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Abstract—We develop and test a data-driven and area-based
fast frequency control scheme, which rapidly redispatches inverter-
based resources to compensate for local power imbalances within
the bulk power system. The approach requires no explicit
system model information, relying only on historical measurement
sequences for the computation of control actions. Our technical
approach fuses developments in low-gain estimator design and
data-driven control to provide a model-free and practical solution
for fast frequency control. Theoretical results and extensive
simulation scenarios on a three area system are provided to
support the approach.

Index Terms—renewable energy, frequency control, transmis-
sion grid, smart grid

I . I N T R O D U C T I O N

Driven by the need to decarbonize the existing power
system generation infrastructure [1], the transmission grid
is increasingly being dominated by inverter-based renewable
energy resources (IBRs). Challenges arising from this transition
away from traditional generation include larger (and more
frequent) frequency deviations, faster frequency dynamics due
to reduced system inertia, and increased net load variability
[1], [2]. As a result of this this proliferation of IBRs in the
grid, there is an increasing urgency to develop new and faster
frequency control methods.

To address the aforementioned challenges, in [3] the authors
proposed a hierarchical control scheme which coordinates IBRs
to provide fast frequency control. In this scheme, the bulk
grid is partitioned into geographically small local control areas
(LCAs). Within each LCA, a local controller is designed which
processes (potentially, delayed) measurements from the LCA to
compute updated set-points for local IBRs (Figure 1). The local
controller has two key sub-blocks. The disturbance estimator
detects frequency events (e.g., a large load disturbance and/or
generation outage) by computing a real-time estimate ∆P̂u

of the net unmeasured active power imbalance ∆Pu in the
LCA. The power allocator then continuously and optimally
redispatches the IBRs to correct the imbalance, subject to
device limits. In situations where local IBR resources are
insufficient, a higher-level coordinating controller facilitates the
optimal transfer of additional power support from neighbouring
LCAs. As our focus in this paper will be on the LCA controller
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design, this coordinating control layer will not be discussed
further; see [3, Sec. III-B] for details.
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Fig. 1: Block diagram of area control structure for each LCA. Dashed
lines denote sampled signals.

The key to the fast operation of this scheme lies in dis-
turbance estimator, which must quickly produce an accurate
estimate of the power imbalance within the LCA based on the
available measurements. In [3], the disturbance estimator was
designed in a model-based fashion, using a crude second-order
lumped dynamic LCA model [4]

2H∆ω̇ = − 1
RI

∆ω +∆Pm −∆Pu −∆Ptie +∆P c
ibr,tot

TR∆Ṗm = −∆Pm −R−1
g (∆ω + TRFH∆ω̇)

(1)

parameterized by several constants, such as total LCA inertia
H , total IBR and generator primary control gains RI and Rg,
aggregated turbine-governor time constant TR, and aggregated
high-pressure turbine fraction FH. This modelling decision
was made for pragmatic reasons, as more accurate high-order
system models could be too burdensome to build and maintain
in practice [5]. Tests in [3] demonstrated that this design
approach can yield excellent closed-loop control when the
model (1) reasonably captures the LCA dynamics and when
the lumped parameters in (1) are accurately set. However, when
either of these conditions fails, control performance (e.g., post-
disturbance settling time and overshoot) will indeed deteriorate.

Many modern approaches to frequency control, such as
robust optimal control [6], model predictive control [7]–[10]
and the coordinated dispatch of IBRs [3], are of similar vein
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in that they require accurate model information about the
power system, which may difficult to obtain in practice [5].
In contrast to model-based approaches, a model-free or data-
driven approach would allow for better adaptation to realistic
system conditions, resulting in faster disturbance estimation
and rejection, and with reduced tuning of parameters required
for real-world implementation. Our objective in this paper is
to develop such a data-driven frequency controller.

In the literature, various researchers have tackled the problem
of power system frequency control using data-driven and
learning-based approaches. The most popular approach is
based on reinforcement learning, wherein control actions are
undertaken to maximize some form of cumulative reward
[11]–[14]. Drawbacks of this approach are that it requires a
significant number of data samples, and can be particularly
sensitive to the selection of hyper-parameters [15]. Other
researchers take a hybrid approach, fusing elements of data-
driven control with sequential system identification (ID) and
control [16], [17]. However, since a system identification step
is needed to identify an approximate model, the issue of non-
trivial parameter tuning still remains.

