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Abstract— We consider the problem of zeroing an error
output of a nonlinear discrete-time system in the presence
of constant exogenous disturbances, subject to hard convex
constraints on the input signal. The design specification is
formulated as a variational inequality, and we adapt a forward-
backward splitting algorithm to act as an integral controller
which ensures that the input constraints are met at each time
step. We establish a low-gain stability result for the closed-
loop system when the plant is exponentially stable, generalizing
previously known results for integral control of discrete-time
systems. Specifically, it is shown that if the composition of the
plant equilibrium input-output map and the integral feedback
gain is strongly monotone, then the closed-loop system is
exponentially stable for all sufficiently small integral gains. The
method is illustrated via a simple numerical example.

I . I N T R O D U C T I O N

It is a well-known principle of control engineering that
regulation of an error signal to zero can be achieved ro-
bustly in the presence of model uncertainty and constant
references/disturbances only through integral feedback con-
trol [1]. The presence of control input constraints however
presents challenges to traditional integral controller designs;
sufficient actuator authority may not be available to achieve
exact regulation for all references/disturbances, and dynamic
performance is sometimes degraded through the so-called
wind-up phenomenon [2].

There are two broad approaches for accomodating lim-
ited actuator authority. The explicit approach is to directly
include input constraints into the design, as done in receding-
horizon/model-predictive control [3], bounded integral control
[4], and in other nonlinear/adaptive approaches [5]. A more
traditional implicit approach is to proceed by first designing
ignoring the actuator limits, and then to augment or retro-fit
the design in order to improve performance in the presence
of saturation; this category would include both classic and
modern anti-windup design [6]–[8], and reference/command
modification [9], [10].

Returning now to the fundamentals of integral control, a
commonly encountered case in practice is that the system
one wishes to control is complex, and limited dynamic model
information is available, but it is however known that the
system is stable (possibly achieved via a stabilizing controller
design). A general and well-established design philosophy
is that asymptotic tracking and disturbance rejection can
be guaranteed by adding a supplementary integral control
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loop, and that the closed-loop stability will be guaranteed if
the integral gain is sufficiently low; a famous and widely-
deployed example of this design philosophy is the tuning of
automatic generation control in power systems [11].

For finite-dimensional multi-input multi-output (MIMO)
linear time-invariant (LTI) systems, the fundamental stability
result for this approach is due to Davison [12, Lemma 3]; see
also [13, Theorem 3] and [14, Lemma 1, A.2, A.3]. While
[12] is in continuous-time, the key result is identical in the
discrete-time case [15], [16]. Consider the plant model

xk+1 = Axk +Buk +Bww

ek = Cxk +Duk +Dww
(1)

with state x ∈ Rn, control input u ∈ Rm, constant distur-
bance/reference signal w ∈ Rnw , and error output e ∈ Rp; we
associate a sampling period Ts > 0 with (1). Assume that A
is Schur stable, and let G(z) = C(zIn−A)−1B+D denote
the transfer matrix of (1) from u to e. One interconnects the
system (1) with the integral controller

ηk+1 = ηk − Ts

Ti
ek, uk = Kηk, (2)

where K ∈ Rm×p is a gain matrix and Ti > 0 is the integral
time constant. Davison’s low-gain stability result states that
if −G(1)K is Hurwitz stable, then there exists T ?i > 0 such
that the closed-loop system is exponentially stable for all
Ti ∈ (T ?i ,∞). A substantial literature exists on extensions
of this core result to infinite-dimensional systems, including
static nonlinearities, sampled-data implementations, and anti-
windup compensation; see [17]–[19] and the references
therein. Initial extensions to the continuous-time nonlinear
case were given in [20]. In [21] the author further generalized
these conditions via contraction theory, and provided a LMI-
based procedure to design low-gain integral controllers for
continuous-time nonlinear systems.

Contributions: In this paper we further contribute to the
study of constrained and low-gain integral control. We begin
by formulating the error regulation criteria in the presence
of input constraints as a variational inequality [22], which
leads us to adopt a version of the projection or forward-
backward algorithm [23] as a constrained integral controller.
The design is in discrete-time, and is therefore immediately
appropriate for digital control implementations. While this
design explicitly enforces input constraints at each time
instant, it has the following commonality with the more
implicit anti-windup approaches: if the input constraints
are not encountered during operation, the scheme reduces
to the classical integral controller (2). Our main stability



result (Theorem 3.1) establishes that the “low-gain integral
control stability principle” described above also holds for this
projected integral controller, which extends the main result
of [21] to discrete-time nonlinear systems.

Notation: Given two vectors x and y, col(x, y) denotes
their vertical concatenation. The matrix In is the n×n identity
matrix. If P is a symmetric matrix λmin(P ) and λmax(P )
denote its minimum and maximum eigenvalues. If P � 0, the
inner product induced by P is denoted by 〈x, y〉P = xTPy.
A function f : X → Rn is Lipschitz continuous on X ⊆ Rn
if there exists L > 0 such that ‖f(x) − f(y)‖ ≤ L‖x − y‖
for all x, y ∈ X .

