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Analysis and Synthesis of Low-Gain Integral
Controllers for Nonlinear Systems

John W. Simpson-Porco, Member, IEEE

Abstract—Relaxed conditions are given for stability of a
feedback system consisting of an exponentially stable multi-
input multi-output nonlinear plant and an integral controller.
Roughly speaking, it is shown that if the composition of the
plant equilibrium input-output map and the integral feedback
gain is infinitesimally contracting, then the closed-loop system
is exponentially stable if the integral gain is sufficiently low.
The main result is illustrated with an application arising in
frequency control of AC power systems. We demonstrate how
the contraction condition can be checked computationally via
semidefinite programming, and how integral gain matrices can
be synthesized via convex optimization to achieve robust L2

performance in the presence of nonlinearity and uncertainty.

Index Terms—Nonlinear control, integral control, output reg-
ulation, linear matrix inequalities (LMIs), slow integrators, sin-
gular perturbation

I . I N T R O D U C T I O N

Tracking and disturbance rejection in the presence of model
uncertainty is one of the fundamental purposes of automatic
control. A case which commonly occurs in engineering practice
is that the system one wishes to control is complex, and no
accurate dynamic model is available, but it is however known
that the system is stable and is responsive to control inputs.
This stability may be inherent to the system, or may have been
achieved through a preliminary stabilizing feedback design. A
modest and practical design goal is then simply to improve
reference tracking and disturbance rejection performance via a
supplementary integral controller, without compromising sys-
tem stability. One concrete example of this problem is that of
frequency control for large-scale AC power systems, where the
Automatic Generation Control (AGC) system asymptotically
rebalances load and generation via integral action. In practical
AGC systems, the integral gain is set very low, to ensure that
the uncertain power system dynamics are not destabilized by
the supplementary feedback [1].

In the SISO LTI case, tuning such a supplementary integral
loop requires only that one know the sign of the plant DC gain;
the general MIMO LTI case is slightly more subtle. Consider
the continuous-time LTI state-space model

ẋ = Ax+Bu+Bww

e = Cx+Du+Dww
(1)

with state x ∈ Rn, control input u ∈ Rm, constant distur-
bance/reference signal w ∈ Rnw , and error output e ∈ Rp. For
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the reasons described previously, assume that A is Hurwitz.
One interconnects the system (1) with the integral controller

η̇ = −εe, u = Kη, (2)

where K ∈ Rm×p is a gain matrix and ε > 0. Let

G(0) = −CA−1B +D, Gw(0) = −CA−1Bw +Dw (3)

denote the DC gain matrices of (1) from u and w to e. Implicit
in the proof of [2, Lemma 3] is the following: if there exists
K such that −G(0)K is Hurwitz, then the feedback system
(1)–(2) is internally exponentially stable for sufficiently small
ε > 0. The existence of K such that −G(0)K is Hurwitz is
equivalent to G(0) having full row rank, and indeed a suitable
gain design is K = G(0)†, as used in [2, Lemma 3]. This
result was stated succinctly in [3, Theorem 3]; see also [4,
Lemma 1, A.2, A.3] for further details.

From a singular perturbation point of view [5], the low
integral gain ε induces a time-scale separation in the system
(1)–(2), and this is the perspective we will exploit going
forward. The key intuition is as follows. If ε is sufficiently
small in (2), then η(t) and u(t) change very slowly. Relatively
speaking then, the plant dynamics (1) are fast, and the output
signal e(t) will be well approximated by the quasi steady-state
relationship e(t) = G(0)u(t) +Gw(0)w. Substituting this into
(2) leads to the simplified slow time-scale dynamics

η̇ = −εG(0)Kη − εGw(0)w. (4)

In other words, the model (4) describes the closed-loop dynam-
ics when one ignores the fast plant dynamics. By inspection,
(4) is internally exponentially stable if and only if −G(0)K
is Hurwitz, which is again the Davison/Morari result.

Extensions of this LTI result to Lur’e-type systems [6], [7],
discrete-time systems [8], and to distributed-parameter systems
[9] have been pursued. In the full nonlinear setting, the most
well-known result is due to Desoer and Lin [10], who proved
that if the equilibrium input-to-error map of the plant is strongly
monotone, then a similar low-gain stability result holds; a
related condition was recently also used in [11, Equation (21)].
When specialized for LTI systems, the Desoer–Lin condition
states that G(0)+G(0)T should be positive definite; it therefore
does not properly generalize the Davison/Morari result. It
appears the only attempt to close this gap was reported in
[12], where Tseng proposed a design based on inverting the
Jacobian of the plant equilibrium input-to-error map. This
recovers Davison’s special design K = G(0)−1 in the (square)
LTI case, but in general yields a very complicated nonlinear
feedback. In sum, the available low-gain integral control results
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in the literature for nonlinear systems do not reduce as expected
in the LTI case, and the literature lacks systematic procedures
for constructing low-gain integral controllers for nonlinear and
uncertain systems. One goal of this paper is to close this gap.

While the design of traditional low-gain tracking controllers
is important in and of itself, another source of recent interest
in such low-gain methods in a nonlinear context has arisen
from the study of feedback-based optimizing controllers for
dynamic systems; see [13]–[17] for various recent works. In
this line of work, the controller does not attempt to track an
explicit reference, but instead attempts to drive the system
towards an optimal equilibrium point in the presence of an
unmeasured exogenous disturbance. As such controllers are
based on regulating a suitable measure of sub-optimality to
zero, the results we develop will also be applicable to this class
of “tracking-adjacent” problems.

Contributions: The broad goals of this paper are (i) to
understand when low-gain MIMO integral feedback can be
applied to a MIMO nonlinear system, and (ii) to leverage
modern robust control tools for the analysis and design of
such supplementary loops. These goals are largely inspired
by practical problems in power system control, and by the
foundational paper [2], which provided a constructive solution
in the LTI case. As a result of these goals, this work is some-
what disjoint from the modern literature on output regulation
(see [11], [18]–[20] for recent contributions) where the focus
is on quite different issues, such as nonlinear stabilization,
practical vs. asymptotic regulation, and the construction of
internal models. This work is therefore best understood as a
continuation of the line of research in [2], [10], [12].

There are two main contributions. First, in Section III we
present a generalization the main result of [10], providing
relaxed conditions on the plant’s equilibrium input-to-error
map which ensure closed-loop stability under low-gain integral
control. The main idea is to impose that the reduced time-
scale dynamics be infinitesimally contracting, which ensures
the existence of a unique and exponentially stable equilib-
rium point for all constant exogenous disturbances. Unlike
the conditions reported in [10], [12], this condition recovers
the Davison/Morari result that −G(0)K should be Hurwitz
when restricted to the LTI case, and allows for additional
flexibility over [10], [12]. We apply the results to show stability
of a nonlinear frequency regulation scheme for AC power
systems. Second, in Section IV we describe how semidefinite
programming can be used for certification of stability under
low-gain integral control, as well as for direct convex synthesis
of integral gain matrices which achieve robust performance.
These results apply equally in the nonlinear or in the uncertain
linear contexts, and are illustrated via academic examples.

