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Abstract—In [1] a measurement-based coordinated voltage
controller for transmission systems was developed. As essential
model information, the controller incorporates linear sensitivities
between device set-points and voltages/power injections in the
grid. This letter details how online sensitivity estimation using
robust least squares can be used in place of model-based
sensitivities, leading to a model-free voltage control approach.

Index Terms—Voltage control, measurement-based, transmis-
sion grid, model-free

I. INTRODUCTION

In [1] the authors developed a measurement-based coordin-
ated voltage control scheme for the next generation transmis-
sion grid with modern wide-area measurement and commu-
nication infrastructure. The controller coordinates synchron-
ous generators (SGs), static var compensators (SVCs), and
inverter-based resources (IBRs) in a systematic and automatic
feedback manner to maintain bus voltages within limits in
the presence of unmeasured disturbances. The controller is
straightforward to implement, computationally very simple,
applicable to large-scale power systems, and was extensively
validated via simulation. The only required system model
information is an approximate steady-state sensitivity model
of the grid [1], relating changes in device set-points (e.g., AVR
set-points) to measured variables (e.g., bus voltages).

In the design of [1], the sensitivity model is computed
offline, based on the network bus admittance matrix and on
the current dispatch point. However, this offline sensitivity
model may be inaccurate compared to the true sensitivity in
the system at a given moment. This may occur due to operating
point drift, or more significantly, after grid topology changes
due to line trips. Although the controller in [1] is designed to
ensure closed-loop stability despite inaccuracies in the sensit-
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ivity model, as demonstrated in Scenario 2 of our case study,
inaccuracy of the sensitivity model will lead to inefficient use
of voltage control resources and even unsuccessful handling
of voltage violations.

Our main contribution in this letter is to augment the
control scheme in [1] with a fast robust sensitivity-estimation
algorithm. This estimation block is decoupled from the voltage
controller block proposed in [1], and uses the same high-
resolution time-synchronized PMU measurements used in the
controller to continuously re-estimate the required sensitivity
information in real-time. Such a modular extension leads to
a model-free voltage control design which adapts to real-time
system conditions. In the literature, several regression methods
have been used to estimate linearized power system models;
see, e.g., [2], [3] and references therein. However, as shown
in Fig. 4, some of these methods are sensitive to outliers
in the data collected during system dynamic transients after
contingencies occur (here, “outliers” refers both to measure-
ment errors and to measurements that do not follow the quasi
steady-state sensitivity relationship described in (1)). To ensure
reliable online operation, here we specifically adopt a robust
multivariate regression method and apply it in a recursive
manner. To our knowledge, this method has not been utilized
in the power system domain before. To further reduce the
computational burden of this estimation, an event-triggered
implementation is also discussed. We illustrate our method
via various case studies on a detailed 9-bus system model.

II. ROBUST ESTIMATION OF SENSITIVITY MODEL

A. Problem Formulation
The sensitivity model employed in [1] can be described at

the sampling instants by the following discrete-time model:

∆yk = Πk∆uk (1)

where vectors ∆yk = yk − yk−1 ∈ Rn and ∆u = uk −
uk−1 ∈ Rm denote the changes in the measured outputs and
control inputs, respectively; the matrix Πk ∈ Rn×m is the
sensitivity matrix. While Πk is regarded as constant in [1], it
will be updated online in this letter to adapt to changing system
conditions. Specifically, our goal is to estimate the sensitivity
matrix Πk in (1) via the latest h measurement samples of
the variables ∆u and ∆y. For notational convenience, we
let Zk = [Uk,Y k] ∈ Rh×(n+m) denote the set of available
data, where Uk = [∆uk−h+1, . . . ,∆uk]> ∈ Rh×m and
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Y k = [∆yk−h+1, . . . ,∆yk]> ∈ Rh×n. Here and also in
[1], we focus on maintaining voltage constraints at all buses
and therefore assume all bus voltages are measured. This
assumption can be relaxed by incorporating optimal PMU
placement and state estimation approaches, but this is not our
focus here.
B. Robust Estimation Method

Traditional least-squares estimates are highly sensitive to
data outliers [4], which may occur in the collected data due to
post-contingency voltage transients. To ensure reliable online
estimation, we consider the fast robust multivariate regression
method proposed in [4] to estimate the sensitivity matrix
Πk of (1) in a recursive manner. This method begins by
generating kn trials, each of which consists of n + m + 1
samples that are randomly drawn from the sample data Zk.
Let (µ0,j ,Σ0,j) be the start for the jth trial with µ0,j and
Σ0,j being the sample mean and sample covariance matrix, re-
spectively. Compute Mahalanobis distances Di(µ0,j ,Σ0,j) =√

