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Abstract—Distributed consensus-based controllers for optimal
secondary frequency regulation of microgrids and power systems
have received substantial attention in recent years. This paper
provides a Lyapunov-based proof that, under a time-scale sepa-
ration, these control schemes are stabilizing for a wide class of
lossless and stable nonlinear ODE power system models, and
under weak assumptions on (i) the objective functions used
for power allocation, and (ii) the graph topology describing
communication between agents in the consensus protocol. The
results are illustrated via simulation on a detailed test system.

Index Terms—Distributed control, power systems, smart grid,
output regulation, Lyapunov methods

I . I N T R O D U C T I O N

THE frequency of operation in an AC power system must
remain very close to its nominal set-point value of 50

or 60Hz for most equipment to function properly. Due to a
combination of the natural physics of synchronous machines,
the aggregate behaviour of motors loads, and the conventional
primary control loops implemented in the system, there is a
roughly linear relationship between the steady-state frequency
deviation present in the system and the mismatch between
scheduled generation and demand. The problem of secondary
frequency regulation is to rebalance supply and demand, and
thereby eliminate any frequency deviation.

The traditional control architecture [1] for achieving sec-
ondary frequency regulation is a straight-forward centralized
integral control approach: a frequency deviation measurement
is integrated to produce an overall control signal, which
is then allocated to the controllable devices in the system
according to so-called participation factors. Presently however,
the proliferation of distributed energy resources, flexible loads,
and high-bandwidth communication throughout modern small
and large-scale power systems has prompted the investigation
of alternative distributed control architectures which do not
require central coordination. Recent surveys of techniques in
this direction include [2]–[4].

This note focuses on one such distributed control scheme,
known as the distributed-averaging proportional-integral
(DAPI) controller. Roughly speaking, this controller uses a
multi-agent consensus algorithm to distribute integral action
across many controllable devices. The controller was proposed
independently in [5], [6] as a consensus-based framework
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for sharing power between generation units and eliminating
frequency deviations in microgrids and power systems, re-
spectively. Shortly thereafter, the controller was placed into
a distributed optimization framework [7] and experimentally
tested for microgrid control [8].

A broad set of literature spanning power electronics, power
systems, industrial electronics, and control has subsequently
developed around DAPI control; we focus here on the control
literature. In terms of stability analysis, [5], [6] showed local
exponential stability via linearization for simple first and
second-order power system models, respectively. A Lyapunov-
based proof of asymptotic stability for a nonlinear swing-type
model appeared in [9]. A similar proof method can be ex-
tended to include basic voltage dynamics [10], turbine-governor
dynamics [11], [12], and to show exponential stability [13].
Other works have analyzed H2 performance [14]–[16] and
performance degradation due to non-cooperative agents [17],
designed optimal communication topologies [18], examined
stability robustness to communication delays [19], and have
placed DAPI within a broad class of optimizing feedback
controls [20] for linear time-invariant systems.

All of the stability proofs described above are highly depen-
dent on the particular power system model under consideration,
as the Lyapunov functions are constructed to exploit underlying
passivity properties of the models. In practice, open-loop AC
power system dynamics are stable, but highly uncertain. This
fact not only precludes the explicit construction of Lyapunov
functions, but additionally forces system operators to always
use slow, low-gain secondary control schemes. Our time-scale
separation analysis approach in this paper is strongly motivated
by this engineering practice, and we do not require explicit con-
struction of any power system Lyapunov function. Additionally,
the above quoted stability results are only applicable to the
case of the DAPI controller in which the objective functions for
resource allocation are quadratic and in which communication
between agents is bidirectional (i.e., undirected communication
graphs).

Contributions: Our contribution here is to provide a closed-
loop stability proof for DAPI control, which holds for quite
general open-loop stable power system ODE models and
under substantially weakened assumptions on the objective
functions and the inter-agent communication topology. Roughly
speaking, the criteria are (i) the power system should possess
a unique exponentially stable equilibrium when subject to
reasonable constant inputs, with the steady-state frequency



deviation being an affine function of the total injected power,
(ii) the objective functions in the DAPI control scheme need
only be differentiable and strongly convex (which permits
barrier functions), and (iii) the communication graph need only
contain a globally reachable node. The key technical insight is
that the reduced dynamics obtained after a time-scale separation
can be transformed into a nonlinear cascade, which admits a
composite-type Lyapunov function. We validate our results via
simulation on a detailed 14-machine test system modelling the
Australian grid.