I I . P R O B L E M F O R M U L AT I O N

A. Plant Model and Assumptions
We consider a plant described by a finite-dimensional

nonlinear time-invariant state-space model

xk+1 = f(xk, uk, w) (3a)
ek = h(xk, uk, w) (3b)

where xk ∈ Rn is the state, uk ∈ Rm is the control input, and
w ∈ Rnw is a vector of exogenous signals (reference signals
and/or disturbances). The signal ek ∈ Rp with p ≤ m is an
error output to be driven to zero. The model (3) would most
commonly arise by discretizing a continuous-time model; we
therefore associate a sampling period Ts > 0 to (3).

For any fixed w, the possible equilibrium state-input-error
triplets (x̄, ū, ē) are determined by the algebraic equations

x̄ = f(x̄, ū, w), ē = h(x̄, ū, w).

To capture the steady-state and dynamic behaviour of (3), we
assume that there exist convex sets X ,U ,W such that

(A1) f and h are continuous in all arguments on X ×U ×W ,
f is continuously differentiable with respect to x and u,
and f , h, ∂f

∂x , and ∂f
∂u are all Lipschitz continuous on

X × U uniformly in w ∈ W;
(A2) there is a class C1 map πx : U × W → X which is

Lipschitz continuous on U ×W such that

πx(u,w) = f(πx(u,w), u, w), (u,w) ∈ U ×W.

(A3) the equilibrium x̄ = πx(u,w) is exponentially stable,
uniformly in (u,w) ∈ U ×W .

Assumptions (A1)–(A3) capture the idea that the plant
model is sufficiently smooth, and converges exponentially
to a locally unique equilibrium when subject to reasonable
constant inputs u and w. We call the map

π : U ×W → Rm, π(ū, w) := h(πx(ū, w), ū, w) (4)

the equilibrium input-to-error map, which produces the equi-
librium error ē = π(ū, w) associated with the constant control
input ū and disturbance w. When applied to the LTI system
(1), (A1)–(A3) simply reduce to A being Schur stable, and
the mapping π becomes

π(ū, w) = G(1)ū+Gw(1)w, (5)

where Gw(z) = C(zIn−A)−1Bw+Dw is the transfer matrix
from w to e.

B. Constrained Error-Zeroing Specification
Let C ⊆ U be a closed non-empty convex set which

describes actuator limits. Following (2), the control signal
uk from our new integral controller will be generated as

uk = Kηk (6)

where K ∈ Rm×p is a gain matrix to be designed and
ηk ∈ Rp is the controller state. It follows that the preimage

Γ := {η ∈ Rp | Kη ∈ C}

is also a closed and non-empty convex set. For example, in
applications C is often polyhedral, in which case so is Γ.

Our ideal design objective would be to ensure that for
any disturbance w ∈ W , the error signal ek is asymptotically
driven to zero, and that the input constraint uk ∈ C is satisfied
at all times. As one might expect however, input constraints
may prevent us from exactly zeroing the steady-state error
ē = π(ū, w) for at least some disturbances w ∈ W . We
therefore relax the design objective, and instead seek an
equilibrium value η̄ ∈ Γ for the controller state such that

〈ē, η − η̄〉P = 〈π(Kη̄,w), η − η̄〉P ≥ 0, ∀η ∈ Γ, (7)

where 〈x, y〉P = xTPy is the inner product on Rp induced
by some positive definite matrix P � 0. The inequality (7) is
called a variational inequality [22], and we notate a solution
of the inequality as η̄ ∈ VIP (Γ, π ◦K). Note that if η̄ lies
in the interior of the set Γ, then there exists τ > 0 such
that η = η̄ − τ ē ∈ Γ. The inequality (7) then implies that
−ēTē ≥ 0, implying that ē = 0. In other words, if the input
constraints are strictly feasible, then (7) is an exact error-
zeroing design specification. A geometric interpretation of
(7) uses the normal cone of the set Γ at η̄ ∈ Γ, defined as

NP
Γ (η̄) := {d ∈ Rp | 〈d, η − η̄〉P ≤ 0 for all η ∈ Γ}.

With this, (7) can be equivalently expressed as
−ē = −π(Kη̄,w) ∈ NP

Γ (η̄), as illustrated in Figure
1. The interpretation of Figure 1 is that from the point η̄, any
further attempt to adjust in the direction −ē = −π(Kη̄,w)
will result in constraint violation.

Fig. 1: Illustration of constrained error-zeroing specification.

Remark 2.1 (Minimization Interpretation): To see how
else the design specification (7) could arise, suppose that
εk = hε(xk, uk, w) is a measured tracking error of interest
for the system (3), with associated equilibrium mapping
ε̄ = πε(ū, w) defined similar to (4). Consider the steady-state
minimization problem

minimize
ū∈C

J(ε̄) ⇔ minimize
η̄∈Γ

J(πε(Kη̄,w)) (8)



where J : Rp → R is a class C1 convex and positive
definite function. Critical points of this (generally, non-
convex) problem are determined by the inclusion

−KT ∂πε
∂ū

(Kη̄,w)T∇J(πε(Kη̄,w)) ∈ NΓ(η̄). (9)

If we define the error signal ek := KT ∂πε
∂ū (uk, w)T∇J(εk),

then the inclusion (9) is precisely the variational inequality
(7). Thus, one could interpret the specification (7) as arising
from a steady-state optimization problem where the goal
is to minimize a function of the tracking error. This per-
spective connects our approach directly with recent ideas in
autonomous and feedback-based optimization; see [24]–[27]
for recent contributions. �

C. The Projection (Forward-Backward) Algorithm

The error-zeroing specification (7) is equivalent to the so-
called natural equation [22, Chp. 1.5]

η̄ = ProjPΓ (η̄ − απ(Kη̄,w)) (10)

for any α > 0, where ProjPΓ : Rm → Γ is the projection
operator

ProjPΓ (η) = argmin
ν∈Γ

‖η − ν‖P (11)

which yields the closest point to η in Γ measured in the norm
‖x‖P =

√
xTPx induced by P � 0. The equation (10) leads

immediately to the classic projection or forward-backward
splitting algorithm [28, Section 25.3].

