linear depen-
dence on system size. This can be improved by high control
gain, which retrieves the broadcast performance.

An important extension of this work would be to consider
objective functions other than control effort or cost of reserve
generation– for example investigate the system performance
for objectives involving frequency excursions or a combina-
tion thereof theoretically (we provide numerical results). It is
also currently unclear how the present results change when
including measurement noise in the frequency measurements
or when considering higher-order generator dynamics such
as governors, frequency-dependent loads, and static loads.
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