Paper Organization: Section II records some necessary
material on convex functions, graphs, and Laplacian matrices.
Section III describes the power system model, defines the opti-
mal frequency regulation problem, and presents a preliminary
lemma. The main stability result is in Section IV. Simulation
results on a detailed test system are reported in Section V, with
conclusions in Section VI.

I I . P R E L I M I N A RY M AT E R I A L

A. Strictly convex functions and their conjugates

Let I ⊆ R be a closed interval with non-empty interior, and
let f : I → R be continuously differentiable on interior(I).
We say f is essentially strictly convex on I if

(∇f(x)−∇f(x′))(x− x′) > 0 (1)

for all x, x′ ∈ interior(I) with x 6= x′. Note that if
f is strictly convex, then ∇f : I → R is injective on
interior(I). Again under continuously differentiability, we say
f is essentially smooth on I if |f(xk)| → +∞ whenever
xk → x ∈ boundary(I). The conjugate f∗ of f is defined as
f∗(p) = infx∈I [f(x) − pTx]. A powerful duality result [21]
is that f is essentially strictly convex on I if and only if f∗

is essentially smooth on its domain. As a corollary, if f is
both essentially strictly convex and essentially smooth on I ,
then (i) dom(f∗) = R, (ii) f∗ is essentially strictly convex
and essentially smooth on R, and (iii) (∇f)−1 = ∇f∗.

A stronger version of this duality [22] occurs when we
consider strong convexity and strong smoothness. We say f :
I → R is strongly convex with parameter µ > 0 if

(∇f(x)−∇f(x′))(x− x′) ≥ µ|x− x′|2 (2)

for all x, x′ ∈ interior(I), and when dom(f) = R, we say
that that f is strongly smooth with parameter L > 0 if
|∇f(x)−∇f(x′)| ≤ L|x−x′| for all x, x′ ∈ R. A continuously
differentiable mapping f : R → R is strongly convex if and
only if f∗ : R→ R is strongly smooth.

B. Directed graphs, connectivity, and the Laplacian matrix

We will require some elements of graph and algebraic graph
theory; see [23] for background. A weighted directed graph
over m nodes is a triple G = (R, E ,A), where R satisfying
|R| = m is the set of labels for the nodes, E ⊆ R×R is the
set of directed edges specifying the interconnections between
nodes, and A ∈ Rm×m is the adjacency matrix, with elements
aij ≥ 0 satisfying aij > 0 if and only if (i, j) ∈ E . The
Laplacian matrix L ∈ Rm×m associated with G is defined

element-wise as `ij = −aij if i 6= j and `ii =
∑
` 6=i ai`. By

construction L has zero row-sums (L1m = 0), and hence 0 is
an eigenvalue of L with right-eigenvector 1m = (1, 1, . . . , 1)T.
All non-zero eigenvalues of L have positive real part [23].

The multiplicity of the 0 eigenvalue of L is related to the
connections between nodes in G. A directed path in G is an
ordered sequence of nodes such that any pair of consecutive
nodes in the sequence is a directed edge of G. A node i ∈ R
is globally reachable if for any other node j ∈ R \ {i}, there
exists a directed path in G which begins at j and terminates
at i. An elegant result is that 0 is a simple eigenvalue of L if
and only if G contains a globally reachable node. In this case,
the left-eigenvector w ∈ Rm of L associated with the simple
eigenvalue 0 has nonnegative elements, and wi > 0 if and only
if node i ∈ R is globally reachable.