ηk+1 = (1− λ)ηk + λProjPΓ (ηk − απ(Kηk, w)) (12)

for solving the variational inequality VIP (Γ, π ◦K), where
λ ∈ (0, 1) is a damping parameter. We summarize some well-
known conditions which ensure exponential stability of the
iteration (12) to a unique equilibrium satisfying (10).

Proposition 2.1: (Equilibrium and Contraction Proper-
ties of Forward-Backward Algorithm) Let w ∈ W . If
η 7→ π(Kη,w) is µ-strongly monotone on Γ with respect to
〈·, ·〉P , i.e., if

〈π(Kη,w)− π(Kη′, w), η − η′〉P ≥ µ‖η − η′‖2P

for some µ > 0 and all η, η′ ∈ Γ, then (12) possesses a unique
equilibrium point η̄ ∈ Γ satisfying (10). If η 7→ π(Kη,w)
is additionally L-Lipschitz continuous on Γ with respect to
the norm ‖ · ‖P , and α is selected such that α ∈ (0, 2µ/L2),
then the following statements hold:

(i) the foward-backward operator

Φ : Γ→ Γ, Φ(η) = ProjPΓ (η−απ(Kη,w)) (13)

is a contraction mapping on Γ, satisfying

‖Φ(η)− Φ(η′)‖P ≤ cfb‖η − η′‖P , η, η′ ∈ Γ,

where cfb =
√

1− 2αµ+ α2L2 ∈ [0, 1).
(ii) the damped forward-backward operator

Φd : Γ→ Γ, Φd(η) = (1− λ)η + λΦ(η)

is a contraction mapping on Γ, satisfying

‖Φd(η)− Φd(η′)‖P ≤ cdfb‖η − η′‖P .

for all η, η′ ∈ Γ, where cdfb = 1− λ(1− cfb) ∈ (0, 1).
Proof: The existence/uniqueness statement is [22,

Theorem 2.3.3], and the proof of (i) requires only minor
modifications of the proof of [23, Theorem 12.1.2]; (ii) then
follows immediately from (i).

I I I . D A M P E D P R O J E C T E D I N T E G R A L C O N T R O L
A N D L O W- G A I N S TA B I L I T Y R E S U LT

A. Damped Projected Integral Control

We propose adapting the forward-backward splitting algo-
rithm (12) as an integral feedback controller for enforcing
the error-zeroing specification (7). Specifically, we propose
the damped projected integral (DP-I) controller

ηk+1 = (1− λ)ηk + λProjPΓ (ηk − Ts

Ti
ek) (14a)

uk = Kηk (14b)

where Ti > 0 is the integral time constant. We make several
observations regarding (14):

(i) Constrained Error-Zeroing: If (14) is in equilibrium
with the plant (3), then it is immediate from (10) that
η̄ ∈ VIP (Γ, π ◦K).

(ii) Input Constraint Satisfaction & Windup: If ηk ∈ Γ, then
ηk+1 ∈ Γ, since by (14) ηk+1 is a convex combination
of two points in Γ. Therefore, uk = Kηk ∈ C at all
points in time. As a result, (14) will never suffer from
traditional integrator windup.

(iii) Reduction to Classical Integral Control: If ηk ∈ Γ and
ηk − Ts

Ti
ek ∈ Γ, then the update (14) reduces to

ηk+1 = ηk − Ts

T ′
i
ek, uk = Kηk (15)

where T ′i = λ/Ti. Thus, when constraints are not
encountered, (14) reduces to the integral controller (2).

(iv) Computation of Projection: The projection in (14) re-
quires the solution of the convex optimization prob-
lem (11), but need only be computed at step k if
ηk − Ts

Ti
ek /∈ Γ. Projections onto many simple types

of constraint sets are computable in closed-form; see,
e.g., [29, App. B].

(v) Alternative Controller: The controller (14) is based on
the natural equation associated with the inequality (7).
If one instead uses a skewed natural equation (see [22,
Chp. 1.5]), one can arrive at the alternative update law

ηk+1 = (1− λ)ηk + λProjIrΓ (ηk − Ts

Ti
P−1ek),

where the projection is now with respect to the standard
Euclidean norm. In what follows though, we proceed
with the formulation (14), mostly due to point (iii) above.



B. Low-Gain Stability with DP-I Control

The closed-loop system consists of the interconnection of
the plant (3) and the controller (14); we can now state our
main stability result.