(zi − µ0,j)Σ
−1
0,j(zi − µ0,j)> for all h samples with zi

being the ith sample (row) of Zk. At the next iteration, the
estimator (µ1,j ,Σ1,j) is computed from cn ≈ h/2 samples
corresponding to the smallest Mahalanobis distances (used
here to distinguish outliers). This iteration is continued for
t steps with the estimator at the last step (µt,j ,Σt,j) being
the attractor. The final estimate Σ is the one with the lowest
determinant among all kn attractors. More details including
parameter settings of kn and t can be found in [4].

Given the dataset Zk, the robust method (RM) returns

{Zk} RM−−→ {Σk} (2)

where Σk ∈ R(m+n)×(m+n) can be partitioned as

Σk =

[
Σk

uu Σk
uy

Σk
yu Σk

yy

]
.

The sensitivity matrix Πk is then estimated by [5]

Πk =
((

Σk
uu

)−1
Σk

uy

)>
. (3)

The successful estimation of (3) relies on the assumption that
the sampling distribution of joint variables (∆u,∆y) in (1)
follows a multivariate Gaussian distribution with Σuu being
positive definite [5]. This assumption is always satisfied in
power systems for two reasons: 1) the normal distribution
serves as a bona fide population model of random power
fluctuations [2], [6]; 2) the sampling distributions of many
multivariate statistics are approximately normal regardless of
the parent population, because of a central limit effect [7].
While the numerical stability of the matrix inverse in (3) is
significantly affected by the highly correlated measurements,
this problem can be effectively relieved by increasing the
sampling rate and recording time or using the regularization
technique [6].
C. Rolling Average for Sensitivity Smoothing

In practice, due to variations in nodal power injections (e.g.,
stochastic load variations), the estimated sensitivity model Πk

may fluctuate, even while the system operates around a steady

state. To filter these unwanted noisy components during online
operation, we employ the rolling average

Π̃k =
1

r

∑r

i=1
Πk−i+1 (4)

where Π̃k is the average of r consecutive samples. Note that
the moving average and RM serve different functions: the
former aims to smooth the variations of sensitivity model
caused by operating point fluctuations, while the latter aims
to minimize the bias introduced by the outliers in the data.
D. Event-Triggering for Reduced Computation

While during online operation it is desirable to continuously
update Πk based on the latest measurements, this increases
computational burden. To this end, we consider an event-
triggered sensitivity updating approach. When new measure-
ments (∆uk+1,∆yk+1) are available, the predicted output
∆ŷk+1 = Π̃k∆uk+1 is calculated based on the current model
Π̃k and compared with the new measured output ∆yk+1. If
the relative error ||∆ŷk+1−∆yk+1||/||∆yk+1|| is larger than
a preset threshold δ, i.e., the current model presents a poor
predictive performance due to changing system conditions, the
calculation process (2)-(3) is activated to update the sensitivity
model, otherwise, the same sensitivity model is used.
E. Parameter Tuning

There are three parameters to be tuned in the proposed
method: the length of estimation window h, the length of
moving average window r, and the preset threshold δ. For-
tunately, these parameters are weakly correlated and can be
tuned separately. The following rules can be used to determine
the reasonable values for these parameters:

1) h is a compromise between computing efficiency and
estimation accuracy; a value of h six times larger than
the joint variable’s dimension n + m can guarantee the
estimate accuracy [4];

2) r is a compromise between smoothing of the sensitivity
estimate and response speed, but should not be selected
too large to degrade the adaptation speed of RM;

3) The preset threshold δ defines the frequency of adapt-
ation, so the smaller the preset threshold is, the more
frequent the adaptation.

III. CASE STUDY

Fig. 1 shows the diagram of detailed one-area nonlinear
power system model, which is built in [1] and adopted here
for test purposes. Note that the proposed online controller is a
supervisory controller, which acts by modifying the set-points
of control devices. For convenience, we refer to the controller
[1, Eq. (6)] with the fixed model-based sensitivity matrix as the
model-based controller, while [1, Eq. (6)] with the sensitivity
model updating process (1)-(4) described in Section II is the
model-free controller.

