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Abstract: This paper examines the intersection between feedback-based optimization problems
and distributed Nash equilibrium seeking algorithms. We consider a modification of typical
GNE-seeking problems with affine coupling constraints, wherein each agent’s objective addition-
ally depends on the measurable output of a nonlinear input-output mapping. Operator-theoretic
methods are leveraged to develop an online distributed algorithm for this class of problems, with
convergence criteria provided. We illustrate the algorithm via an application to coordination of
distributed energy resources in a power distribution feeder.
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1. INTRODUCTION

Traditionally, offline optimization methods are not well-
suited for real-time control of complex, uncertain physical
systems. A typical example of such a system would be
the bulk power grid, where power generation must be
optimized subject to real-time engineering and safety con-
straints, despite significant model uncertainty and unmea-
sured disturbances. Offline optimization of such systems
imposes stringent informational demands, requiring accu-
rate models and disturbance forecasting. This gap has led
to the development of centralized online feedback-based
optimization methods (Colombino et al., 2019; Hauswirth
et al., 2021; Colombino et al., 2020; Lawrence et al.,
2021), with applications to engineering systems such as
communication networks (Low and Lapsley, 1999), power
systems (Tang et al., 2017), and transportation (Vaquero
and Cortés, 2018).

In contrast with centralized cooperative optimization,
game theory provides a framework for self-interested op-
timal decision making. A game is a multi-agent problem,
wherein each rational agent attempts to minimize its cost,
dependent on other agents’ actions. The study of games
often involves the study of Nash equilibria (NE), an op-
timal state from which no player can unilaterally deviate
for a better outcome (Başar and Olsder, 1999). Reaching
an NE of an appropriately set up game corresponds to the
best-case cost reduction across all agents.

This work provides an extension of feedback-based opti-
mization methods to a competitive, game-theoretic set-
ting. We modify recently developed NE-seeking algorithms
(Yi and Pavel, 2019; Alpcan and Başar, 2005) to incorpo-
rate real-time measurement feedback from a system, which
is described by a nonlinear static input-output mapping.
The incorporation of measurements enables rejection of
exogenous disturbances, extending the applicability of the

algorithm to a variety of practical problems. Compared to
centralized feedback-based optimization methods such as
those in Colombino et al. (2019), the game-theoretic frame-
work enables decentralized, measurement-based decision
making, naturally leading to decentralized and distributed
feedback controllers. Criteria for convergence of our online
approximate NE-seeking method are provided. Finally, we
illustrate our algorithm via a realistic case study involving
the control of voltage deviations in a power distribution
system.

Notation Given a positive definite matrix P ≻ 0,
⟨x, y⟩P = x⊤Py denotes the associated inner prod-
uct on Rn with corresponding induced norm ∥x∥P =√
x⊤Px. If P is omitted, it is assumed that P = In. A

block diagonal matrix A with matrices A1, . . . , AN along
its diagonal is denoted A = diag(A1, . . . , AN ). Denote
col(x1, . . . , xN ) as the column vector obtained by stacking
vectors x1 , . . . , xN . Given a matrix A ∈ Rn×m, its ijth

element is denoted by [A]ij . Given a closed, convex set
Ω ⊂ Rn, let NΩ(x) = {y ∈ Rn|y⊤(x′ − x) ≤ 0 ∀x′ ∈
Ω} denote the normal cone of Ω at x ∈ Ω. The pro-
jection of a point x ∈ Rn to the set Ω is the vector
PΩ(x) = argminx′∈Ω ∥x− x′∥. For a function f : Rn → R,
∇xf(x) ∈ Rn denotes its gradient, and for a function
f : Rn → Rm defined f(x) = col(f1(x), . . . , fN (x)), the
matrix ∂xf(x) = col(∇xf1(x)

⊤, . . . ,∇xfm(x)⊤) denotes
its Jacobian.

2. BACKGROUND AND PRELIMINARIES

2.1 Monotone Operators

For a thorough discussion of monotone operators, we
refer the reader to Bauschke and Combettes (2011). The
presented properties can be used to develop guarantees for



the existence and uniqueness of solutions for variational
inequalities (Facchinei and Pang, 2007).