With the goal of using a smaller number of data samples and
circumventing the need of a system identification step, we base
our approach here for the design of a frequency controller on
recent data-driven predictive control approaches proposed in
the literature, which compute control actions without explicitly
identifying the system from data [18]–[23]. These design
techniques are based on a fundamental result [24] in the
behavioral approach to systems and control theory [25], namely
that a single recorded historical trajectory of a controllable LTI
system implicitly defines a model of the system, as long as
the input sequence is persistently exciting (i.e., sufficiently
rich). Authors in [23] utilize this technique in a data-driven
model predictive control framework to regulate frequency in
the power system context. However, in their approach, the
net-load demand in the system is assumed available and
used as a control input; this information may be difficult to
obtain precisely at all times, especially with the added net-
load variability and uncertainty in power supply introduced by
renewables [26].

Contributions: The main contributions of this paper are
summarized as follows. First, in Section III we combine
ideas from dynamic estimator theory and behavioural sys-
tems theory to design a data-based substitute for the model-
based disturbance estimator in [3]. Second, in Section IV-A,
we leverage the theory of Section III to propose a novel
model-free frequency controller, which achieves fast frequency
regulation by rapidly redispatching inverter-based resources
to compensate for local power imbalances within the bulk
power system. The key advantage of our approach is that
it does not rely on a parametric system representation for
computing control actions; the LCA system model in Figure
1 is replaced by time-series data, which is sufficiently rich
in harmonic content to capture the dynamics of the system.
This time-series data is then directly used in our hierarchical
control framework, without passing through an explicit system

identification step. Third and finally, in Section IV-C, we
extensively validate our approach via simulations on a detailed
nonlinear three-area power system presented in Section IV-B.
Across several scenarios — including load increases, heavy-
renewable penetration, generation trips, and three-phase faults
— we illustrate how our data-driven approach can provide fast
and effective frequency control for the bulk grid.

Notation: Given vectors or matrices x1, . . . , xN which
have equal numbers of columns, col(x1, . . . , xN ) denotes their
column concatenation. For a matrix A having full column rank,
A† = (AAT)−1AT denotes its pseudoinverse.

I I . C O N T R O L P R E L I M I N A R I E S

Our approach relies on a technical foundation built from
two topics in linear control theory: disturbance estimator
design, and behavioral systems theory. Section II-A recalls
some preliminaries on disturbance estimator design. Section
II-B provides additional insights and assumptions that simplify
the disturbance estimator problem introduced in Section II-A.
Section II-C introduces the basic facts from behavioral systems
theory that enable data-driven prediction based on historical
system trajectories.

A. Background on Disturbance Estimators
Consider the discrete-time linear time-invariant (LTI) model

x(t+ 1) = Ax(t) +Bu(t) +Bdd(t)

y(t) = Cx(t) +Du(t)
(2)

with time index t ∈ Z≥0, state x(t) ∈ Rn, control input
u(t) ∈ Rm, disturbance input d(t) ∈ Rq , and output y(t) ∈ Rp.
We assume that d(t) is a constant but unknown disturbance
signal and that q ≤ p. The problem of asymptotic disturbance
estimation is to design a causal system which processes
(u(t), y(t)) to produce an estimate d̂(t) of d(t) at time t, which
satisfies limt→∞(d̂(t) − d(t)) = 0 irrespective of the initial
conditions.

This problem admits a standard model-based solution via
the design of a Luenberger observer for the extended model

ξ(t+ 1) =

[
A Bd

0 Iq

]
︸ ︷︷ ︸

:=A

ξ(t) +

[
B
0

]
︸︷︷︸
:=B

u(t)

y(t) =
[
C 0

]︸ ︷︷ ︸
:=C

ξ(t) + D︸︷︷︸
:=D

u(t).