I I I . P O W E R S Y S T E M M O D E L A N D O P T I M A L
F R E Q U E N C Y R E G U L AT I O N

A. Power System Model

The precise dynamical model of the network will not be of
primary concern to us; we will assume a very generic nonlinear
power system model of the form

ẋ(t) = f(x(t), u(t), w(t)), x(0) = x0

∆ω(t) = h(x(t), u(t), w(t))
(3)

where x(t) ∈ Rn is the vector of states, u(t) ∈ Rm is
the vector of control inputs, and w(t) ∈ Rnw is the vector
of (piecewise) constant reference signals, disturbances, and
unknown parameters. The model (3) may describe a microgrid
or a transmission system, and may have been obtained from
a more general differential-algebraic model under appropriate
regularity conditions [24]. The controls u represent total power
injection set-points for resources participating in secondary
frequency regulation; we let u? be the vector of base dispatch
points, and let R be an index set for these resources. The dis-
turbance w models set-point changes to other control loops and
unmeasured load and generation changes, e.g., from renewable
sources. The measurable output ∆ω(t) ∈ Rm is the vector of
frequency deviations at the secondary control resources.

Motivated by practical systems, our basic assumptions are
that (i) the power system converges exponentially to a unique
equilibrium when subject to reasonable constant exogenous
inputs, and (ii) the steady-state AC frequency is proportional
to the net power imbalance.

Assumption 3.1 (Power System Model): For (3) there exist
domains X ⊆ Rn and I ⊆ Rm × Rnw such that

(A1) f and h are continuously differentiable and Lipschitz
continuous on X × I;

(A2) there exists a differentiable equilibrium map πx : I → X
which is Lipschitz continuous on I and satisfies 0 =
f(πx(u,w), u, w) for all (u,w) ∈ I;

(A3) the equilibrium πx(u,w) ∈ X of (3) is exponentially
stable, uniformly in (u,w) ∈ I;

(A4) the equilibrium input-to-frequency map ∆ω̄ : I → Rm
defined by ∆ω̄(u,w) = h(πx(u,w), u, w) has the form

∆ω̄(u,w) = 1
β1m(1T

m(u− u?)− d), (4)



where β > 0 and d ∈ R is the unscheduled net load.
Assumption (A1)–(A3) above says that associated to each

constant control/disturbance pair (u,w) ∈ I is a unique (at
least, on the set X ) exponentially stable equilibrium state
πx(u,w). Assumption (A4) specifies that that the network
achieves frequency synchronization in steady-state, with fre-
quency deviations being equal at all nodes in the system; the
expression in (4) is typical for power system models without
resistive losses. Inclusion of losses is beyond our scope and
deferred to future work. As an example, a simple model which
(globally) satisfies Assumption 3.1 is

Mi∆ω̇i = −
n∑
j=1

Tij(∆θi −∆θj)−Di∆ωi + ∆Pm,i − di

Ti∆Ṗm,i = −∆Pm,i −R−1
d,i∆ωi + ui − u?i .

for i ∈ {1, . . . , n} with ∆θ̇i = ∆ωi and ∆θ1 ≡ 0. This
describes a linearized network-reduced model of synchronous
machines with first-order turbine governor models. While we
refer the reader to [2] and the references therein for details on
these kinds of models, we note that for this particular model,
the constant β in (4) is given by β =

∑m
i=1Di +R−1

d,i .

B. Optimal and Distributed Frequency Regulation

For the goal of secondary frequency regulation, a typical
power system is highly over-actuated, and the system oper-
ator has flexibility in allocating control actions across many
actuators. The desired steady-state control set-points ūi can be
specified via the minimization

minimize
ū∈Rm

J(ū) ,
∑

i∈R
Ji(ūi) (5a)

subject to 0 = 1T
m(ū− u?)− d (5b)

where Ji : Ui → R models the operational disutility of
the ith secondary power provider, and includes a (smooth)
barrier function for enforcing inequality constraints ūi ∈
Ui = (umin

i , umax
i ), where −∞ ≤ umin

i < umax
i ≤ +∞. In

other words, any limit constraints are directly included in the
domain of the function Ji. The constraint (5b) enforces steady-
state balance of secondary power injections 1T

m(ū− u?) and
unscheduled demand d, and by (4), enforces that the steady-
state network frequency deviation should be zero. We assume
that (5) is strictly feasible, and place the following technical
assumptions on Ji.