A. Notation

For column vectors x1, . . . xn, col(x1, . . . , xn) denotes the
associated concatenated column vector. The identity matrix of
size n is In, and 0n is the zero vector of dimension n. The
notation P � 0 (resp. P � 0) means that the matrix P is
symmetric and positive (semi)definite. In any expression of
the form (?)TXY or

[
X Y

(?)T Z

]
, (?) is simply an abbreviation

for Y . For matrices X1, . . . , Xn, diag(X1, . . . , Xn) denotes
the associated block diagonal matrix. Given two 2× 2 block
partitioned matrices X =

[
X11 X12

X21 X22

]
and Y =

[
Y11 Y12

Y21 Y22

]
, we

define the diagonal augmented matrix

daug(X,Y ) =

X11 0 X12 0
0 Y11 0 Y12

X21 0 X22 0
0 Y21 0 Y22

.
Given a scalar-valued function V (x, y), ∇xV (x, y) and
∇Vy(x, y) denote its gradients with respect to x and y, respec-
tively. The space L p

2 [0,∞) denotes the set of measurable maps
f : R→ Rp which are zero for t < 0 with τ 7→ ‖f(τ)‖22 being
integrable over [0,∞), and L p

2e[0,∞) denotes the associated
extended signal space where τ 7→ ‖f(τ)‖22 is integrable
over [0, T ] for all T > 0; see, e.g., [21] for details. For
f ∈ L p

2 [0,∞), we let ‖f‖L2
= (
∫∞

0
‖f(τ)‖22 dτ)1/2.

I I . P R O B L E M S E T U P A N D A S S U M P T I O N S

We consider a physical plant which is described by a finite-
dimensional nonlinear time-invariant state-space model

ẋ(t) = f(x(t), u(t), w), x(0) = x0

e(t) = h(x(t), u(t), w)
(5)

where x(t) ∈ Rn is the state with initial condition x0, u(t) ∈
Rm is the control input, e(t) ∈ Rp is the error to be regulated
to zero, and w ∈ Rnw is a vector of constant reference signals,
disturbances, and unknown parameters.1 The maps f and h are
defined on a domain of interest Dx×Du×Dw ⊆ Rn×Rm×
Rnw . For fixed w, the possible equilibrium state-input-error
triplets (x̄, ū, ē) are determined by the algebraic equations

0n = f(x̄, ū, w), ē = h(x̄, ū, w).

We next lay out our main assumptions on the plant (5).

Assumption 2.1 (Plant Assumptions): For (5) there exist
sets X ⊆ Dx and I ⊆ Du ×Dw such that

(A1) f , h, and all associated Jacobian matrices are Lipschitz
continuous on X , uniformly with respect to (u,w) ∈ I;

(A2) there exists a continuously differentiable map πx : I → X
which is Lipschitz continuous on I and satisfies

0n = f(πx(u,w), u, w), for all (u,w) ∈ I.

(A3) the equilibrium x̄ = πx(u,w) is exponentially stable,
uniformly in (u,w) ∈ I.

Assumption 2.1 essentially states that each constant input-
disturbance pair (u,w) ∈ I yields a unique (at least locally on
the set X ) exponentially stable equilibrium state x̄ = πx(u,w).
More specifically, (A2) states that the plant possesses an
equilibrium which changes smoothly over the set of considered
inputs, while (A1) and (A3) ensure sufficient model smoothness
and uniform exponential stability of the equilibrium. The
specific conditions in (A1) and (A3) have been chosen to satisfy
the conditions of a relatively standard converse Lyapunov
theorem [23, Lemma 9.8]; variations on (A1) and (A3) are
therefore likely possible. When restricted to the LTI case in

1Asymptotically constant references/disturbances are treated similarly [22].
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(1), Assumption 2.1 simply reduces to the matrix A being
Hurwitz, and we may select X = Rn and I = Rm × Rnw .

We call the map π : I → Rp given by

π(u,w) , h(πx(u,w), ū, w) (6)

the equilibrium input-to-error map. For notational use, we let

W = {w ∈ Rnw | there exists u ∈ Rm s.t. (u,w) ∈ I}

and for a given w ∈ W we let

Uw = {u ∈ Rm | (u,w) ∈ I} 6= ∅ (7)

denote the set of constant controls for which the equilibrium
map u 7→ πx(u,w) is defined.

Example 2.2 (Illustration of Assumption 2.1): Consider
the scalar dynamic system

ẋ = −β sin(x) + u− w, e = h(x, u, w) = x,

where β > 0. For fixed γ ∈ [0, π2 ), define

I(γ) = {(u,w) ∈ R2 | − β sin(γ) ≤ u− w ≤ β sin(γ)}
X (γ) = {x ∈ R | − γ ≤ x ≤ γ}.

It follows then that one equilibrium is given by x̄ = πx(u,w) =
π(u,w) = arcsin((u+w)/β), and indeed πx is a continuously
differentiable and Lipschitz continuous map from I(γ) into
X (γ). Exponential stability of x̄ can be certified with a simple
quadratic Lyapunov function V (x, u, w) = (x−π(u,w))2, with
uniformity of stability in (u,w) following by compactness of
I(γ); the details are omitted. �

We are interested in the application of a pure integral
feedback control scheme to (5) which acts on the error e as

η̇ = −εe, η(0) ∈ Rp

u = k(η)
(8)

where k : Rp → Rm is a feedback and ε > 0 is to be
determined. We assume that

(A4) k(η) is continuously differentiable and Lk-Lipschitz con-
tinuous on Rp.

The closed-loop system is the interconnection of the plant
(5) and the controller (8), and is shown in Figure 1.

ẋ = f(x, u, w)

e = h(x, u, w)

η̇ = −εek(·)

e

η

u

w

Fig. 1: Block diagram of plant with low-gain integral controller.

Our goal is to give conditions under which (5),(8) possesses
an exponentially stable equilibrium point for sufficiently small
ε > 0 and for all disturbances w ∈ W .

I I I . A G E N E R A L I Z AT I O N O F T H E D E S O E R - L I N
R E S U LT O N L O W- G A I N I N T E G R A L C O N T R O L

The main result of this section provides a generalization
of the result of [10], where the monotonicity requirement on
the equilibrium input-to-error map u 7→ π(u,w) is weak-
ened to infinitesimal contraction [24]–[27] of the vector field
η 7→ −π(k(η), w). There are several motivations for working
with contraction-type stability criteria in this context. First,
contraction allows us to obtain stability results which are
independent of the operating point, and hence independent
of the exogenous disturbance w. Second, contractive systems
possess simple Lyapunov functions, a fact we will exploit in
the proof of Theorem 3.1. Third, note that the vector field
π(k(η), w) has dimension equal to the number of regulated
outputs; this dimension will be low in many practical problems.
Contraction analysis can often be performed analytically for
low-dimensional vector fields, particularly in the global setting
(see the example in Section III-A). Fourth and finally, con-
traction analysis is compatible with LMI-based analysis and
design techniques [28, Chap. 4.3]. [29, Chap. 5], which we
will exploit in Section IV. These motivations aside, alternatives
to contraction analysis are certainly possible; see Remark 3.2
at the end of this section.