Definition 1. Given P ≻ 0 and L > 0, a map F : S ⊂
Rn → Rn is L-Lipschitz continuous on S w.r.t. ⟨·, ·⟩P if
∥F (x)− F (y)∥P ≤ L∥x− y∥P for all x, y ∈ S.
Definition 2. Given P ≻ 0 and ρ > 0, a map F : S ⊂
Rn → Rn is ρ-strongly monotone on S w.r.t. ⟨·, ·⟩P if
⟨x− y, F (x)− F (y)⟩P ≥ ρ∥x− y∥2P for all x, y ∈ S.

2.2 Graph Theory

We use graphs to describe information sharing between
agents; our notation follows Bullo (2022). A weighted
digraph is a triple G = (V, E , {wij}), where V = {1, . . . , N}
describes the set of agents, E ⊂ V × V is the set of
edges, and wij > 0 is the weight for edge (i, j) ∈ E .
If agent i can obtain information from agent j, then
(i, j) ∈ E , and the neighbour set of agent i is defined as
NG(i) = {j|(i, j) ∈ E}. The graph is said to be undirected
if (i, j) ∈ E ⇔ (j, i) ∈ E and wij = wji. The (out) degree
of node i is defined as di =

∑
j∈NG(i) wij . A path in an

undirected graph G is an ordered sequence of nodes such
that any two consecutive nodes in the sequence form an
edge of the graph. The graph is said to be connected if
there exists a path between any two nodes.

3. GAME-THEORETIC FORMULATIONS WITH
CONTROLLED OUTPUTS AND EXOGENOUS

INPUTS

Most prior game theory literature focuses on games where
each agent’s cost is solely impacted by all agents’ decisions
(Yi and Pavel, 2019; Facchinei and Kanzow, 2010). This
paper studies the case where, in addition, each agent is
controlling a system whose output is affected by (poten-
tially unknown) external disturbances. Such a setup would
arise in applications to power systems, networks, smart
cities (Ismagilova et al., 2020), etc.

Consider a set of players V = {1, . . . , N}, each of which
seeks to minimize a real-valued cost function in a nonco-
operative game. This cost function is denoted fi for player
i, and is dependent on each other player’s decision. Each
player chooses a local decision ui ∈ Ωi ⊂ Rni . Denote
u = col(u1, . . . , uN ) ∈ Ω ⊂ Rn as the overall decision

profile, where n =
∑N

i=1 ni and Ω =
∏N

i=1 Ωi. Denote u−i

as the stacked decision profile of all players except i. We
often denote u as (ui,u−i) to show the explicit dependence
on other player’s decisions.

Suppose the decisions are subject to affine coupling con-

straints of the form
∑N

i=1 Aiui ≥
∑N

i=1 bi and let

U :=

N∏
i=1

Ωi ∩

{
u ∈ Rn

∣∣∣∣∣∑N

i=1
Aiui ≥

∑N

i=1
bi

}
(1)

denote the constraint set for u. As a result, Ui(u−i) :=
{ui ∈ Ωi | (ui,u−i) ∈ U} ⊂ Rni is the feasible decision set
for agent i, given each other agents’ decisions.

Our formulation has one key difference from traditional
game-theoretic formulations. We associate to each agent
i ∈ V a vector of measurable output variables yi ∈ Rli ,
which are assumed to be a function of all agents’ decisions

u ∈ Ω and of an unmeasured exogenous disturbance
w ∈ W ⊆ Rp via

yi = πi(ui,u−i, w), (2)

where πi : Ω × W → Rli is continuously differ-
entiable in u. For compactness, we set π(u, w) :=
col(π1(u1,u−1, w), . . . , πN (uN ,u−N , w)) The mapping πi

models a relationship between (ui,u−i) and an output
variable yi of interest to agent i. For instance, this mapping
may arise as the equilibrium input-to-output mapping of
a dynamic system (Simpson-Porco, 2021).