Theorem 3.1 (Low-Gain Stability with DP-I Control):
Consider the plant (3) under Assumptions (A1)–(A3) with the
DP-I controller (14). Suppose that there exists a matrix P � 0
and constants µ,L > 0 such that η 7→ π(Kη,w) is µ-strongly
monotone and L-Lipschitz continuous on Γ with respect
to 〈·, ·〉P , uniformly in w ∈ W . Define T ?i := TsL

2/2µ.
Then for any Ti ∈ (T ?i ,∞), there exists λ? ∈ (0, 1) such
that for any λ ∈ (0, λ?) and any w ∈ W , the closed-loop
system possesses an exponentially stable equilibrium point
(x̄, η̄) ∈ X × Γ and the pair (ē, η̄) = (π(Kη̄,w), η̄) satisfies
the error-zeroing specification (7).

To interpret the conditions in Theorem 3.1, consider again
the LTI case (5). The condition for strong monotonicity
requires that there exist P � 0 satisfying

(G(1)K)TP + PG(1)K � 0

which is equivalent to the matrix −G(1)K being Hurwitz
stable; this is precisely Davison’s classical condition, as
described in Section I. The main condition required in
Theorem 3.1 is that of strong monotonicity of the mapping
η 7→ π(Kη,w); as shown in [21], the same condition is
sufficient for stability of low-gain integral control applied to
continuous-time nonlinear systems. In [21], it was further
shown that if π admits a linear fractional representation,
methods from robust control and semidefinite programming
can be used to certify the monotonicity condition. The same
methods can in fact be used to synthesize controller gains K
which achieve robust performance for the reduced dynamics
(12). While we omit the details here due to space limitations,
the interested reader will have no trouble adapting the analysis
and synthesis results from [21] to the current context.

Proof of Theorem 3.1: The proof is based on a composite
Lyapunov construction, and is divided into five steps.

Step #1 — Equilibrium and Error Equations: Let w ∈ W
and set α := Ts/Ti. Equilibria (x̄, η̄) are characterized by

x̄ = f(x̄, ū, w), η̄ = ProjPΓ (η̄ − αē)
ē = h(x̄, η̄, w), ū = Kη̄.

(16)

If such an equilibrium exists, then necessarily η̄ ∈ Γ, and
hence ū = Kη̄ ∈ C. Given any such ū, it follows from (A2)
that the first equation in (16) can be solved for x̄ = πx(ū, w);
together, (A2)/(A3) imply that x̄ is isolated. Eliminating x̄
and ē, we obtain the reduced equilibrium equation

η̄ = ProjPΓ (η̄ − απ(Kη̄,w)) = Φ(η̄) = Φd(η̄) (17)

which is equivalent to the error-zeroing specification (7).
Since η 7→ π(Kη,w) is µ-strongly monotone on Γ uniformly
in w, and Γ is closed, convex, and non-empty, VIP (Γ, π ◦K)
admits a unique solution [22, Theorem 2.3.3]. We conclude
that the closed-loop system possess a unique equilibrium

point (x̄, η̄) ∈ X ×Γ with ē = h(x̄,Kη̄, w) = π(Kη̄,w) and
control ū = Kη̄ ∈ C. Consider the change of state variable

ξk := xk − πx(Kηk, w).

With this, the dynamics (3),(14) become

ξk+1 = f(ξk + πx(Kηk, w),Kηk, w)− πx(Kηk+1, w)

ek = h(ξk + πx(Kηk, w),Kηk, w)

ηk+1 = (1− λ)ηk + λProjPΓ (ηk − αek),
(18)

and the equilibrium point of interest is (ξ, η) = (0, η̄).

Step #2 — Analyzing the Slow Dynamics: Let
Vs(η) = ‖η − η̄‖2P . Using Φ and Φd from Proposition 2.1,
we compute that

Vs(ηk+1)
1
2 = ‖(1− λ)ηk + λProjPΓ (ηk − αek)− η̄‖P

= ‖(1− λ)ηk + λΦ(ηk)− η̄
+ λ(ProjPΓ (ηk − αek)− Φ(ηk))‖P

= ‖Φd(ηk)− Φd(η̄)

+ λ(ProjPΓ (ηk − αek)− Φ(ηk))‖P
≤ cdfb‖ηk − η̄‖P + λ‖δ‖P

where δ = ProjPΓ (ηk − αek) − Φ(ηk). To bound ‖δ‖P we
compute that

‖δ‖2P = ‖ProjPΓ (ηk − αek)− ProjPΓ (ηk − απ(Kηk, w))‖2P
≤ α2‖ek − π(Kηk, w)‖2P
= α2‖h(ξk + πx(Kηk, w),Kηk, w)

− h(πx(Kηk, w),Kηk, w)‖2P
≤ α2λmax(P )L2

h‖ξk‖22
where Lh is the Lipschitz constant of h. Combining the
above, with ∆Vs = Vs(ηk+1)− Vs(ηk), one finds that along
trajectories of (18) it holds that

∆Vs ≤ (c2dfb − 1)‖ηk − η̄‖2P + λmax(P )L2
hα

2λ2‖ξk‖22

+ 2λmax(P )
1
2αLhλcdfb‖ηk − η̄‖P ‖ξk‖2

= ζTkQsζk

where ζk = col(‖ξk‖2, ‖ηk − η̄‖P ) and

Qs =

[
q1λ

2 q2λ
q2λ c2dfb − 1

]
,

q1 = λmax(P )α2L2
h

q2 = αλmax(P )1/2Lhcdfb.