While multiple approaches to contraction analysis can be
found in the literature, of varying sophistication, we will make
use of the formulation based on the matrix measure; this has
proved sufficient for our applications of interest. Let ‖·‖ denote
any vector norm on Rn, with ‖ · ‖ also denoting the associated
induced matrix norm. The matrix measure associated with ‖ ·‖
is the mapping µ : Rn×n → R defined by [30, Chap. 2.2.2]

µ(A) , lim
h→0+

1
h (‖In + hA‖ − 1).

Matrix measures associated with standard vector norms ‖ · ‖1,
‖ · ‖2, ‖ · ‖∞ (and their weighted variants) are all explicitly
computable and have found substantial use in applications; see
[25], [31] for clear summaries.

Infinitesimal contraction of a vector field is characterized
via the matrix measure of its Jacobian matrix [25]. Let P be
a non-empty parameter set, and consider the dynamics

ẋ(t) = F (x(t), α), x(0) = x0, α ∈ P, (9)

where F : Rn × P → Rn is continuously differentiable in its
first argument. Let ‖·‖ be any vector norm. For a given α ∈ P ,
the system (9) is infinitesimally contracting with respect to ‖·‖
on a set Cα ⊆ Rn if there exists ρα > 0 such that

µ(∂F∂x (x, α)) ≤ −ρα, for all x ∈ Cα. (10)

If Cα is a convex and forward-invariant set for (9), then (10)
guarantees that (9) possesses a unique equilibrium point x? ∈
Cα towards which all trajectories with initial conditions x0 ∈
Cα will converge exponentially at rate e−ραt [25, Thm. 1/2].

As the parameter α varies over P , it is generally the case
that both the foward-invariant set Cα and the contraction rate
ρα will need to vary. To ensure a uniform rate, we will say
that (9) is uniformly infinitesimally contracting with respect to
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‖ · ‖ on a family of sets {Cα}α∈P if there exists ρ > 0 such
that for all α ∈ P

µ(∂F∂x (x, α)) ≤ −ρ, for all x ∈ Cα. (11)

We are now ready to state our main result.

Theorem 3.1 (Relaxed Conditions for Exponential Sta-
bility under Low-Gain Integral Control): Consider the
plant (5) interconnected with the integral controller (8) under
assumptions (A1)–(A4). Define the reduced dynamics

η̇ = Fs(η, w) , −π(k(η), w), η(0) = η0, (12)

and assume that
(A5) for each w ∈ W there exists a convex forward-invariant

set Cw for (12) such that k(Cw) ⊆ Uw.
(A6) the system (12) is uniformly infinitesimally contracting

with respect to some norm ‖ · ‖s on {Cw}w∈W .
Then there exists ε? > 0 such that for any ε ∈ (0, ε?) and
any w ∈ W , the closed-loop system possesses an isolated
exponentially stable equilibrium point (x̄, η̄) satisfying ē =
h(x̄, k(η̄), w) = 0.

Before proving the result, we examine how Theorem 3.1
reduces to known conditions in special cases. When restricted
to weighted Euclidean vector norms ‖x‖s = (xTPx)1/2 where
P � 0, (A6) holds if and only if either of the following
equivalent conditions hold [32], [33]

∂Fs

∂η (η, w)TP + P ∂Fs

∂η (η, w) � −2ρsP (13a)

(η − η′)TP (Fs(η, w)− Fs(η
′, w)) ≤ −ρs‖η − η′‖2P (13b)

for some ρs > 0, all w ∈ W and all η, η′ ∈ Cw. If we restrict
k(η) = η, P = Ip and Cw = Rp, (13a) and (13b) both reduce
to the mapping u 7→ π(u,w) being strongly monotone on Rp,
which is the Desoer–Lin condition [10].

In the LTI case (1)–(2), the equilibrium input-to-error map-
ping π(u,w) is given explicitly by

π(u,w) = G(0)u+Gw(0)w,

where G(0) and Gw(0) are the DC gain matrices defined in
(3). A linear integral feedback gain u = Kη obviously satisfies
(A4), and the dynamics (12) reduce to

η̇ = Fs(η, w) = −G(0)Kη −Gw(0)w.

Considering again weighted Euclidean norms, from (13a) we
see that (A6) reduces to the existence of P � 0 and ρs > 0
such that

−(G(0)K)TP − P (G(0)K) � −2ρsP.

By standard Lyapunov results, this holds if and only if−G(0)K
is Hurwitz, and we therefore properly recover the classical
Davison/Morari result for LTI systems.

Proof of Theorem 3.1: The proof is divided into several steps.
Step #1 — Equilibrium Analysis and Error Dynamics: Let

w ∈ W . Closed-loop equilibria (x̄, η̄) are characterized by the
equations

0 = f(x̄, ū, w), 0 = h(x̄, ū, w), ū = k(η̄). (14)

Given any ū ∈ Uw, by (A2) the first equation in (14) can
be solved for x̄ = πx(ū, w); together, (A2)/(A3) imply that
x̄ is isolated. Eliminating x̄ and ū from (14), we obtain the
error-zeroing equation 0 = π(k(η̄), w). From (A5)–(A6), the
dynamics (12) are infinitesimally contracting on a forward-
invariant convex set Cw; it follows from the main contraction
stability theorem (see, e.g., [25]) that (12) possess a unique equi-
librium point η̄ ∈ Cw, and hence 0 = π(k(η̄), w) is uniquely
solvable on Cw. By (A5), η̄ further satisfies k(η̄) ∈ Uw, which
justifies the initial application of (A2). Thus, there exists a
unique closed-loop equilibrium (x̄, η̄) ∈ X × Cw.

Define the new state variable

ξ , x− πx(k(η), w)

and the new time variable τ , εt. With this, the dynamics
(5),(8) may be written in singularly perturbed form as

dη

dτ
= −h(ξ + πx(k(η), w), k(η), w)

, −h̃(ξ, η)

ε
dξ

dτ
= f(ξ + πx(k(η), w), k(η), w) + ε

∂πx
∂u

∂k

∂η
h̃(ξ, η)

, f̃(ξ, η)

(15)

where we have suppressed the arguments of ∂πx
∂u and ∂k

∂η . The
equilibrium point of interest is now (ξ, η) = (0n, η̄).