Agent i ∈ V is interested in solving the local optimization
problem

minimize
ui∈Rni

fi(ui,u−i) + gi(yi,y−i)

subject to yi = πi(ui,u−i, w)

ui ∈ Ui(u−i),

(3)

where gi models a cost on the output variables. As an
example, suppose that each agent aims to constrain the
system output y to a set Y ⊂ Rl, where l =

∑
i∈V li.

Thus, each agent aims to constrain their output yi to the
set Yi(y−i) := {yi ∈ Rli |(yi,y−i) ∈ Y}. In this case, gi
could be selected as a penalty function which penalizes
violation of the constraint yi ∈ Yi(y−i). If the output
variables yi are absent, we recover the more traditional
game formulation in Yi and Pavel (2019).

Assumption 1. For each player i ∈ V, the mapping ui 7→
fi(ui,u−i) is continuously differentiable and convex for
fixed u−i. The mapping yi 7→ gi(yi,y−i) is continuously
differentiable and convex for fixed y−i. The feasible deci-
sion set Ωi compact and convex. The constrained decision
sets, U and Ui(u−i) given fixed u−i, have nonempty inte-
riors. □

Games of the form (3) are decentralized variations of
the problem discussed in Colombino et al. (2019), with
applications in power system control and traffic flow man-
agement. The added benefit of this formulation is that non-
cooperative decision making allows for decentralization of
control, potentially lowering communication overhead.

4. DEVELOPING THE DISTRIBUTED
FEEDBACK-BASED GNE-SEEKING ALGORITHM

4.1 Game-Theoretic Equilibrium Analysis

Definition 3. A GNE of (3) is a decision profile u∗ =
col(u∗

1, . . . , u
∗
N ) such that for all i ∈ V

u∗
i ∈ argmin

ui

fi(ui,u
∗
−i) + gi(yi,y

∗
−i)

s.t. yi = πi(ui,u
∗
−i, w)

ui ∈ Ui(u∗
−i),

(4)

where y∗
−i = col(y∗1 , . . . , y

∗
i−1, y

∗
i+1, . . . , y

∗
N ).

If u∗ is a GNE of the game (3), then u∗
i is an optimum of

the local optimization problem

minimize
ui∈Rni

fi(ui,u
∗
−i) + gi(yi,y

∗
−i)

subject to yi = πi(ui,u
∗
−i, w)

ui ∈ Ωi

Aiui ≥ b−
∑

j∈V\{i}
Aju

∗
j ,

(5)



where b =
∑N

i=1 bi. A Lagrangian Li for agent i can be
defined as

Li(ui, λi;u−i) =fi(ui,u−i)

+ gi(πi(ui,u−i, w), π−i(ui,u−i, w))

+ λ⊤
i (b−Au),

where A = [A1 ··· AN ] and λi is a Lagrange multiplier.
We seek to enforce the condition λ1 = · · · = λN , cor-
responding to a variational GNE (vGNE) as in Facchinei
and Kanzow (2010). This ensures a more “socially stable”
equilibrium, where each player is equally penalized for
violating the constraints.

The KKT conditions of the problem (5) are, as per
Facchinei and Kanzow (2010),

0 ∈ ∇uifi(u
∗
i ,u

∗
−i)

+
∑N

j=1
∂ui

πj(u
∗
i ,u

∗
−i, w)

⊤∇yj
gi(y

∗
i ,y

∗
−i)

−A⊤
i λ

∗ +NΩi
(u∗

i )

0 ∈ (Au∗ − b) +NRm
+
(λ∗),

(6)

where λ∗ ∈ Rm
+ is the common multiplier, y∗ = π(u∗, w),

and ∂ui
πj denotes the Jacobian of the jth agent’s output

map with respect to the ith decision variable. Let Hw

denote the pseudogradient operator of the players’ cost
functions, given by

Hw(u) = col(∇u1 [f1(u1,u−1) + g1(y1,y−1)],

. . . ,∇uN
[fN (uN ,u−N ) + gN (yN ,y−N )]),

where yi = πi(ui,u−i, w) for all i ∈ V. The subscript w
indicates dependence on the disturbance w. Compactly,
Hw may be expressed as

Hw(u) = F (u) + E(∂uπ(u, w)
⊤∂yg(y)