Step #3 — Bounding ‖ηk+1 − ηk‖P : We compute using
the triangle inequality that

‖ηk+1 − ηk‖P ≤ ‖ηk+1 − Φd(ηk)‖P
+ ‖Φd(ηk)− ηk‖P .

(19)

Using our previous calculations, the first term in (19) can be
bounded as

‖ηk+1 − Φd(ηk)‖P = λ‖ProjPΓ (ηk − αek)− Φ(ηk)‖P
= λ‖δ‖P
≤ λαLhλmax(P )1/2‖ξk‖2.

(20)



To bound the second term in (19), it follows from Proposition
2.1 and the triangle inequality that

‖Φd(ηk)− ηk‖P = λ‖Φ(ηk)− ηk‖P
= λ‖(ηk − η̄)− (Φ(ηk)− η̄)‖P
≤ λ(1 + cfb)‖ηk − η̄‖P .

(21)

Putting things together we obtain

‖ηk+1 − ηk‖P ≤ λLhαλmax(P )1/2‖ξk‖2
+ λ(1 + cfb)‖ηk − η̄‖P .

(22)

Step #4 — Analyzing the Fast Dynamics: Define the
deviation vector field g : Rn × U ×W → Rn by

g(ξ, u, w) = f(ξ + πx(u,w), u, w)− f(πx(u,w), u, w)

= f(ξ + πx(u,w), u, w)− πx(u,w).

Under Assumptions (A1)–(A3), the conditions of a converse
Lyapunov theorem in the appendix are met: there exists a
set Z containing the origin in its interior, positive constants
c1, c2, c3, c4 > 0, ρf ∈ [0, 1), and a continuous function

Vf : Z × U ×W → R≥0, (ξ, u, w) 7→ Vf(ξ, u, w)

satisfying the Lyapunov conditions

c1‖ξ‖22 ≤ Vf(ξ, u, w) ≤ c2‖ξ‖22 (23a)

Vf(g(ξ, u, w), u, w)− Vf(ξ, u, w) ≤ −ρf‖ξ‖22 (23b)
|Vf(ξ, u, w)− Vf(ξ

′, u, w)| ≤ c3(‖ξ‖2 + ‖ξ′‖2)‖ξ − ξ′‖2
(23c)

|Vf(ξ, u, w)− Vf(ξ, u
′, w)| ≤ c4‖ξ‖22‖u− u′‖2 (23d)

for all ξ, ξ′ ∈ Z , all u, u′ ∈ U , and all w ∈ W . Let

∆Vf = Vf(ξk+1, ηk+1, w)− Vf(ξk, ηk, w)

denote the increment of Vf along trajectories of (18). Substi-
tuting in the dynamics and adding and subtracting terms, we
can express the overall change as

∆Vf = ∆V 1
f + ∆V 2

f + ∆V 3
f , (24)

where the summands are defined in (25).
We now bound each term in (24) individually. Applying

(23c) to |∆V 1
f | we obtain

|∆V 1
f | ≤ c3‖πx(Kηk+1, w)− πx(Kηk, w)‖2
·
(
‖f(ξk + πx(Kηk, w),Kηk, w)− πx(Kηk+1, w)‖2

+ ‖f(ξk + πx(Kηk, w),Kηk, w)− πx(Kηk, w)‖2
)

(26)
Since πx is Lipschitz continuous we have

‖πx(Kηk+1, w)− πx(Kηk, w)‖2 ≤ Lπx‖K‖2‖ηk+1 − ηk‖2

≤ λmin(P )−
1
2Lπx‖K‖2‖ηk+1 − ηk‖P .

(27)

Since πx(Kη,w) = f(πx(Kη,w),Kη,w) and f is Lipschitz
continuous in (x, u) uniformly in w, we have

‖f(ξk + πx(Kηk, w),Kηk, w)− πx(Kηk+1, w)‖2

≤ Lf
∥∥∥∥[ξk + πx(Kηk, w)− πx(Kηk+1, w)

K(ηk − ηk+1)

]∥∥∥∥
2

≤ Lf‖ξk‖2 + Lf (1 + Lπx)‖K‖2λmin(P )−
1
2 ‖ηk+1 − ηk‖P

(28)
where we used that ‖z‖2 ≤ ‖z‖1 for z ∈ Rn. Similarly, we
compute that

‖f(ξk + πx(Kηk, w),Kηk, w)− πx(Kηk, w)‖2 ≤ Lf‖ξk‖2.
(29)

Substituting (27)–(29) back into (26), we obtain

|∆V 1
f | ≤ c3λmin(P )−1LfLπx(1 + Lπx)‖K‖22‖ηk+1 − ηk‖2P

+ 2c3LπxLf‖K‖2λmin(P )−
1
2 ‖ξk‖2‖ηk+1 − ηk‖P .