Step #2 — Bounding the Slow Dynamics: Let Vs(η) = 1
2‖η−

η̄‖2s , and for later use note that by equivalence of norms, there
exist constants 0 < c2s ≤ c′2s such that c2s‖z‖2 ≤ ‖z‖s ≤
c′2s‖z‖2 for any z ∈ Rp. We compute the upper right-hand
derivative (see, e.g., [23, Section 3.4]) of Vs along (15) as

D+Vs(η) = ‖η − η̄‖s ·D+‖η − η̄‖s (16)

where

D+‖η − η̄‖s = lim sup
α→0+

‖η − η̄ − αh̃(ξ, η)‖s − ‖η − η̄‖s
α

.

Since by (6) and (12) we have that

Fs(η, w) = −π(k(η), w) = −h(πx(k(η), w), k(η), w)

= −h̃(0, η),

we may write

η − η̄ − αh̃(ξ, η) = η − η̄ + αFs(η, w) + α∆h̃(ξ, η),

where ∆h̃(ξ, η) = h̃(0, η) − h̃(ξ, η). Inserting this into our
expression for D+‖η − η̄‖s and using the triangle inequality,
we find that

D+‖η − η̄‖s ≤ lim sup
α→0+

‖η − η̄ + αFs(η, w)‖s − ‖η − η̄‖s
α

+ ‖∆h̃(ξ, η)‖s.
(17)

Let J(η, w) = ∂Fs

∂η (η, w) denote the Jacobian matrix of Fs.
Since Cw is convex, η̄ ∈ Cw, and Fs(η̄, w) = 0, it follows
from the multivariable mean value theorem (e.g., [34, Theorem
6.21]) that

Fs(η, w) =

[∫ 1

0

J(η̄ + γ(η − η̄), w) dγ

]
︸ ︷︷ ︸

,Javg(η,w)

(η − η̄) (18)
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for any η ∈ Cw. By (A6) there exists ρs > 0 such that
µs(J(η, w)) ≤ −ρs for all η ∈ Cw, where µs is the matrix
measure associated with ‖ · ‖s. Since the matrix measure is a
subadditive function [30, Chap. 2.2.2], it follows that

µs(Javg(η, w)) ≤
∫ 1

0

µs(J(η̄ + γ(η − η̄), w)) dγ

≤ −ρs

∫ 1

0

dγ = −ρs.

(19)

Inserting (17) and (18) into (16) and using submultiplicativity
of the induced matrix norm, we find that

D+Vs(η) ≤ lim sup
α→0+

‖Ip + αJavg(η, w)‖s − 1

α
‖η − η̄‖2s

+ ‖∆h̃(ξ, η)‖s‖η − η̄‖s
= −µs(Javg(η, w))‖η − η̄‖2s + ‖∆h̃(ξ, η)‖s‖η − η̄‖s
≤ −ρs‖η − η̄‖2s + ‖∆h̃(ξ, η)‖s‖η − η̄‖s.

where we used (19) in the final inequality. Since h is Lipschitz
continuous, one easily finds that ‖∆h̃(ξ, η)‖s ≤ c′2sLh‖ξ‖2 for
some Lh > 0. This yields the final bound

D+Vs(η) ≤ −ρs‖η − η̄‖2s + 2q0‖ξ‖2‖η − η̄‖s, (20)

where q0 = 1
2c
′
2sLh.

Step #3 — Bounding the Fast Dynamics: Begin by defining
the deviation vector field g : Rn × I → Rn by

g(ξ, u, w) = f(ξ + πx(u,w), u, w), (21)

For r > 0, let Br(0) = {ξ ∈ Rn | ‖ξ‖2 < r}. Under
Assumption 2.1, the converse Lyapunov result [23, Lemma
9.8] implies that there exist constants r, c1, c2, ρf , c3, c4 > 0
and a continuously differentiable function Vf : Br(0)×I → R
satisfying

c1‖ξ‖22 ≤ Vf(ξ, u, w) ≤ c2‖ξ‖22 (22a)

∇ξVf(ξ, u, w)Tg(ξ, u, w) ≤ −ρf‖ξ‖22 (22b)
‖∇ξVf(ξ, u, w)‖2 ≤ c3‖ξ‖2 (22c)

‖∇uVf(ξ, u, w)‖2 ≤ c4‖ξ‖22. (22d)

for all ξ ∈ Br(0) and (u,w) ∈ I. Along trajectories of (15),
we compute that

V̇f(ξ, k(η), w) = T1 + T2

where

T1 = 1
ε∇ξVf(ξ, k(η), w)Tf̃(ξ, η)

T2 = −∇uVu(ξ, k(η), w)T ∂k∂η (η)h̃(ξ, η).

Expanding T1 using (15) and (21), we have

T1 = 1
ε∇ξVf(ξ, k(η), w)Tg(ξ, k(η), w)

+∇ξVf(ξ, k(η), w)T
∂πx
∂u

∂k

∂η
h̃(ξ, η).

Using the equilibrium equation h̃(0, η̄) = 0, we also have

h̃(ξ, η) = h̃(ξ, η)− h̃(0, η̄),

and one quickly finds using (15) that

‖h̃(ξ, η)‖2 ≤ Lh
∥∥∥∥[ξ + πx(k(η), w)− πx(k(η̄), w)

k(η)− k(η̄)

]∥∥∥∥
2

≤ Lh‖ξ‖2 + LhLk(Lπx + 1)‖η − η̄‖2
(23)

where Lπx and Lk are the Lipschitz constants of πx and k(η),
respectively, and where we used that ‖z‖2 ≤ ‖z‖1 for z ∈ Rn
to obtain the second inequality. We can now bound T1 as

T1 ≤ − 1
ερf‖ξ‖22

+ c3LπxLk‖ξ‖2(Lh‖ξk‖+ LhLk(Lπx + 1)‖η − η̄‖2)

where we used (22b) for the first term and (22c) in the second
term. Similarly, we can use (23) and (22d) to bound T2 as

|T2| ≤ c4Lk‖ξ‖22(Lh‖ξk‖2 + LhLk(Lπx + 1)‖η − η̄‖2)

≤ c4LkLhr‖ξ‖22 + c4LhL
2
k(Lπx + 1)r‖ξk‖2‖η − η̄‖2

where in the second line we used that ξ ∈ Br(0). Combining
our inequalities, with minor manipulations we find that

V̇f(ξ, k(η), w) ≤ (?)T
[
−ρf/ε+ q1 q2

q2 0

] [
‖ξ‖2
‖η − η̄‖s

]
, (24)

where the constants q1, q2 > 0 are independent of ε. Following
[23, Sec. 11.5], define the composite Lyapunov candidate

V (ξ, η, w) = Vs(η) + Vf(x, k(η), w)

for (15). Since Vf is continuous in all arguments, k is continu-
ous by (A4), and k(η̄) ∈ Uw, it follows that Vf(ξ, k(η), w) > 0
for all (x, η) ∈ Br(0)×Cw such that (ξ, η) 6= (0, η̄). It follows
immediately that V is positive definite on Br(0) × Cw with
respect to (0, η̄). Combining the dissipation inequalities (20)
and (24), we find that

D+V (ξ, η, w) ≤ −
[
‖ξ‖2
‖η − η̄‖s

]T
Q

[
‖ξ‖2
‖η − η̄‖s

]
(25)

where
Q =

[
ρf
ε − q1 −(q0 + q2)

−(q0 + q2) ρs

]
.