⊤), (7)

whereF (u)=col(∇u1f1,. . . ,∇uNfN ) is the pseudogradient
of the agents’ decision costs. The measured output is y=
π(u, w), and g(y) = col(g1(y1,y−1), · · · gN (yN ,y−N )) is
the stacked vector of each agent’s output cost functions.
The linear operator E : Rn×N → Rn is of the form

E(M) =
∑N

k=1

∑
l∈Nk

(e⊤l Mek)el, where el ∈ Rn and

ek ∈ RN are the lth and kth unit vectors in their respective

spaces, and Nk = {
∑k

i=1 ni , · · · ,
∑k+1

i=1 ni−1}. With this
notation, the KKT conditions (6) can be rewritten as

0 ∈ Hw(u
∗)−A⊤λ∗ +NΩ(u

∗)

0 ∈ (Au∗ − b) +NRm
+
(λ∗).

(8)

We refer to such a point as a variational KKT (vKKT)
point of the game, whose existence is guaranteed under
Assumption 1, by (Facchinei and Pang, 2007, Corollary
2.2.5).

Remark 1. Due to the potential non-convexity of gi ◦ π in
(4), we cannot guarantee that a (v)GNE exists. Instead, we
consider vKKT points that satisfy the conditions (8) of the
game (3), which are candidates to be local vGNEs (Ratliff
et al., 2016). Under Assumption 1, if one additionally
assumes that π is an affine mapping, then gi ◦ π will be
convex in ui (for any fixed u−i), and by Theorem 4.8 in
Facchinei and Kanzow (2010), such a vKKT point would
be vGNE of (3). □

4.2 Approximating the Jacobian in the vKKT Conditions

The expression for Hw in (7) contains both the mapping π
and its Jacobian ∂uπ. In our subsequent algorithmic devel-
opment, knowledge of π is replaced using direct measure-
ment of the output variables y. However, the Jacobian may
not be known exactly and may depend on the unmeasured
disturbance w. To obtain an implementable algorithm, this
exact Jacobian can be replaced by an approximation at
some nominal operating condition. In Colombino et al.
(2019); Dall’Anese and Simonetto (2018); Hauswirth et al.
(2016) algorithms for various online optimal power flow
problems are similarly formulated and shown to robustly
converge to near-optimal solutions with an approximated
Jacobian. We thus consider the approximate Jacobian

∂uπ(u, w) ≈ Π, ∀u ∈ U , ∀w ∈ W, (9)

for some matrix Π.

Definition 4. Given Π ∈ Rl×n and a disturbance w ∈ Rp,
a vector ū = ū(w) ∈ Rn is an online approximate
variational GNE (OA vGNE) of the game (3) if

ȳ = π(ū, w)

ū ∈ U
λ̄ ∈ Rm

+

A⊤λ̄− F (ū)− E(Π⊤∂yg(ȳ)
⊤) ∈ NU (ū)

b−Aū ∈ NRm
+
(λ̄).

(10)

Intuitively, an OA vGNE is a point which would be a
vKKT point if the model of the Jacobian were locally
accurate, and would further be a global vGNE if gi ◦ π
were convex in ui. Further, the approximation resembles
a vGNE in that if each agent believes the nominal model
of the input-output sensitivity, no agent has any incentive
to deviate. Equivalently, an OA vGNE (ū, λ̄) must satisfy
the approximated KKT conditions

0 ∈ Hw,Π(ū)−A⊤λ̄+NΩ(ū)

0 ∈ (Aū− b) +NRm
+
(λ̄)

(11)

where the operator Hw,Π(u) is the approximation of the
operator (7) and is defined as

Hw,Π(u) = F (u) + E(Π⊤∂yg(y)
⊤). (12)

4.3 Distributed OA vGNE-seeking Algorithm

Assumption 2. Hw,Π(u) defined in (12) is η-strongly
monotone over Ω and θ-Lipschitz continuous over Ω, uni-
formly in w ∈ W w.r.t. to the Euclidean norm.

Under Assumptions 1-2, the existence and uniqueness of
the OA vGNE (Definition 4) is guaranteed (Facchinei and
Pang, 2007, Theorem 2.3.3).