(3)

where ξ(t) = col(x(t), d(t)) is the extended state vector. In (3),
the dynamic disturbance model d(t+1) = d(t) with unknown
initial condition is equivalent to the constant disturbance in the
model (2). A standard predictive-type Luenberger observer for
(3) can now be designed as

ξ̂(t+ 1) = Aξ̂(t) + Bu(t)− L(ŷ(t)− y(t))

ŷ(t) = Cξ̂(t) +Du(t)
(4)

where L ∈ R(n+q)×p is the estimator gain to be designed.
With ξ̃(t) = ξ(t)− ξ̂(t) denoting the estimation error, the error
dynamics are computed to be

ξ̃(t+ 1) = (A− LC)ξ̃(t). (5)
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It is a standard result that there exists L such that the error
dynamics (5) are exponentially stable if and only if (A,C) is
detectable and if the plant (2) has no transmission zeros at z = 1
on the d 7→ y channel (see, e.g., [27, Chp. 23]. Under these
conditions, the estimator (4) solves the asymptotic disturbance
estimation problem, with the estimate d̂(t) being obtained from
the second block component of ξ̂(t).

B. Low-Gain Disturbance Estimation

The design of the estimator gain L above requires the
solution of a standard multivariable stabilization problem for
the detectable pair (A, C) of extended plant matrices. In
particular then, the design requires knowledge of the entire
system matrix A, describing the internal state dynamics of the
model. Under additional assumptions, this design requirement
can be significantly relaxed and made more practical.

First, we will assume that A is Schur stable, i.e., that the
plant (2) is internally exponentially stable. This assumption
would be satisfied by, for example, a linearized power system
model describing frequency dynamics and incorporating typical
primary controllers. Under this assumption (A,C) is automat-
ically detectable, and the transmission zero condition reduces
to the condition that Gd(1) ∈ Rp×q have full column rank,
where Gd(z) = C(zI − A)−1Bd denotes the transfer matrix
on the d → y channel. In this case, if one seeks an estimator
gain of the form

L =

[
0
εL

]
for some L ∈ Rq×p and ε > 0, then (4) reduces to

x̂(t+ 1) = Ax̂(t) +Bu(t) +Bdd̂(t) (6a)
ŷ(t) = Cx̂(t) +Du(t) (6b)

d̂(t+ 1) = d̂(t)− εL(ŷ(t)− y(t)). (6c)

The estimator (6) admits the following simple interpretation.
The first two equations (6a)–(6b) perform an open-loop simula-
tion of the plant, using the control input u(t) and the estimated
disturbance d̂(t) to produce an estimate ŷ(t) for the output.
Given ŷ(t) and the true output measurement y(t), the equation
(6c) updates the disturbance estimate. Crucial to our data-
driven development to follow is the following observation: the
only purpose of (6a)–(6b) is to produce the output estimate
ŷ(t); the state estimate x̂(t) is irrelevant for our purposes.

The following result, which will not be proven here, guar-
antees that the design of such an estimator is possible.

Proposition 2.1 (Low-Gain Disturbance Estimator De-
sign): Consider the disturbance estimator (6) for the plant (2).
Assume that A is Schur stable, that Gd(1) = C(In −A)−1Bd

has full column rank, and set L = Gd(1)
†. Then there exists

ε⋆ > 0 such that for all ε ∈ (0, ε⋆), the estimator (6) solves
the asymptotic disturbance estimation problem.

Proposition 2.1 states that with the simple estimator gain
selection L = Gd(1)

†, one can always obtain a stable estimator
by starting ε > 0 at a small value and then tuning. The quantity
Gd(1) is known as the DC gain, and can be obtained directly

from recorded data (See Section III for details). The above
result also applies without changes to modified estimator

x̂(t+ 1) = Ax̂(t) +Bu(t) +Bdd̂(t) (7a)
ŷ(t) = Cx̂(t) +Du(t) (7b)

d̂(t) = d̂(t− 1)− εL(ŷ(t)− y(t)). (7c)

which uses the most recent measurement y(t) to compute d̂(t)
as opposed to (6c) which uses y(t− 1) to compute d̂(t).

C. Primer on Behavioral Systems Theory

The model defined by (2) is a parametric representation of a
LTI system. In the setting of behavioral systems theory, a LTI
system is instead interpreted as defining an implicit constraint
on the vector spaces of input and output signals. Our treatment
here will be very minimal; see [25] for a detailed introduction.