Straightforward analysis shows that Q � 0 if and only if
ε ∈ (0, ε?), where ε? = ρfρs/(ρsq1+(q0+q2)2) > 0. Standard
arguments using (22a) can now be applied to conclude that
there exists a constant γ > 0 such that D+V (ξ, η, w) ≤
−γV (ξ, η, w) locally around (0, η̄), and it quickly follows from
the comparison lemma [23, Lemma 3.4] that the equilibrium
is exponentially stable. �

The conditions (A5) and (A6) in Theorem 3.1 ensure
that the slow time-scale dynamics (12) are infinitesimally
contracting on a convex forward-invariant set Cw, which by the
contraction stability theorem (e.g., [25]) yields the existence of
a unique exponentially stable equilibrium point η̄ ∈ Cw.2 As is
well-understood, a practical difficulty in applying contraction
analysis comes in establishing the forward-invariance property.
This can sometimes be done by exploiting structural properties
of the vector field (e.g., for monotone systems). The situation

2The additional minor assumption k(Cw) ⊆ Uw in (A5) ensures that the
associated equilibrium control ū = k(η̄) lies in the set of constant control
inputs Uw from (7) for which there exists an equilibrium point for the state.
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simplifies considerably when the contraction condition (10)
can be globally certified, in which case the forward-invariance
conditions can be dropped.

A situation of particular interest occurs when the equilib-
rium input-to-error mapping π(u,w) has the separable form
π(u,w) = π1(u) + π2(w) for functions π1 : Rm → Rp and
π2 : Rnw → Rp. For instance, π will have this form when one
considers reference tracking without exogenous disturbances.
In this case, the reduced dynamics (12) become

η̇ = −π1(k(η))− π2(w), (26)

which is similar to the LTI case in (4). Mirroring the LTI
case then, if π1 is surjective with right-inverse π†1 : Rp → Rm,
then selecting k = π†1 linearizes the dynamics (26) and ensures
infinitesimal contraction. This provides a natural generalization
of Davison’s design K = G(0)† to the nonlinear case. Note
however that such an inversion-based design presupposes
precise knowledge of π1, along with the ability to compute a
right-inverse. In Section IV we proceed down a different path
for both global certification of stability and controller design,
and present a LMI-based framework for synthesizing linear
feedbacks k(η) = Kη when π is only partially known.

Remark 3.2 (Alternatives to Contraction Conditions): The
conditions (A5)–(A6) guarantee the existence/uniqueness of an
equilibrium value for the integral state along with a stability
property for the reduced dynamics (12). These assumptions
can be separated and modified. For existence, one may assume
that there exists a (continuously differentiable and Lipschitz
continuous) equilibrium mapping c : W → Rp such that
π(k(c(w)), w) = 0 for all w ∈ W . For stability, consider
the deviation variable η̃ = η − c(w) and the corresponding
dynamics

˙̃η = −π(k(η̃ + c(w)), w), (27)

which now has an equilibrium at the origin for all w ∈ W .
The existence of r, c1, c2, c3, c4 > 0 and a w-parameterized
Lyapunov function Vs : Br(0)×W → R satisfying

c1‖η̃‖22 ≤ Vs(η̃, w) ≤ c2‖η̃‖22
∇Vs(η̃, w)T[−π(k(η̃ + c(w)), w)] ≤ −c3‖η̃‖22

‖∇Vs(η̃, w)‖2 ≤ c4‖η̃‖2

establishes uniform (in w) exponential stability [23, Sec. 9.6] of
the origin of (27), and can be used in place of the contraction
argument in Theorem 3.1. As another option for a stability
condition, one could instead build upon (13b), and assume
there exists a strongly convex and continuously differentiable
function W : Rp → R≥0 whose gradient is Lipschitz
continuous on Rp and which satisfies

(∇W (η)−∇W (η′))T(π(k(η), w)− π(k(η′), w))

≥ ρs‖η − η′‖22
(28)

for all η, η′ ∈ Rp, all w ∈ W , and some ρs > 0. Inequalities of
the form (28) arise, for example, when considering equilibrium-
independent stability analysis [35]. In this case, one may
instead use Vs(η) = W (η)−W (η̄)−∇W (η̄)T(η − η̄) in the
proof of Theorem 3.1, and the result goes through similarly. �

A. Application to Power System Frequency Control

We illustrate the main result with a simple example arising
in power system control. Our treatment is terse; we refer to
[36, Sec. 11.1.6] for engineering background and to [37, Sec.
IV], [1], [37]–[39] for recent control-centric references.

We consider an AC power system described by a model of
the form (5) and satisfying Assumption 2.1; these assumptions
are reasonable in practice, as low-level “primary” controllers
in the system are designed to ensure stability [37]. The input
u ∈ Rm represents changes to power injection set-points for
controllable resources within the grid, while w ∈ R represents
the net uncompensated load in the system. The measured error
e = ∆f ∈ R is the deviation of the AC frequency from
its nominal value (e.g., 60Hz). Many standard power system
models have the property that the equilibrium input-to-error
map (6) has the simple form

∆f = π(u,w) = 1
β

(∑m

i=1
ui − w

)
(29)

where β > 0 is called the frequency stiffness constant of the
system; see [36, Sec. 11.1.6] for a derivation of (29).

The problem of secondary frequency regulation is to design
an integral control loop which regulates ∆f to zero. A simple
nonlinear integral control design to achieve this is

τ η̇ = −∆f, ui = ϕi(η), (30)

where η ∈ R is the integral state, τ > 0 is the time constant,
and ϕi : R→ R is a Li-Lipschitz continuous function which
satisfies the strong monotonicity condition

(ϕi(η)− ϕi(η′))(η − η′) ≥ µi|η − η′|2 (31)

for some µi > 0 and all η, η′ ∈ R. The nonlinearities ϕi are
used to optimally allocate the control resources; see, e.g., [38]
for details on this interpretation. With ε = 1/τ , the controller
(30) is a special case of (8) with error signal e = ∆f and
feedback gain ki(η) = ϕi(η) satisfying (A4).

Combining (30) and (29), it now follows that the reduced
dynamics (12) described in Theorem 3.1 are given by

η̇ = −π(k(η), w) = − 1
β

∑m

i=1
ϕi(η) + 1

βw. (32)

For η, η′ ∈ R with π = π(k(η), w) and π′ = π(k(η′), w),
using (31) we have

(η − η′)(π − π′) = 1
β

∑m

i=1
(ϕi(η)− ϕi(η′))(η − η′)

≥
(

1
β

∑m

i=1
µi

)
(η − η′)2.