(30)
Substituting (22) into (30) and collecting terms, we finally
obtain the bound

|∆V 1
f | ≤ ζTkQ1ζk = ζTk

[
k1λ

2 + k2λ k3λ
2 + k4λ

k3λ
2 + k4λ k5λ

2

]
ζk

(31)
where the explicit expressions for the coefficients are

k1 = c3LfLπx(1 + Lπx)L2
h‖K‖22α2λmin(P )−

1
2

k2 = 2c3LπxLf‖K‖2αλmax(P )
1
2λmin(P )−

1
2

k3 = c3LfLπx(1 + Lπx)Lh‖K‖22α(1 + cfb)

· λmin(P )−1λmax(P )
1
2

k4 = c3LπxLf‖K‖2(1 + cfb)λmin(P )−
1
2

k5 = c3LfLπx(1 + Lπx)‖K‖22(1 + cfb)2λmin(P )−1.

To bound |∆V 2
f | we may apply (23d) to obtain

|∆V 2
f | ≤ c4‖f(ξk + πx(Kηk, w),Kηk, w)− πx(Kηk, w)‖22

· ‖K(ηk+1 − ηk)‖2

≤ c4L2
f‖K‖22λmin(P )−

1
2 ‖ξk‖22‖ηk+1 − ηk‖P ,

where in the second line we used (29). Since 0 is
an interior point of Z , there exists r > 0 such that
Br(0) := {ξ ∈ Rn | ‖ξ‖2 < r} ⊂ Z . For ξk ∈ Br(0)
we therefore have the further bound

|∆V 2
f | ≤ c4L2

f‖K‖22λmin(P )−
1
2 r‖ξk‖2‖ηk+1 − ηk‖P .

Substituting (22) into this, we finally obtain

|∆V 2
f | ≤ ζTkQ2ζk = ζTk

[
k6λ k7λ
k7λ 0

]
ζk (32)

where

k6 = c4L
2
f‖K‖22λmin(P )−

1
2 rLhαλmax(P )

1
2

k7 = 1
2c4L

2
f‖K‖22λmin(P )−

1
2 r(1 + cfb).

To bound ∆V 3
f we apply (23b) to obtain

∆V 3
f ≤ −ρf‖ξk‖22. (33)



∆V 1
f := Vf(f(ξk + πx(Kηk, w),Kηk, w)− πx(Kηk+1, w),Kηk+1, w)

− Vf(f(ξk + πx(Kηk, w),Kηk, w)− πx(Kηk, w),Kηk+1, w)

∆V 2
f := Vf(f(ξk + πx(Kηk, w),Kηk, w)− πx(Kηk, w),Kηk+1, w)

− Vf(f(ξk + πx(Kηk, w),Kηk, w)− πx(Kηk, w),Kηk, w)

∆V 3
f := Vf(f(ξk + πx(Kηk, w),Kηk, w)− πx(Kηk, w),Kηk, w)− Vf(ξk,Kηk, w).

(25)

Substituting the individual bounds for |∆V 1
f |, |∆V 2

f |, and
∆V 3

f from (31), (32), and (33) back into (24), we obtain the
overall bound

∆Vf ≤ ζkQfζk

where Qf := Q1 +Q2 +Q3 evaluates to

Qf =

[
−ρf + k1λ

2 + (k2 + k6)λ k3λ
2 + (k4 + k7)λ

k3λ
2 + (k4 + k7)λ k5λ

2

]
.

Step #5 – Putting the Pieces Together: Define the com-
posite Lyapunov candidate V (ξ, η, w) = Vs(η) + Vf(ξ, η, w).
Along trajectories of (18), we combine the previous inequal-
ities to compute that

∆V = V (ξk+1, ηk+1, w)− V (ξk, ηk, w) ≤ ζTkQζk

holds for all (ξk, ηk, w) ∈ Br(0)× Γ×W , where

Q =

[
−ρf + (k1 + q1)λ2 + k̃2λ k3λ

2 + k̃4λ

k3λ
2 + k̃4λ −(1− c2dfb) + k5λ

2

]
and where for compactness we set k̃2 = k2 + k6 and
k̃4 = k4 + k7 + q2. Note that the (1, 1) element of Q is
negative and O(1) as λ → 01. From Proposition 2.1, we
have that

1− c2dfb = 2λ(1− cfb)− λ2(1− cfb)2,

with cfb ∈ (0, 1), and therefore the (2, 2) element of Q
is negative and O(λ) as λ → 0. Since the off diagonal
elements are O(λ) as λ → 0, it is straightforward to
argue that there exists some λ? > 0 such that Q ≺ 0
for all λ ∈ (0, λ?). Using (23a), there therefore exists
ε > 0 such that ∆V (ξk, ηk, w) ≤ −εV (ξk, ηk, w) for all
(ξk, ηk, w) ∈ Br(0)× Γ×W . Standard arguments (e.g., [30,
Thm. 13.2] now complete the proof. �

I V. S I M U L AT I O N E X A M P L E

We now illustrate the action of the controller via an
academic example. For simplicity, we generate a random
internally stable discrete-time LTI system with sampling
period Ts = 1, n = 5 states, r = 2 measurements, m = 3
control inputs, and nw = 2 exogenous reference signals, and
consider a standard reference-tracking control arrangement
where ek = yk − wk. For this system, the DC gain matrix
G(1) ∈ Rr×m has full row rank. For the DP-I controller
(14), the gain K is selected as K = G(1)†, and hence the
monotonicity and Lipschitz conditions in Theorem 3.1 are
satisfied with P = I2 and µ = L = 1; the remaining

1For a function g : R → R which is positive definite with respect to 0, a
function f : R → R is O(g(λ)) as λ→ 0 if limλ→0 |f(λ)|/g(λ) <∞.

parameters are selected as Ti = 30, and λ = 0.9. The inputs
uk ∈ R3 are constrained to the convex set

C = {u ∈ R3 | |u1|+ |u2| ≤ 1, |u3| ≤ 2}.