Remark 2. Since the disturbance and the mapping π are
both unknown, the operatorHw,Π forms a set of operators,
rather than one precisely known operator. Techniques
to test Lipschitz continuity and strong monotonicity of
a set of operators have been presented in Colombino
et al. (2019); Simpson-Porco (2021) based on linear matrix
inequalities, and can be adapted to the current setting. □

We now outline the notations used in the algorithm. Each
player has access to its local cost function data fi and gi
and can compute the gradients ∇ui

fi and ∇yj
gi. Each



player also knows Π1i, . . . ,ΠNi, which are submatrices
of the nominal sensitivity matrix Π. The global affine
constraint Au ≥ b is not known in full by any agent; each
agent only knows Ai, bi, and Ωi, which characterize its
own involvement in the global constraint.

Agent i controls its local decision ui ∈ Rni and a local
copy of the multiplier λi ∈ Rm

+ . It has a local auxiliary
variable zi ∈ Rm to coordinate with its neighbours in
order to achieve consensus on λi. The interference graph
Gf = (V, Ef ) describes communication between agents
with cost-decision dependencies, as in Yi and Pavel (2019);
Yin et al. (2011). The weighted communication graph
Gλ = (V, Eλ, {wij}) describes the sharing of λi and zi
values between agents.

Assumption 3. The weighted communication graph Gλ is
undirected and connected.

Algorithm 1 is our OA vGNE-seeking algorithm, derived
from forward-backward operator splitting techniques. The
idea of the algorithm is that it is seeking zeros of appropri-
ately defined monotone operators. For a detailed treatment
on the operator splitting method, we refer the reader to
Yi and Pavel (2019). We now outline the algorithm. The
scalars τi, νi, and σi are step sizes. Figure 1 depicts the
decentralized nature of the algorithm.

Algorithm 1 Distributed online vGNE-seeking algorithm

Initialization: ui,0 ∈ Ωi, λi ∈ Rm
+ , and zi,0 ∈ Rm

+
Iteration: Player i

Step 1: Receives uj,k, yj,k, j ∈ NGf
(i), λj,k,

j ∈ NGλ
(i), yi,k and updates:

ui,k+1 ← PΩi

(
ui,k − τi(∇ui,k

fi(ui,k,u−i,k)+∑
Nj∈Gf

(i)

Π⊤
ji∇yjgi(yi,k,y−i,k)−A⊤

i λi,k)
)

zi,k+1 ← zi,k + νi
∑

j∈NGλ
(i)

wij(λi,k − λj,k)

Step 2: Receives zj,k+1, j ∈ NGλ
(i) and updates:

λi,k+1 ← PRm
+

(
λi,k − σi[Ai(2ui,k+1 − ui,k)− bi

+
∑

j∈NGλ
(i)

wij [2(zi,k+1 − zj,k+1)− (zi,k

− zj,k)] +
∑

j∈NGλ
(i)

wij(λi,k − λj,k)
)

Theorem 1. Suppose Assumptions 1-3 hold. Take 0 < β ≤
min

{
1

2d∗ ,
η
θ̄2

}
, where d∗ is the maximal weighted degree of

Gλ. Take some δ > 1
2β and choose step sizes to satisfy the

following for each player i

0 < τi ≤
(

max
j=1,...,ni

{∑m

k=1
|[A⊤

i ]jk|
}
+ δ

)−1

0 < σi ≤
(

max
j=1,...,m

{∑ni

k=1
|[Ai]jk|

}
+ 2di + δ

)−1

0 < νi ≤ (2di + δ)−1.

(13)

Then with Algorithm 1, each player’s local decision ui,k

converges to its corresponding component of the OA
vGNE of the game (3), and each agent’s local multiplier
λi,k converges to the common multiplier of the correspond-
ing KKT condition (11).

Proof. Define the operators

A :

[
u
λ

]
7→

[
Hw,Π(u)
−b

]
,B :

[
u
λ

]
7→

[
−A⊤λ+NΩ(u)
Au+NRm

+
(λ)

]
.