Let σ denote the signal shift operator defined by (σx)(t) =
x(t + 1). The behavior B of (2) is defined as the set of all
possible input-output sequences which are consistent with the
model

B =
{
(u, d, y) ∈ (Rm+q+p)Z≥0 : ∃x ∈ (Rn)Z≥0 s.t.

σx = Ax+Bu+Bdd, y = Cx+Du} .
The smallest possible state dimension consistent with B is
called the order of the system, and is denoted by n(B). The
lag of B, denoted by ℓ(B) is the smallest integer ℓ such that
the matrix Oℓ = col(C,CA, . . . , CAℓ−1) has rank n(B). As
additional notation, we let BN denote the restriction of the
behaviour to trajectories of length N ∈ Z≥1.

The following notion is essential. Let T ∈ Z≥1 and let
z ∈ (Rm)T be the length T signal

z = col(z(1), . . . , z(T )).

We say z is persistently exciting of order L if the Hankel matrix

HL(z) =

z(1) · · · z(T − L+ 1)
...

. . .
...

z(L) · · · z(T )

 ∈ RmL×(T−L+1)

has full row rank. The idea is that if z is persistently exciting,
then it is both sufficiently long and sufficiently rich in variation.

Suppose that, from the plant (2), we have collected T ∈ Z≥1

samples of input and output data

ud = col(u(1), . . . , u(T )) ∈ (Rm)T

dd = col(d(1), . . . , d(T )) ∈ (Rq)T

yd = col(y(1), . . . , y(T )) ∈ (Rp)T .

(8)

A key result known as the fundamental lemma [20] provides
a characterization of all possible length N system trajectories
in terms of recorded data.

Lemma 2.2 (Fundamental Lemma): Assume that B is
controllable and that col(ud, dd) is persistently exciting of
order N+n(B). Then any possible length N trajectory (u, d, y)
of B can be represented asHN (ud)

HN (dd)
HN (yd)

 g =

ud
y
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for some vector g ∈ RT−N+1.

Put simply, all possible system trajectories of length N can
be expressed as a linear combination of the columns of the
given matrix, which consists purely of recorded historical data.

Lemma 2.2 enables data-driven simulation of a LTI system
[20]. To obtain a unique response, a form of initilization
is required. This is done through an initial prefix trajectory
of length Tini is required for initialization; the technical
requirement is that Tini ≥ ℓ(B). Let (up, dp, yp) be this prefix
trajectory. Let [

Up

Uf

]
= HTini+N (ud),

be a corresponding partitioning of the Hankel matrices, with
similar partitionings for the data dd and ud. Leveraging Lemma
2.2, and assuming that ud is persistently exciting of order
Tini + N + n(B), we have the following: given length N
inputs u = (u(Tini + 1), . . . , u(Tini + N) and d = (d(Tini +
1), . . . , d(Tini +N), one may uniquely compute the response
y = (y(Tini + 1), . . . , y(Tini +N)) by solving the system of
linear equations 

Up

Dp

Yp

UN

DN

YN

 g =


up

dp
yp
u
d
y

 (9)

in the unknowns g and y. Specifically, one solves the first five
block equations for g, then substitutes into the last equation
to compute the response y.

I I I . D ATA - D R I V E N D I S T U R B A N C E E S T I M AT O R S

We now combine the disturbance estimation ideas Section
II-B with the behavioral systems theory from Section II-C to
develop a data-driven version of the disturbance estimator (7).1

As in Section II-B, we assume that A is Schur stable and that
Gd(1) has full column rank.

Recall that the idea behind the estimator (7) is to obtain a
prediction ŷ(t) for y(t) using (7a)–(7b), and then to use ŷ(t)
and the current measurement y(t) to update d̂(t) using (7c).
Translating this to a data-driven framework, our approach will
be to use (9) in place of (7a)–(7b) to generate the estimate ŷ(t),
and then to verbatim use (7c). Suppose that we have collected
historical data as in (8), and that the inputs col(ud, dd) are
persistently exciting of order Tini+1+n(B) with Tini ≥ ℓ(B).
At time step t, we construct the vectors of recent past data

ŷp = col(ŷ(t− Tini), . . . , ŷ(t− 1))

up = col(u(t− Tini), . . . , u(t− 1))

d̂p = col(d̂(t− Tini), . . . , d̂(t− 1)).