For comparison purposes, we simulate (i) the response of
the closed-loop system without constraints with the basic
integral controller (2), and (ii) the response of the closed-
loop system with constraints with the DP-I controller (14).
Figure 2 shows the response under several step changes to the
two reference signals. In the unconstrained case, as expected,
the reference signals are tracked after the initial transient
response. In the constrained case, sufficient actuator capacity
is not available, and exact tracking is not achieved. Figure 3
shows the control signal, projected onto the u1–u2 plane; the
two responses are identical when the projection operation is
inactive (see Section III-A), but as expected uk ∈ C at all
times in the constrained case.

Fig. 2: Tracking response of closed-loop system; dashed black lines
denote reference set-points.

V. C O N C L U S I O N S

We have formulated an approximate tracking specification
as a variational inequality, and designed projected integral
controller to meet this specification while maintaining arbi-
trary convex constraints on the input signal at all times. In the
absence of constraints, the approximate tracking specification
reduces to an exact tracking specification, and the projected
integral controller reduces to a classical integral controller.
The controller inherits what is perhaps the most important
stability property of traditional integral control; under mild
monotonicity conditions on the plant equilibrium mapping,
closed-loop stability can be guaranteed when the plant is
exponentially stable and the integral gain is sufficiently low.



Fig. 3: Control inputs; dashed black lines denote constraints.

Future work will consider applications of this control scheme,
the extension of this scheme to a projected PID controller, and
the extension to more general discrete-time output-regulating
controllers which admit a representation in incremental form.

A P P E N D I X

Consider the discrete-time nonlinear system

xk+1 = f(xk, u) (34)

where f : X × U → Rn, with X ⊆ Rn and U ⊆ Rm being
convex sets. Assume that

(i) f is continuously differentiable on X × U ,
(ii) f, ∂f∂x ,

∂f
∂u are Lipschitz continuous in x on the set X ,

uniformly in the inputs u ∈ U ,
(iii) there exists a continuously differentiable map

πx : U → X which is Lipschitz continuous on U and
satisfies πx(u) = f(πx(u), u) for all u ∈ U .

Defining the new state variable z = x− πx(u), we obtain
the deviation model

zk+1 = f(zk + πx(u), u)− πx(u) := g(zk, u), (35)

where now z = 0 is an equilibrium point of (35) for all
u ∈ U .

Theorem A1: Consider the dynamics (35) under the previ-
ous assumptions. If the origin z = 0 is locally exponentially
stable uniformly in u ∈ U , then there exists a set Z containing
0 in its interior, a continuous function V : Z × U → R, and
constants c1, c2, c3, c4 > 0 and ρf ∈ (0, 1) such that

c1‖z‖22 ≤ V (z, u) ≤ c2‖z‖22 (36a)

V (g(z, u), u)− V (z, u) ≤ −ρf‖z‖22 (36b)
|V (z, u)− V (z′, u)| ≤ c3(‖z‖2 + ‖z′‖2)‖z − z′‖2 (36c)

|V (z, u)− V (z, u′)| ≤ c4‖z‖22‖u− u′‖2 (36d)

for all z, z′ ∈ Z and all u, u′ ∈ U .

Proof of Theorem A1: Let φk(z;u) denote the solution of
(35) from initial condition z0 = z and with input u ∈ U . By
uniform exponential stability, there exist constants M ≥ 1,
ρ ∈ (0, 1) and δ > 0 such that

‖z‖2 < δ =⇒ ‖φk(z;u)‖2 ≤Mρk‖z‖2 (37)

for all k ≥ 0 and for any u ∈ U . In particular
then, ‖φk(z;u)‖2 ≤ Mδ := ε for all k ≥ 0. Let
Bδ(0) = {ξ ∈ Rn | ‖ξ‖2 < δ} and define

Z = {ζ ∈ Rn | ∃k ≥ 0, z ∈ Bδ(0), u ∈ U s.t. φk(z;u) = ζ}.

In other words, Z is the image of all solutions with initial
conditions in Bδ(0) and inputs in U . Due to uniform
exponential stability, we have that Z ⊆ Bε(0), so Z is a
bounded set. Moreover, by definition,Z is positively invariant.
Finally, note that Bδ(0) ⊆ Z , so 0 is in the interior of Z .
With this refined notation, we have that if z ∈ Bδ(0), then
φk(z;u) ∈ Z for any k ≥ 0 and any u ∈ U .