Assumption 3.2 (Regularity of Objective Functions): Each
function Ji : Ui → R≥0 is twice continuously differentiable,
strongly convex on Ui with parameter µi > 0, and satisfies the
barrier function properties

lim
ξ↘umin

i

Ji(ξi) = +∞, lim
ξ↗umax

i

Ji(ξi) = +∞.

Assumption 3.2 implies that Ji is essentially strictly convex
and essentially smooth on Ui (Section II-A). The control prob-
lem of interest is to design a (distributed) feedback controller
which drives the system frequency deviation towards zero while
simultaneously ensuring the control inputs converge towards
the (unique) primal optimizer of (5). The distributed-averaging

proportional-integral (DAPI) control scheme combines integral
control on local frequency measurements with peer-to-peer
communication between secondary control resources to solve
this problem. The following preliminary result characterizes
the optimal solution of (5).

Lemma 3.3 (Distributed Optimality Conditions): Consider
the optimization problem (5). Let ū ∈ Rm, let ∆ω̄ be as
in (4), and let G = (R, E ,A) be a weighted directed graph
with associated Laplacian matrix L. Assume that G contains
a globally reachable node, and let w ∈ Rm≥0 be the left-
eigenvector of L corresponding to its simple eigenvalue at 0.
If K � 0 is diagonal matrix such that wTK1m > 0, then the
following statements are equivalent:

(i) ū is the unique primal optimizer of (5);
(ii) there exists a unique vector η̄ ∈ span(1m) such that

0 = K∆ω̄(ū, w) + Lη̄ (6a)
ū = ∇J∗(η̄), (6b)

where J∗(η) =
∑
i∈R J

∗
i (ηi) is the conjugate of J .

Proof: irst note that since (5) is strictly feasible, J(ū) is
strongly convex, and the constraint matrix 1T

m in (5b) has full
row rank, the problem (5) has a unique primal-dual optimal
solution (ū, λ̄) for some λ̄ ∈ R, which satisfies the KKT
conditions (5b) and

∇J(ū) = λ̄1m ⇐⇒ ū = ∇J∗(λ̄1m). (7)

Since 0 is a simple eigenvalue of L with right-eigenvector 1m,
there exists a unique value λ̄ satisfying (7) if and only if there
exists a unique vector η̄ ∈ span(1m) such that

0 = Lη̄ (8a)
ū = ∇J∗(η̄). (8b)

In addition, trivially, the constraint (5b) holds if and only if

0 = 1m 1
β (1T

m(ū− u?)− d) = ∆ω̄(ū, w), (9)

where we used (4). We now claim that (8a) and (9) hold if
and only if (6a) holds. That (8a) and (9) imply (6a) is trivial.
For the other direction, left-multiply (6a) by wT to find that

0 = wT(K∆ω̄(ū, w) + Lη̄) = wTK1m 1
β (1T

m(ū− u?)− d).

The vector w is non-negative, and is non-zero since the graph G
has a globally reachable node (Section II-B), and by assumption
wTK1m 6= 0. We conclude that 1T

m(ū − u?) − d = 0, and
therefore (9) holds. Substituting this into (6a), it follows that
(8a) holds, which completes the proof. �

Lemma 3.3 leads naturally to the DAPI controller

τ η̇(t) = −∆ω(t)− Lη(t), u(t) = ∇J∗(η(t)), (10)

where τ > 0 is a tuning gain. The vector η(t) ∈ Rm is now the
dynamic controller state, and the steady-state frequency vector
∆ω̄ has been replaced by the real-time frequency measurement
vector ∆ω(t). In components, (10) is

τ η̇i(t) = −∆ωi(t)−
∑m

j=1
aij(ηi(t)− ηj(t)) (11a)

ui(t) = ∇J∗i (ηi(t)), (11b)



which emphasizes that (10) is a distributed controller. To
interpret the dispatch rule (11b), consider the objective function