We conclude that the contraction condition (13b) holds with
P = 1 and ρs = β−1

∑
i µi. It follows that the slow dynamics

(32) are uniformly infinitesimally contracting on R; (A5)–
(A6) therefore both hold, and we conclude that the power
system with controller (30) is exponentially stable and achieves
frequency regulation for sufficiently large τ > 0. This extends
the result of [38] to general power system models, and allows
for heterogeneity in the functions ϕi.
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I V. P E R F O R M A N C E A N A LY S I S A N D S Y N T H E S I S O F
L O W- G A I N I N T E G R A L C O N T R O L L E R S F O R

N O N L I N E A R A N D U N C E R TA I N S Y S T E M S

To complement the analytical results in Section III, we now
pursue a computational framework for certifying performance
of low-gain integral control schemes and synthesizing con-
troller gains. To motivate our general approach, we return to the
simple case of LTI systems in Section IV-A before proceeding
to nonlinear/uncertain system analysis and synthesis in Sections
IV-B and IV-C. Throughout we restrict our attention to linear
feedbacks k(η) = Kη.

A. Linear Time-Invariant Systems

We begin by considering a computational approach to the
design of an integral feedback matrix K in the LTI case;
this will motivate our approach in subsequent sections.3 As
described in Section I, the low integral feedback gain ε induces
a time-scale separation in the dynamics. In the LTI case, the
slow dynamics are given by (4) with associated error output

e(t) = G(0)Kη(t) +Gw(0)w(t), (33)

and the sensitivity transfer matrix from w to e is therefore

Sslow(s) = s(sIp + εG(0)K)−1Gw(0).

Davison’s design recommendation [2, Lemma 3] KDav =
G(0)† leads to the simple sensitivity function Sslow(s) =
s
s+εGw(0), and achieves the minimum possible value

sup
w∈L2[0,∞),w 6=0

‖e‖L2

‖w‖L2

= ‖Sslow(s)‖H∞ = ‖Gw(0)‖2.

for the induced L2-gain of the sensitivity function. This design
however does not easily extend to the nonlinear case, may
perform poorly in the presence of uncertainty (Figure 4), and
has the disadvantage for distributed linear control applications
that G(0)† is usually a dense matrix.

These disadvantages can be overcome by moving to a
computational robust control framework. Due to the simple
structure of the slow dynamics (4),(33), the design of K can
be formulated as an H∞ state-feedback problem [41, Chap.
7]: find Y � 0 and Z ∈ Rm×p such thatG(0)Z + (G(0)Z)T ? ?

Gw(0)T γIp ?
−G(0)Z −Gw(0) γIp

 � 0, (34)

and then minimize over γ > 0. The resulting integral gain —
which is recovered as K∞ = ZY −1 — will by construction
achieve the same peak sensitivity as Davison’s design, but
the computational framework offers significant extensions. For
instance, decentralization constraints K ∈ K where K ⊆ Rm×p
is a subspace can be enforced by appending the additional
constraints to (34) that Y be diagonal and that Z ∈ K.

3The author is not aware of any literature applying LMI-based design
techniques for low-gain output regulation, even for LTI systems. This is
perhaps not surprising, given that the papers [2], [3], [10], [12] preceded
the development of computational methods for solving LMIs, and that output
regulation research turned towards geometric methods in the wake of the
seminal paper [40].

We illustrate these ideas via reference tracking on a ran-
domly generated stable LTI system with 30 states, 7 inputs,
and 5 outputs. We wish to design an feedback gain of the form

K =

[
K11 0

0 K22

]
, K11 ∈ R3×3, K22 ∈ R4×2, (35)

for use in a low-gain integral control scheme. The SDP
(34) above was solved using SDPT3 with the YALMIP [42]
interface in MATLAB. Figures 2a,2b show the response of
the resulting full-order closed-loop system to sequential step
reference changes for the 5 output channels for the designs
KDav and K∞, with associated maximum singular values of
Sslow(jω) plotted in Figure 2c. The value of ε was selected
for the second design to match the bandwidth of the first
design. The LMI-based design has no significant peaking
in the sensitivity function and achieves the desired block-
decentralization of the control actions.

(a) Davison’s selection K = KDav = G(0)†, ε = 0.1.

(b) Decentralized H∞ design K = K∞, ε = 3.5.

(c) Maximum singular value σmax(Sslow(jω)).

Fig. 2: Reference step response of 7-input-5-output system with low-
gain integral controllers.

B. Nonlinear and Uncertain Systems
The slow time-scale reduced dynamics of the plant (5) and

the controller (8) are as given in (12), which we rewrite here
in input-output form as

η̇(t) = −π(Kη(t), w(t)), η(0) = η0 (36a)
e(t) = π(Kη(t), w(t)). (36b)
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The reduced dynamics (36a) can be expected to be significantly
simpler and of lower dimension than the full nonlinear plant
dynamics described by (5),(8). As in Section IV-A, our key
observation is that the design of an optimal feedback gain K
in (36) can be formulated as a state feedback control problem
u = Kη for the integrator dynamics η̇ = −π(u,w). This opens
the door for applying analysis and computational techniques
from robust control to synthesize integral gain matrices to
achieve robust performance. To avoid some of the technical
conditions (e.g., forward-invariance) required by the general
result in Section III, we will restrict our attention to global
stability/performance analysis and synthesis for (36).

Mirroring Section IV-A, performance of (36) will be quan-
tified in terms of the energy contained in the disturbance and
error signals. To precisely formulate this, we let

Ση0 : L nw
2e [0,∞)→ L p

2e[0,∞), e = Ση0(w) (37)

denote the input-output signal-space operator defined by (36).4

We wish to establish performance guarantees which are inde-
pendent of the operating point, which motivates the use of an
incremental L2-gain criteria [43]. The system (37) is said to
have incremental L2-gain less than or equal to γ ≥ 0 if there
exists β ≥ 0 such that∫ T

0

‖e(t)− e′(t)‖22 dt ≤ β‖η0 − η′0‖22

+ γ2

∫ T

0

‖w(t)− w′(t)‖22 dt

(38)

for all T > 0, all initial conditions η0, η
′
0, and all inputs w,w′ ∈

L nw
2e [0,∞) where e = Ση0(w) and e′ = Ση′0(w′). For LTI

systems, this reduces to a standard H∞ performance criterion.
To work towards establishing (38), we next represent the

dynamics (36) in standard linear fractional form, i.e., in
terms of a LTI system in feedback interconnection with an
uncertain/nonlinear operator. We focus on representing the
function π(u,w) in this form, and define a new function
π∆ : Rm × Rnw → Rp via

ẽ = Fu+Gp + E1w

q = Hu+ Jp + E2w

p = ∆(q)

(39)

where (F,G,H, J,E1, E2) are fixed specified matrices, p ∈
Rnp and q ∈ Rnq are auxiliary variables, and ∆ : Rnq → Rnp is
a function. It is implicitly assumed that the representation (39)
is well-posed, in the sense that the mapping q 7→ q− J∆(q)
is invertible on Rnq ; this holds trivially if J = 0. A diagram
illustrating this functional representation is shown in Figure 3.