1A data-driven version of the estimator (6) can be similarly obtained by
modifying the results that follow.

Following (9), we formulate and solve the system of equations
Up

Dp

Yp

Uf

Df

Yf

 g =



up

d̂p
ŷp
u(t)

d̂(t)
ŷ(t)

 ⇒ ŷ(t) = Yf


Up

Dp

Yp

Uf

Df


†

︸ ︷︷ ︸
:=M


up

d̂p
ŷp
u(t)

d̂(t)

 . (10)

Note that (10) allows us to compute an estimate ŷ(t) for y(t)
using only recorded historical data, recently computed online
variables up, d̂p, ŷp, and the current values u(t), and d̂(t) of
the input and disturbance estimates. In fact, we do not even
require d̂(t) to evaluate the above, since due to strict causality
of (2) on the d 7→ y channel, the final column of the matrix
M is identically zero. Our data-driven disturbance estimator
is therefore

ŷ(t) = Mcol(up, d̂p, ŷp, u(t),0q) (11a)

d̂(t) = d̂(t− 1)− εL(ŷ(t)− y(t)). (11b)

In the ideal case where measurements are collected without
noise, the results produced by the data-driven estimator (11) are
identical to the results produced by the model-based estimator
(7), since (11a) is a data-based representation of (7a)–(7b).
Therefore (11) is a data-based substitute for (7).

The final issue to address concerns the tuning of the
estimator gain L in (11). Proposition 2.1 provides the tuning
suggestion L = Gd(1)

†. While Gd(1) could be obtained
empirically from repeated step response experiments, it can
also be obtained directly from the exact same historical data
used to construct the matrix M in (11). The following result
is an adaptation of [28, Thm. 4.1].

Lemma 3.1 (DC Gain From Trajectory Data): Consider
the previously defined historical data (ud, yd, dd) and define

ydiffd = (yd(2)− yd(1), . . . , yd(T )− yd(T − 1)) ∈ (Rp)T−1

udiff
d = (ud(2)− ud(1), . . . , ud(T )− ud(T − 1)) ∈ (Rm)T−1

with associated Hankel matrices Y diff = Hℓ(B)(y
diff
d ) and

Udiff = Hℓ(B)(u
diff
d ). Then

Gd(1) = Yf


Y diff

Udiff

Up

Dp


† 

0
0
0
Iq

 .

Combining Lemma 3.1 with the tuning L = Gd(1)
†, the

disturbance estimator (11) provides a completely model-free
solution to the asymptotic disturbance estimation problem; the
only required tuning is the single scalar parameter ε ∈ (0, 1).

I V. D ATA - D R I V E N FA S T F R E Q U E N C Y C O N T R O L
U S I N G I N V E R T E R - B A S E D R E S O U R C E S

We now detail the application of our data-driven disturbance
estimation methods to fast frequency control using IBRs. First,
in Section IV-A we describe how the theory outlined in Section
II and Section III is adapted for application to the area-based
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fast frequency control problem described in Section I. Section
IV-B and IV-C present the nonlinear three-area test system,
along with simulation results validating our approach on several
scenarios including load increases, generation trips, and three-
phase faults.

A. Application of the Theory for Multi-Area Frequency Control

Consider a large interconnected power system, partitioned
into many small LCAs, each of which contains IBRs which
are dispatchable within specified limits. The model (2) will
be taken as describing the linearized frequency dynamics
of an LCA around a dispatch point of interest. This model
is unknown, and may have an arbitrarily high number of
states, describing, e.g., the electromechanical dynamics and
control systems of synchronous generators, wind turbines, load
dynamics, and so forth.