Ji(ui) = 1
2αi

(ui−u?i )2−γi[log(umax
i −ui)+log(−umin

i +ui)]
(12)

where u?i is the base dispatch point of the resource, αi > 0,
and γi > 0 is a barrier function parameter. When γ = 0, (11b)
becomes ∇J∗i (ηi) = u?i + αiηi, which is a linear dispatch
rule as used in classic automatic generation control [1]. When
γ > 0, the barrier function enforces limit constraints, and
ui = ∇J∗i (ηi) yields smooth saturation of ui to the interval
[umin
i , umax

i ] on top of the simple linear dispatch rule.1

Remark 3.4 (Generalized DAPI Controllers): Lemma 3.3
suggests that one could insert a diagonal matrix K � 0 in front
of ∆ω(t) in (10) to obtain a generalized controller, in which,
e.g., only globally reachable nodes require local frequency
measurements. For technical reasons however, our Lyapunov
analysis to follow is applicable only to (10). �

I V. M A I N R E S U LT : C L O S E D - L O O P E X P O N E N T I A L
S TA B I L I T Y W I T H DA P I C O N T R O L

We now state and prove our main result, that the distributed
controller (11) leads to stable and optimal frequency regulation
of the power system (3).

Theorem 4.1 (Low-Gain Stability with DAPI Control):
Consider the power system model (3) under Assumption 3.1,
interconnected with the DAPI controller (11) under Assump-
tion 3.2. If the communication graph G contains a globally
reachable node, then there exists τ? > 0 such that for all
τ ≥ τ?, the unique equilibrium point (x̄, η̄) ∈ X ×Rm of the
closed-loop system is exponentially stable and ū = ∇J∗(η̄) is
the global optimizer of (5).

Proof of Theorem 4.1: For the closed-loop system (3) and
(10), define the new time variable ` = t/τ , which leads to the
singularly perturbed system

ε
dx

d`
= f(x, u, w), ∆ω = h(x, u, w)

dη

d`
= −∆ω − Lη, u = ∇J∗(η),

(13)

where ε = 1/τ . We will apply the quadratic Lyapunov
methodology in [25], [26, Chap 7.2], [27, Theorems 11.3,
11.4] to show exponential stability of (13) for sufficiently
small ε. Due to Assumption 3.1, the required conditions on
the boundary layer system are satisfied, and (3) admits a
continuously differentiable Lyapunov function Vps : X × I →
R≥0 certifying exponential stability of πx(u,w) and satisfying
the boundedness conditions in [27, Section 11.5] on some
neighbourhood of πx(u,w). The reduced dynamics of (13) are

η̇ = −∆ω̄(u,w)− Lη

u = ∇J∗(η),
(14)

where ∆ω̄ is as given in (4) and where η̇ now denotes
differentiation with respect to the new temporal variable `.
By Lemma 3.3 with K = Im, the system (14) possesses a

1The computation of ui(t) in (11) is done by solving the algebraic constraint
∇Ji(ui(t)) = ηi(t).

unique equilibrium point η̄ ∈ span(1m). Combining this with
Assumption 3.1, it is now clear that (13) possesses a unique
equilibrium (x̄, η̄) ∈ X × Rm. Eliminating u from (14), the
reduced dynamics are given by2

η̇ = − 1
β1m1T

m∇J∗(η)− Lη + 1
β1md̃, (15)

where d̃ = 1T
mu

? + d. Define the nonsingular transformation
matrix T = [ 1m V⊥ ], where V⊥ ∈ Rm×(m−1) has columns
which form an orthonormal basis for the subspace {η ∈
Rm | 1T

mη = 0}. Consider the change of state variable

η = T

[
z
δ

]
= 1mz + V⊥δ, z ∈ R, δ ∈ Rm−1.

It is straightforward to see that

z = 1
m1T

mη, δ = V T
⊥ η,

and by construction, the unique equilibrium (z̄, δ̄) = T−1η̄ =
( 1
m1T

mη̄, 0) satisfies

0 = − 1
β1T

m∇J∗(1mz̄) + 1
β d̃. (16)

In the (z, δ) coordinates, the dynamics (15) become

ż = − 1
β1T

m∇J∗(1mz + V⊥δ)− 1
m1T

mLV⊥δ + 1
β d̃

δ̇ = −V T
⊥LV⊥δ.