The KKT conditions (11) can be rewritten as col(ū, λ̄) ∈
zer(A + B). By Assumption 2, the operator Hw,Π(u)
satisfies Assumption 2 in Yi and Pavel (2019). Assumption
1 ensures that the Assumption 1 from Yi and Pavel (2019)
is satisfied. Thus the rest of the proof follows from Lemmas
5-6 and Theorem 3 in Yi and Pavel (2019). □

Player 1 Player 2 Player N

Fig. 1. Depiction of the online feedback-based vGNE-
seeking algorithm. Each agent communicates with
each other agent through the communication and
interference graphs, and locally updates its decision.

Remark 3. The algorithm presented here and the one in Yi
and Pavel (2019) make the assumption that Gf has an edge
for each cost dependence. This assumption is adopted in
Yin et al. (2011); Yu et al. (2017); Zhu and Frazzioli (2016)
as well. However, if there is too much dependence between
agents’ cost functions, this graph becomes very large, and
could even be a complete graph as in Grammatico (2017).
Distributed GNE-seeking with only partial or incomplete
information obtained from the interference graph is an
area of future research (Pavel, 2020). □

Intuitively, we expect the distance between the OA vGNE
and a real vKKT point of the game (3) to be bounded
by the difference between the approximated Jacobian Π
and the real Jacobian ∂uπ(u, w). The following proposition
reinforces that notion. The basis of the proof is the
concept of variational inequalities; we denote a variational
inequality ⟨F (x), x′ − x⟩ ≥ 0, ∀x′ ∈ X as VI(F,X ).
For a detailed reading on variational inequalities and
their relation to optima of games, we refer the reader to
Facchinei and Kanzow (2010); Yi and Pavel (2019).

Proposition 1. If Hw,Π is η-strongly monotone, then

∥ū−u∗∥ ≤ 1

η

∥∥∥E([
Π⊤ − ∂uπ(ū, w)

⊤]⊤ ∂yg(π(ū, w)
⊤)⊤

)∥∥∥



where ū is the unique OA vGNE as defined in Definition
4, and u∗ is a point satisfying the vKKT conditions (8).

Proof. We note that ū solves the variational inequal-
ity VI(Hw,Π,U) and u∗ solves the variational inequality
VI(Hw,U). Thus, the above follows from Theorem 1.14 in
Nagurne (1993).

5. APPLICATION: DISTRIBUTION FEEDER

We now consider a practical application arising in control
of renewable sources in a distribution feeder. We use the
same setup as Colombino et al. (2019), with a power
distribution feeder (Figure 2) whose details can be found
in Dall’Anese and Simonetto (2018). In this grid, large
quantities of solar generation cause bus voltages to rise
above acceptable levels; the goal is to limit voltages,
while minimizing the system-wide power curtailment in
the photovoltaic (PV) systems.

Fig. 2. IEEE 37-node feeder (Colombino et al., 2019).
Node 1 is the Point of Common Coupling (PCC). All
other nodes are connected to a load and a voltage
sensor. The square nodes are equipped with PV
systems. The black lines denote electrical connections
between nodes of the distribution feeder. The red lines
denote the communication graph that nodes use to
communicate multipliers.

Let V = {4, 7, . . . , 36} be the set of all 18 nodes equipped
with controllable PV systems (grey nodes in Figure 2).
Each PV system i ∈ V is provided with active and reactive
power injection set-points, denoted by ui = (pi, qi), which
are subject to the constraint ui ∈ Ωi where

Ωi := {ui = [pi qi]
⊤ | 0 ≤ pi ≤ pmax

i , q2i + p2i ≤ sratedi }.
Here pmax

i is the available active power for each PV
unit, and sratedi is the rated apparent power of each PV
inverter. The stacked decision vector is u = col({ui}i∈V) ∈
Ω =

∏
i∈V Ωi ⊂ R18. Similarly, let y = col({yi}i∈V)

be the vector of measured voltage magnitudes at every
PV-equipped node. Let w ∈ R70 be the collection of
all uncontrollable loads and power injections (active and
reactive) at all 35 nodes excluding the PCC. Each node’s
cost function is fi(ui) = ∥(uref)i − ui∥2 where uref =
[pmax

i 0]⊤; this penalizes curtailment of the unit from its
maximum real power production. The output y = π(u, w)
is dictated by the solution of the power flow equations for
the distribution feeder (Dall’Anese and Simonetto, 2018).
We assume that the mapping is nonlinear and not known
in full, and we only have access to the measurement y
and a nominal Jacobian Π ∈ R18×36 of the mapping π.