During the simulation, Gaussian distributed random reactive
power variations with zero mean are added to the power
generation of the IBRs at buses 4 and 7; the standard de-
viations are both 1% of the respective IBR ratings. These
power variations induce voltage changes at the terminals of the
SGs and SVCs, activating the voltage control loops of these
devices. This yields sufficient excitation across the system to
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Figure 1: One-area test system.

ensure invertibility in (3), even when control commands are
saturated at their limits. Additionally, as these voltage control
loops are fast and of high gain, for simplicity the device set-
point changes ∆u are approximated by the measurements
of corresponding device output variations (e.g., AVR voltage
set-point change is approximated by the terminal voltage
variation of SG). Measurement collection begins at t = 0s,
with a sampling period of 0.1s. After h = 80 samples have
been collected, a first estimate of Πk is constructed and
the controller is enabled at t = 8s. All measurements are
corrupted by Gaussian noise with SNR approximately being 60
dB. Throughout we use a 10-sample rolling average window
(r = 10). The other device and controller parameters used are
the same as those in [1], unless specifically stated differently.
Note that in the case studies that follow, the controller is
enabled before the disturbance occurs and terminated after
the system recovery from the disturbance, i.e., the proposed
method is tested both in transient and steady states.
1) Scenario 1 – Basic effectiveness test

A 120 MVar reactive power disturbance occurs at bus 8
at t = 10s. To enourage IBR response, the weight matrices
from [1] are selected as Ribr = I , Rsg = Rsvc = 100I . Fig.
2 compares closed-loop responses obtained with the model-
based controller and model-free controller. From Fig. 2, we
observe that the model-free controller produces a closed-loop
response which is almost identical to the model-based con-
troller; this illustrates the basic effectiveness of the proposed
modification.
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Figure 2: Voltage and reactive power profiles during disturb-
ance (dotted: model-based, solid: model-free).

2) Scenario 2 – Model uncertainty test
We apply 40 MVar reactive power disturbance at bus 8

at t = 10s and trip the transmission line between buses

7 and 8 at the same time. To better highlight the impact
of system topology change, the weight matrices from [1]
are set as Ribr = Rsvc = I , Rsg = 100I . We consider
three control cases: the first is the model-free controller,
the other two are the model-based controller with accurate
and inaccurate sensitivity information, respectively, where the
inaccurate sensitivity information is calculated based on the
pre-line-trip system topology.

Fig. 3 shows the simulation results. The response with the
model-based controller with inaccurate sensitivity information
leads to persistent voltage violations at buses 7 and 8; see
Scenario 7 of [1] for further explanation. In contrast, the
model-based controller with accurate sensitivity information
shows improved voltage regulation performance. The model-
free controller adapts to the topology change, and converges
towards the same steady-state that the model-based controller
with accurate sensitivity information produces.
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Figure 3: Voltage and reactive power profiles during disturb-
ance (dotted: model-based (inaccurate), solid: model-based
(accurate), dashed: model-free).
3) Scenario 3 – Regression method comparison

We next compare the estimation performance of the RM
with two other popular regression methods: traditional ordin-
ary least-squares (OLS) and partial least-squares (PLS) used
in [2]. The disturbance is the same as in Scenario 2, but occurs
at t = 20s. Fig. 4 shows the variation of element ∂v8

∂v2
in

Π that has the biggest change during disturbance. From Fig.
4, it is clear that OLS and PLS are sensitive to the outliers
in the data collected during system dynamic transients after
the contingency occurs, even when a significantly long data
window length (h = 120) is applied. In contrast, the estimate
produced by RM is not sensitive to these outlier data points,
without any significant sacrifice in computation speed. From
Fig. 4, we also observe that the sensitivity model varies even
if the bias introduced by outliers have been minimized by
RM (r = 1). This variation is caused by the operating point
fluctuation and smoothed by the moving average (r = 10).
4) Scenario 4 – Event-trigger approach test

Finally, we test the addition of event-triggering as described
in Section II-D; the disturbance is the same as in Scenario 2.
Fig. 5 compares the control performance with and without
event triggering. In this case, the event-triggered updating
approach starts at t = 10s and ends at t = 28s with
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Figure 4: Element variation during disturbance

δ = 0.05. Note that the actual time needed for the matrices to
update is around 3 s (see Fig. 4). We observe that the event-
triggered updating approach obtains almost the same control
performance as that in continuous updating approach.
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Figure 5: Voltage and reactive power profiles (dotted: continu-
ous updating, solid: event-triggered updating).

IV. CONCLUSION

The voltage control scheme of [1] has been rendered model-
free by integrating online sensitivity estimation via a ro-
bust regression technique. The proposed model-free approach
provides an adaptive, robust, and efficient method of voltage
control for next-generation transmission grids.
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