(17)

We reformulate the z-dynamics in (17) by adding and sub-
tracting the term 1

β1T
m∇J∗(1mz) and using the equilibrium

equation (16), which yields the equivalent dynamic model

ż = f1(z, δ) = ϕ(z) + ψ(z, δ) (18a)

δ̇ = f2(δ) (18b)

where

ϕ(z) , − 1
β1T

m [∇J∗(1mz)−∇J∗(1mz̄)]
ψ(z, δ) , − 1

β1T
m [∇J∗(1mz + V⊥δ)−∇J∗(1mz)]

− 1
m1T

mLV⊥δ

f2(δ) , −V T
⊥LV⊥δ.

Note that ψ(z, 0) = 0 for all z ∈ R. By Assumption 3.2, we
have from Section II-A that each function J∗i is essentially
strictly convex and strongly smooth with parameter 1/µi, the
latter fact implying the linear bound

|ψ(z, δ)| ≤ (
√
m
β

1
µmin
‖V⊥‖2 + 1√

m
‖LV⊥‖2︸ ︷︷ ︸

,κ

)‖δ‖2

for all z ∈ R and δ ∈ Rm−1, where µmin , mini∈R µi.
The dynamics (18) are in the form of a nonlinear cascade,

for which we will construct a composite Lyapunov function
which certifies local exponential stability of (z̄, δ̄).3 First
consider the driving system (18b). Since the graph G contains
a globally reachable node, L has a simple eigenvalue at 0 with

2See also [28] for closely related dynamics.
3The construction additionally certifies global asymptotic stability, but this

will not be used here.



all other eigenvalues having positive real part (Section II-B).
Note that since L1m = 0, we have

T−1LT =

[
1
m1T

m

V T
⊥

]
L
[
1m V⊥

]
=

[
0 1

m1T
mLV⊥

0 V T
⊥LV⊥

]
.

It follows that eig(L) = {0}∪ eig(V T
⊥LV⊥) and that all

eigenvalues of −V T
⊥LV⊥ have negative real part. By linear

Lyapunov theory, there exists ρ > 0 and P � 0 such that with
V2(δ) = δTPδ, we satisfy the dissipation inequality

∇V2(δ)Tf2(δ) ≤ −ρ‖δ‖22, δ ∈ Rm−1. (19)

For the driven system (18a), consider the continuously differ-
entiable Lyapunov candidate V1 : R→ R≥0 defined as

V1(z) =
∑m

i=1
[J∗i (z)− J∗i (z̄)−∇J∗i (z̄)(z − z̄)] .

Let r > 0 and let Br(z̄) , [z̄ − r, z̄ + r] be a compact ball
around z̄; by continuity, we have that Ir , ∇J∗i (Br(z̄)) ⊂
(umin
i , umax

i ) is a compact interval. Since ∇2Ji is continuous,
it is bounded on Ir. Therefore, ∇Ji is Lipschitz continuous on
Ir, and hence Ji is both strongly convex and strongly smooth
on Ir. It follows [22] that each J∗i is both strongly convex and
strongly smooth on Br(z̄), that V1(z) inherits these properties
[29, Lemma A.2], and that c1|z − z̄|2 ≤ V1(z) ≤ c2|z − z̄|2
for some c1, c2 > 0 and all z ∈ Br(z̄). We let µ̃ and L̃ denote
the strong convexity and strong smoothness parameters of V1

on the set Br(z̄), and it follows immediately that the gradient
∇V1(z) = 1T

m [∇J∗(1mz)−∇J∗(1mz̄)] satisfies

µ̃|z − z̄| ≤ |∇V1(z)| ≤ L̃|z − z̄|, z ∈ Br(z̄).

For α > 0, consider now the composite Lyapunov candidate

V (z, δ) = V1(z) + αV2(δ),

which is positive definite with respect to (z̄, 0). Easy calcula-
tions using (18) now show that

∇V1(z)Tφ(z) = − 1
β |∇V1(z)|2 ≤ − µ̃β |z − z̄|

2

∇V1(z)Tψ(z, δ) ≤ κL̃|z − z̄|‖δ‖2
for all z ∈ Br(z̄) and δ ∈ Rm−1. Combining these with (19),
we find that along trajectories of (18)

V̇ (z, δ) ≤ −
[
|z − z̄|
‖δ‖2

]T [
µ̃/β −L̃κ/2
−L̃κ/2 αρ

] [
|z − z̄|
‖δ‖2

]
.