We now allow ∆ to range over a set ∆ of functions, which
is coarsely described using point-wise incremental quadratic
constraints. In particular, we assume we have available a
convex cone of symmetric matrices Θ ⊂ S(np+nq)×(np+nq)

such that [
∆(q)−∆(q′)

q− q′

]T
Θ

[
∆(q)−∆(q′)

q− q′

]
≥ 0 (40)

4The subsequent LMI conditions we impose will be sufficient to guarantee
that (36) does indeed define such a mapping.

J H E2

G F E1

∆

q p

ẽ = π∆(u,w) col(u,w)

Fig. 3: The linear fractional modelling framework.

for all q, q′ ∈ Rnq , all Θ ∈ Θ, and all ∆ ∈∆; the constraint
Θ ∈ Θ must admit an LMI description. As a simple example,
the cone of matrices

Θ =
{
θ
[−Inp 0

0 L2Inq

] ∣∣∣ θ ≥ 0
}

can be used to describe nonlinearities ∆ which are globally
Lipschitz continuous with parameter L. We finally define

Π , {π∆ | ∆ ∈∆} (41)

as the set of all maps one obtains. The modelling objective
is to select (F,G,H, J,E1, E2) and ∆ such that π ∈ Π, with
as little conservatism introduced as possible. While further
explanation of this modelling framework is beyond our scope,
we refer the reader to [43]–[46] for details, and we will illustrate
with examples shortly. The LTI case (33) is easily recovered
by setting F = G(0), E1 = Gw(0), and all other pieces of
data equal to zero.

We can now state the main analysis result, which certifies
contraction and incremental L2-performance of the dynamics
(36) for all functions π ∈ Π. For notational convenience, with
γ ≥ 0 we set

Θγ =
[
−γ2Inw 0

0 Ip

]
.

Theorem 4.1 (Robust Stability and Performance of Re-
duced Dynamics): Consider the set Π defined in (39)–(41)
where ∆ satisfies (40), and assume that π ∈ Π. If there exists
K ∈ Rm×p, P � 0, and Θ ∈ Θ such that

(?)T


0 P 0 0

P 0 0 0

0 0 Θ 0

0 0 0 Θγ





Ip 0 0

−FK −G −E1

0 Inp 0

HK J E2

0 0 Inw
FK G E1


≺ 0, (42)

then the following statements hold:
(i) the system (36a) is uniformly infinitesimally contracting

with respect to norm ‖x‖ = (xTPx)1/2 on Rp;
(ii) the incremental L2-gain of the reduced dynamics (36) is

less than or equal to γ.

The modelling framework described in (39)–(41) is similar
to the global linearization set-up in [28, Chap. 4.3] and to
the convergent system analysis in [29, Chap. 5]. The main
differences are that (40) allows for more general quadratic
descriptions of the nonlinear/uncertain components than the
typical small-gain uncertainty model, and that the LMI in
Theorem 4.1 additionally captures performance in response to
disturbances. In the language of [29], the LMI (42) establishes
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both input-to-state convergence of the reduced dynamics (36)
and incremental L2 performance. Note however that we are
imposing these conditions only on the reduced dynamics (36);
we do not require the full closed-loop system (5),(8) to be
contractive or input-to-state convergent.

Proof of Theorem 4.1: Fix any ∆ ∈∆ and let π∆ be defined
by (39). Let ξ, ξ′ ∈ Rp and w,w′ ∈ Rnw be arbitrary, set
u , Kξ and u′ , Kξ′, and correspondingly define (ẽ, q, p)
and (ẽ′, q′, p′) via (39). From (39) we find that

ẽ− ẽ′ = FK(ξ − ξ′) +G(p− p′) + E1(w − w′)
q− q′ = HK(ξ − ξ′) + J(p− p′) + E2(w − w′)
p− p′ = ∆(q)−∆(q′).

(43)

By strict feasibility of (42), there exists ρs > 0 such that

(?)T


0 P 0 0

P 0 0 0

0 0 Θ 0

0 0 0 Θγ





Ip 0 0

−FK −G −E1

0 Inp 0

HK J E2

0 0 Inw
FK G E1


�

[−2ρsP 0 0
0 0 0
0 0 0

]
.

Left and right multiplying this by col(ξ − ξ′, p− p′, w − w′)
and using (43), we obtain[

ξ − ξ′
ẽ− ẽ′

]T [
0 −P
−P 0

] [
ξ − ξ′
ẽ− ẽ′

]
+

[
p− p′

q− q′

]T
Θ

[
p− p′

q− q′

]
+ ‖ẽ− ẽ′‖22 − γ2‖w − w′‖22 ≤ −2ρs(ξ − ξ′)TP (ξ − ξ′).

(44)
To show statement (i), select w′ = w, and note using (40)

that the second and third terms in the above inequality are
non-negative. Since ẽ = π∆(Kξ,w), it follows that

(π∆(Kξ,w)− π∆(Kξ′, w))TP (ξ − ξ′) ≥ ρs‖ξ − ξ′‖2P
which establishes the contraction condition (13b). Since ∆ ∈
∆ was arbitrary and π ∈ Π, statement (i) holds. To show (ii)
consider the extended input-output dynamics

ξ̇ = −ẽ
ẽ = π∆(Kξ,w)

ξ(0) = ξ0

ξ̇′ = −ẽ′

ẽ′ = π∆(Kξ′, w′)

ξ′(0) = ξ′0

(45)

and define V (ξ, ξ′) = ‖ξ − ξ′‖2P . Differentiating along
trajectories of (45) and inserting (44), we obtain

V̇ (ξ, ξ′) = −2(ẽ− ẽ′)TP (ξ − ξ′)
≤ −2ρsV (ξ, ξ′)− ‖ẽ− ẽ′‖22 + γ2‖w − w′‖22.

Integrating from 0 to time T > 0 we have

V (ξ(T ), ξ′(T ))− V (ξ0, ξ
′
0)

≤ −
∫ T

0

‖ẽ− ẽ′‖22 + γ2‖w − w′‖22 dt.

Since V (ξ(T ), ξ′(T )) ≥ 0, the performance inequality (38)
now follows with β = λmax(P ). Since ∆ ∈ ∆ was arbitrary
and π ∈ Π, statement (ii) holds. �

For a fixed K, the matrix inequality of Theorem 4.1 is affine
in (P,Θ, γ2) and the best upper bound on γ can be computed

via semidefinite programming. While we have formulated
Theorem 4.1 for the nonlinear model (36), it can also be applied
if the reduced dynamics are described by an uncertain linear
model; the details are standard and are omitted.