We define the safety constraints on each output to be the
set Y =

∏
i∈V Yi, where Yi = {yi | y ≤ yi ≤ ȳ}, with

y = 0.95 p.u. and ȳ = 1.05 p.u. We define the cost function

gi(yi) = [max(0, y − yi, yi − ȳ)]2 for each node to penalize
outputs outside the constraints.

Finally, we define a set of coupling constraints differenti-
ating this setup from the one in Colombino et al. (2019).
Consider the case where, perhaps due to contractual agree-
ments, there is a hard upper limit on the total curtailment
of PV power within the feeder. To model this, we define a
global coupling constraint of the form

∑
i∈V(p

max
i −pi) ≤ l

where l ∈ R is the upper bound on the total curtailed real
power. Note that pi = Aiui where Ai = [1 0], and each
pmax
i is a known quantity at any given time. Thus the

global constraint can be defined as [A1 · · · AN ]u ≥ −l +∑
i∈V pmax

i . We can define bi = pmax
i − l

N . Thus we have
the sets U and Ui(u−i) as defined in (1), (3).

With this setup, we are now ready to formulate the game-
theoretic problem. At each time-step, node i ∈ V aims to
optimize the following constrained game:

min
ui

∥(uref)i − ui∥2 + [max(0, y − yi, yi − ȳ)]2

s.t. yi = πi(u, w)

ui ∈ Ui(u−i).

(14)

We aim to apply our distributed controller from Section 4.3
to this game. Due to the lack of explicit coupling between
players’ cost functions, this application does not require an
interference graph Gf . For the purpose of this simulation,
the communication graph Gλ is defined as connecting any
nodes in V that are adjacent to one another. Figure 2 shows
the communication graph for the problem. Thus, at each
time step, each node receives multipliers λj and auxiliary
variables zj from neighbouring nodes j ∈ NGλ

(i), along
with the local voltage measurement yi, and performs the
update

ui,k+1 = PΩi

[
ui,k − τi

(
2(ui − (uref)i)

+ 2Π⊤
iisy,ȳ(yi)−

[
1
0

]
λi,k

)]
,

(15)

where sy,ȳ is the soft-thresholding function, defined as

sy,ȳ(yi) =


yi − y yi < y

0 y ≤ yi ≤ ȳ

yi − ȳ ȳ < yi.

The matrix Πii ∈ R1×2 approximately captures the sen-
sitivity of local voltage changes with respect to local ac-
tive/reactive power changes. The multipliers λi and the
auxiliary variables zi are updated as in the distributed
algorithm in Section 4.3.

We simulate our distributed controller using ten hours of
solar irradiance and load consumption data collected from
Anatolia, CA, USA, with a granularity of one second. The
maximum permissible curtailment was set to l = 0.006 p.u.
As can be seen in Figure 3, voltages are maintained within
safety limits and the total curtailed power is constrained.
The constrained power curtailment shows the algorithm’s
ability to enforce coupling constraints between nodes de-
spite lacking central knowledge of all nodes’ constraints



and their multipliers. Further note that, unlike in Colom-
bino et al. (2019), each node only needs knowledge of its
own input-output sensitivity Πii, and has no dependence
on the rest of the nodes’ sensitivities.

Fig. 3. Comparison of the distributed algorithm vs. no
control.

6. CONCLUSION AND FUTURE WORK

In this paper we developed a framework for merging decen-
tralized, game-theoretic, globally constrained optimization
with real-time measurement feedback from an uncertain
system. Theoretical convergence results have been given,
along with a practical application of the method. A di-
rection for future work would be to extend the above
formulation to the case with hard output constraints, or
to the case where each agent cannot communicate with
every agent whose decision or output can explicitly affect
its cost. Analyzing that class of problems would have
major impact in tractability and portability of solutions
to similar problems in networks and power systems.
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