Selecting α > βL̃2κ2/(4µ̃ρ), the right-hand side becomes
a negative definite with respect to the equilibrium (z̄, 0) for
all (z, δ) ∈ Br(z̄) × Rm−1. We conclude via [27, Theorem
4.10] that the equilibrium (z̄, 0) of (18) — or equivalently, the
equilibrium η̄ of the reduced dynamics (15) — is exponentially
stable. One may now proceed using a singular perturbation
composite Lyapunov construction as in, e.g., [27, Theorem
11.4] to complete the proof; the details are standard and are
omitted due to space limitations. �

An interesting aspect of Theorem 4.1 is that it imposes the
weakest possible time-invariant connectivity assumption one
can place on the communication graph G to ensure consensus,
namely the existence of a globally reachable node [23]. Indeed,
if G does not contain a globally reachable node, then L has

at least two eigenvalues at 0, and the reduced dynamics (15)
contain a marginally stable mode. Strongly connected, weight-
balanced, and undirected communication graphs [23] are all
covered as special cases. The proof is based on singular
perturbation time-scale separation, along with a Lyapunov
construction for the reduced dynamics. By leveraging loop
transformations, an alternative small-gain proof of Theorem 4.1
also appears feasible, with [30, Lem. 1] as a possible starting
point.

V. S I M U L AT I O N O N AU S T R A L I A N T E S T S Y S T E M

We illustrate our result by simulating the controller (11) on
a highly detailed dynamic power system model based on the
south eastern Austalian system [31]. The model contains 59
buses and 14 synchronous generators, with full-order turbine-
governor, excitation, and PSS models. We will use 5 of these
generators (buses 201, 301, 401, 403, and 503) as controllable
for secondary frequency regulation, with the inputs ui being
the power set-points to their turbine-governor systems.

To exploit the full flexibility of the theoretical result, we
consider heterogeneous objective functions in (12); the param-
eters are listed in Table I, with an aggressive time constant
tuning of τ = 15s obtained following classical regulator tuning
procedures (e.g., [32]). The upper and lower power limits for
the resources were set as ±0.1 p.u. from their respective
dispatch points. The communication graph G is a directed line
graph (with weights aij = 1) connecting the five controllable
machines; bus 503 is the unique globally reachable node.

G201 G301 G401 G403 G503

αi 0.15 0.15 0.15 0.15 0.4
u?i (p.u.) 0.9 0.9 0.787 0.787 0.6539

TABLE I: Parameters for simulation study; γi = 50.

Figure 1 shows the closed-loop response when a 750 MW
load is applied at bus 406 at time t = 200. This is a large
disturbance, and inter-area modes are visible in the frequency
plot of Figure 1a; as expected though, the frequency deviation is
asymptotically eliminated. The consensus action in (11) drives
the marginal cost variables ηi to agreement (Figure 1b). Figure
1c shows the set-points ui sent to the resources. Note that G403,
G404, and G503 all reach their upper production limits and
are held there, which indicates that the log barrier functions
are ensuring ui ∈ (umin

i , umax
i ) as expected.

V I . C O N C L U S I O N S

We have presented a proof that distributed-averaging
proportional-integral (DAPI) optimal frequency control is sta-
bilizing for open-loop stable nonlinear power system models
and under weak assumptions on the objective functions and
the inter-agent communication topology uses for consensus.
Unresolved questions include extensions to lossy DAE net-
works, and how far the convexity assumptions on the objective
functions Ji can be relaxed.



(a) Frequency measurements from controllable resources.

(b) Marginal cost variables from (11).

(c) Set-points ui for generators; black dashed lines are upper limits
umax
201 = umax

301 = 1, umax
401 = umax

403 = 0.887, and umax
503 = 0.7539.

Fig. 1: Australian 59-bus 14-machine system with DAPI control.
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