The main user effort in applying Theorem 4.1 is to appro-
priately select F,G,H, J,E1, E2 and ∆ such that π ∈ Π. As
a simple illustration of the ideas, we continue our example
from Section III-A. In this case, we may directly model the
mapping π ◦ k in (32) by selecting K = 1, F = 0, G = β−1,
E1 = −β−1, H = 1, J = 0, and E2 = 0, with q = η and
p = ∆(q) =

∑m
i=1 ϕi(q). As each function ϕi is µi-strongly

monotone and Li-Lipschitz continuous, the nonlinear mapping
∆ satisfies (40) with

Θ =

{
θ

[
−2 µ+ L
µ+ L −2µL

] ∣∣∣ θ ≥ 0

}
,

where µ =
∑m
i=1 µi and L =

∑m
i=1 Li. The performance LMI

(42) reduces to the 3× 3 LMI 2µLθ ? ?
Pβ−1 − θ(µ+ L) 2θ − β−2 ?

−Pβ−1 β−2 γ2 − β−2

 � 0.

In this relatively simple case, one can analytically analyze this
LMI, and one finds that it is feasible in P, θ > 0 if and only if

γ > γ? ,
1

β

√
(κ+ 1)2

4κ
, κ =

L

µ
.

It follows that γ? is the best certifiable upper bound on the
incremental L2-gain of the slow time-scale dynamics (32).

C. Synthesizing Feedback Gains for Robust Performance

Theorem 4.1 can be exploited for direct convex synthesis
of controller gains for uncertain and nonlinear systems. The
methodology here is inspired by procedures for robust state-
feedback synthesis, and requires the the additional restrictions
that the matrix Θ in (40) be nonsingular and that with the
block partitionings

Θ =

[
Θ11 Θ12

ΘT
12 Θ22

]
, Θ̃ , Θ−1 =

[
Θ̃11 Θ̃12

Θ̃T
12 Θ̃22

]
(46)

the sub-blocks satisfy Θ22 � 0 and Θ̃11 � 0.
Beginning with (42), define Y = P−1 � 0 and perform

a congruence transformation on (42) with diag(Y, Inp , Inw).
Multiplying through and setting Z , KY one obtains the
following equivalent problem: find Y � 0, Z ∈ Rm×p and
Θ ∈ Θ such that

(?)T


0 Ip 0 0 0
Ip 0 0 0 0
0 0 Θ 0 0
0 0 0 −Inw 0
0 0 0 0 1

γ2
Ip





Ip 0 0

−FZ −G −E1

0 Inp 0

HZ J E2

0 0 Inw
FZ G E1


≺ 0.

(47)
Applying the Dualization Lemma [43, Cor. 4.10], (47) is
equivalent to (48) which is now affine in all decision variables.
In further contrast to [29, Chap. 5], wherein a full-order
output regulator design problem for the nonlinear plant (5) is
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treated, the low-gain design approach here is for the reduced
dynamics (36), is a state-feedback design as opposed to an
output feedback design, and our approach does not impose that
the full closed-loop system (5),(8) be contractive/convergent.

To illustrate these analysis and synthesis concepts, we return
to the reference tracking example of Section IV-A, and augment
the previously generated system with three additional I/O
channels p, q ∈ R3 with randomly selected coefficients in
G,H, J,E2. These channels are subject to the interconnection

p = ∆(q) = col(sat(q1), δq2, δq3) (49)

where δ ∈ [−1, 1] is an uncertain real parameter and sat
denotes the standard saturation function. The associated equilib-
rium input-to-error map π is now both nonlinear and uncertain.
For ∆ given in (49), the constraint (40) holds with

Θ = daug

(
θϕ

[
−2 1
1 0

]
,

[
−Q S
ST Q

])
(50)

where θϕ > 0, S =
[

0 s
−s 0

]
, s ∈ R, and Q = [ q11 q12q12 q22 ] � 0.

As a nominal controller design to compare against for this
example, we use the same controller K = G(0)† = F † from
Section IV-A, and attempt to certify robust performance via
the SDP

minimize
γ, P�0,Θ∈Θ

γ2 subject to (42).

Using SDPT3/YALMIP we can certify a performance bound of
γ = 16.9 for the associated slow dynamics. While this is only
an upper bound, it suggests that this nominal controller may
perform poorly on instances of the nonlinear/uncertain system.
Indeed, Figure 4a shows the step response of the resulting full-
order nonlinear closed-loop system to sequential step reference
changes for the 5 output channels, for the case δ = −0.5. The
nominal design performs poorly in the presence of uncertainty
and nonlinearity. To improve the design, we note that the matrix
Θ in (50) satisfies the additional restrictions mentioned in (46)
if one restricts s = 0, in which case

Θ̃ = daug

(
θ̃ϕ

[
0 1
1 2

]
,

[
−D 0

0 D

])
with θ̃ϕ = θ−1

ϕ > 0 and D =
[
d11 d12
d12 d22

]
= [ q11 q12q12 q22 ]

−1 � 0. To
synthesize a robust feedback gain, we solve the SDP

minimize
γ, Z, Y�0, Θ̃∈Θ̃

γ2 subject to (48),

and recover the controller as Krobust = ZY −1. For our
example we obtain a much improved performance upper bound
of γ = 1.34, and the step response, shown in Figure 4b, is
significantly improved over the nominal design. If we wish to
further impose a decentralization structure of the form (35) on
the controller, we solve the more constrained SDP

minimize
γ, Z∈K, Y�0, Θ̃∈Θ̃

γ2 subject to (48), Y is diagonal,

and again recover the controller as Kdecent = ZY −1. For our
example, a performance bound of γ = 11.6 is obtained, with
step response shown in Figure 4c. The response is noticeably
degraded over the centralized robust optimal design, but still
improves on the nominal design, is robustly stable, and achieves
decentralization of the integral action.

As a final comment, robust analysis and synthesis procedures
based on the (weighted) contraction norms ‖·‖1 and ‖·‖∞ can
also likely be developed, and may be valuable and efficient
when the reduced dynamics (36) is a monotone dynamical
system; see [47] for related ideas.

V. C O N C L U S I O N S

Relaxed conditions have been given for stability of a non-
linear system under low-gain integral control, generalizing
those available in the literature. The key idea is to impose an
incremental-stability-type condition on the plant equilibrium
input-to-error map. We then demonstrated how techniques
from robust control can be applied to certify the key stability
condition, and to synthesize integral controller gains using
convex optimization which guarantee robust performance of
the reduced dynamics. The results have been illustrated using
analytical and numerical examples.

Future work will focus on the application of these results
to control problems in the energy systems domain and to the
development of controllers for feedback-based optimization
[13]–[17]. An open theoretical direction is to generalize the
analysis and design approach presented here for tracking of
signals generated by an arbitrary linear exosystem, which would
yield a full generalization of [2]. This generalization may
require that incremental-type stability conditions be imposed
on the plant, as considered in [48]. Other open directions are
to extend the low-gain results here to a discrete-time setup,
and to anti-windup designs (e.g., [49]), which should require
only a modified analysis of the slow time-scale dynamics (12).
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