Next, define the function V : Z × U → R by

V (z, u) =
∑N−1

k=0
φk(z;u)Tφk(z;u)

for some N ≥ 1 to be determined. Since g is Lipschitz
continuous in both arguments, so is φk, so V is continuous
in both arguments. We first observe that

V (z, u) = φ0(z;u)Tφ0(z;u) +
∑N−1

k=1
φk(z;u)Tφk(z;u)

≥ φ0(z;u)Tφ0(z;u)

= ‖z‖22.
By uniform exponential stability, it also holds that

V (z, u) ≤
∑N−1

k=0
M2ρ2k‖z‖22,

and hence (36a) holds for all (z, u) ∈ Z × U with c1 = 1
and c2 =

∑N−1
k=0 M2ρ2k. Next, note that since Z is forward

invariant, we have that g(z, u) ∈ Z for any z ∈ Z and any
u ∈ U . We may therefore compute for z ∈ Z that

V (g(z, u), u)− V (z, u)

=

N−1∑
k=0

‖φk(g(z, u);u)‖22 − ‖φk(z;u)‖22

By the semi-group property of solutions, we have

φk(g(z, u);u) = φk+1(z;u).

The sum therefore telescopes, and we find that

V (g(z, u))− V (z, u) = ‖φN (z;u)‖22 − ‖z‖22
≤ −

(
1−M2ρ2N

)
‖z‖22,

where we have used (37). Selecting N large enough such
that M2ρ2N < 1, we define ρf = 1 −M2ρ2N ∈ (0, 1) and
we obtain (36b) for all (z, u) ∈ Z × U . To show (36c) we
first compute for z, z′ ∈ Z that

‖g(z, u)− g(z′, u)‖2
≤ ‖f(z + πx(u), u)− f(z′ + πx(u), u)‖
≤ L1‖z − z′‖2



where L1 > 0 is the Lipschitz constant of f . It quickly
follows then that ‖φk(z;u) − φk(z′;u)‖2 ≤ Lk1‖z − z′‖2.
We may now compute that

|V (z, u)− V (z′, u)| =
∣∣∣∑N−1

k=0
φk(z;u)Tφk(z;u)

−
∑N−1

k=0
φk(z′;u)Tφk(z′;u)

∣∣∣
=
∣∣∣∑N−1

k=0
φk(z;u)T(φk(z;u)− φk(z′;u))

−
∑N−1

k=0
φk(z′;u)T(φk(z′;u)− φk(z;u))

∣∣∣
≤
N−1∑
k=0

Lk1(‖φk(z;u)‖2 + ‖φk(z′;u)‖2)‖z − z′‖2

≤
N−1∑
k=0

Lk1Mρk(‖z‖2 + ‖z′‖2)‖z − z′‖2

so (36c) holds with c4 =
∑N−1
k=0 Lk1Mρk. To show (36d),

begin by computing (35) that

∂g
∂u (z, u) = ∂f

∂x (z + πx(u), u)∂πx∂u (u)

+ ∂f
∂u (z + πx(u), u)− ∂πx

∂u (u).
(38)

Next, since πx(u) = f(πx(u), u) for any u ∈ U , we have by
continuous differentiability that

∂πx
∂u (u) = ∂f

∂x (πx(u), u)∂πx∂u (u) + ∂f
∂u (πx(u), u). (39)

Inserting (39) into (38) we find that

∂g
∂u (z, u) =

[
∂f
∂x (z + πx(u), u)− ∂f

∂x (πx(u), u)
]
∂πx
∂u (u)

+
[
∂f
∂u (z + πx(u), u)− ∂f

∂u (πx(u), u)
]
.

Using Lipschitz continuity of ∂f
∂x , ∂f∂u , and πx, we therefore

obtain the bound

‖ ∂g∂u (z, u)‖2 ≤ `‖z‖2.

for some ` > 0. By convexity of U and the multivariable
mean-value theorem, this immediately implies that

‖g(z, u)− g(z, u′)‖2 ≤ `‖z‖2‖u− u′‖2. (40)

Let ∆k = φk(z;u)−φk(z;u′) denote the difference between
the flows given different inputs. We bound this as

‖∆k‖2 = ‖g(φk−1(z;u), u)− g(φk−1(z;u′), u′)‖2
= ‖g(φk−1(z;u), u)− g(φk−1(z;u′), u)

− [g(φk−1(z;u′), u′)− g(φk−1(z;u′), u)]‖2
≤ L1‖∆k−1‖2 + L1`‖φk−1(z, u′)‖2‖u− u′‖2
≤ L1‖∆k−1‖2 + L1`Mρk−1‖z‖2‖u− u′‖2

where we added and subtracted terms and then bounded using
(40) and (37). Using this bound recursively and noting that
∆0 = 0, we obtain

‖∆k‖2 ≤ ‖z‖2‖u− u′‖2
∑k−1

m=0
Lk−m1 `Mρm︸ ︷︷ ︸
:=κ

.

We are now ready to compute that

|V (z, u)− V (z, u′)| =
∣∣∣∑N−1

k=0
φk(z;u)Tφk(z;u)

−
∑N−1

k=0
φk(z;u′)Tφk(z;u′)

∣∣∣
=
∑N−1

k=0
φk(z;u)T[φk(z;u)− φk(z;u′)]

−
∑N−1

k=0
φk(z;u′)T[φk(z;u′)− φk(z;u)]

∣∣∣
≤
∑N−1

k=0
(‖φk(z;u)‖2 + ‖φk(z;u′)‖2)‖∆k‖2

≤ κ‖z‖22‖u− u′‖2
∑N−1

k=0
2Mρk

which completes the proof with c5 =
∑N−1
k=0 2κMρk. �
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