Due to the small spatial scale of each LCA, the measured
frequency is roughly uniform within the LCA, even during tran-
sient conditions (modulo, e.g., intra-area modes). Analogously,
the effect of a power imbalance within the LCA on the fre-
quency is approximately independent of the specific location of
the imbalance within the LCA. Thus, to a good approximation,
power imbalance influences the frequency of each LCA in a
lumped fashion. As a result of these observations, for the model
(2) we make the following selections for inputs and outputs.
The measurement y(t) = ∆f(t) ∈ R will be a single local
measurement of frequency deviation2; this further implies that
D = 0. The disturbance d(t) = ∆Pu ∈ R will model aggregate
unmeasured generation-load imbalance within the LCA; this
is the disturbance we wish to quickly compensate through real-
time redispatch of IBRs. The control input u(t) = ∆Pibr,tot(t)
will model the sum of all IBR power set-points, again relative
to scheduled dispatch values. As disturbances and generation
are effectively lumped, we further assume that B = Bd, i.e.,
disturbance and control signals enter through the same channel.
All power flows to neighboring LCAs are assumed to be
measured, and thus the total tie flow ∆Ptie(t) out of the area
is considered as a measurable disturbance, and is lumped with
the control signal u(t).

The procedure used for collecting historical data will be
described in the next section. Due to the assumptions that
B = Bd and D = 0, in developing the data-driven estimator
of Section III, it suffices to collect historical data (ud, yd) in
the absence of significant unmeasured disturbances, i.e., during
normal system conditions. In this case, the estimator (11a)
becomes

∆f̂(t) = Yf

Up

Yp

Uf

† ∆Pibr,tot,p −∆Ptie,p +∆P̂u,p

∆f̂p
0


(12a)

∆P̂u(t) = ∆P̂u(t− 1)− ε
1

Gd(1)
(∆f̂(t)−∆f(t)). (12b)

2An average or weighted average of frequency measurements from across
the LCA may also be used.

and the gain computation of Lemma 3.1 reduces to

Gd(1) = Yf

[
Y diff

Up

]† [
0
1

]
∈ R.

The algorithm (12) estimates the load unmeasured imbalance.
To compensate the imbalance, the total change in IBR power
set-points required within the LCA is updated as

∆Pibr,tot(t+ 1) = ∆P̂u(t).

Finally, to compute the set-points for individual IBRs within
each LCA, the total set-point change ∆Pibr,tot(t) is allocated
amongst the IBRs. This can be done via the optimal constrained
allocation method presented in [3], or alternatively, the total
can be allocated to individual IBRs based on participation
factors and then saturated to respect the device power limits;
the former approach is used here.

B. Description of Test System and Data Collection

The three-LCA test system under consideration is shown in
Figure 3, where each of the individual areas is modified based
on the IEEE 3-machine 9-bus system [29]. In the modified
model, two dispatchable IBRs are added to each LCA to
facilitate fast frequency control. For primary frequency support,
each IBR unit has a 5% droop curve on its respective base
power. Doubly-fed induction generator (DFIG) wind turbine
systems replace two traditional synchronous generators (SGs)
in Area 1, and replace one SG each in Area 2 and Area 3. One
static var compensator (SVC) has been added to both Area 1
and Area 2, while two SGs in Area 3 are replaced with two
IBRs having the same ratings. The pre-disturbance generation
data and unit capacity limits for the system can be found in
Table I.

TABLE I: Generator and IBR Data.

Node Gen. ID Rating (MVA) Dispatch (MW)
1 WT1 142.2 72.24
1 IBR2 50 15
3 G1 192 126
3 IBR1 50 25

5, 11, 17 WT2, WT3, WT4 142.2 85
7 G2 247.5 71.99
7 IBR4 50 20
9 G3 192 133

11 IBR3 50 10
13 G4 247.50 72.24
13 IBR6 50 5
15 G5 192 128
17 IBR5 50 30

The next step in implementing the data-driven disturbance
estimator (12) is the one-time collection of measurements from
the system in response to a sufficiently rich input. To this end,
we assume that the IBRs will be used to excite the system
for the data collection phase. As described in Section III, the
input signal should be persistently exciting of sufficient high
order. For the purposes of these tests, the set-point change

∆Pibr(t) = sin(12πt) + w(t) (13)
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in units of MW was provided to each IBR in each LCA. The
signal, plotted in Figure 2, consists of a sinusoidal perturbation
of 1 MW, with band-limited white noise w(t) with power
spectral density (PSD) of 0.1. Note that the amplitude of
the perturbing IBR signal is relatively small compared to the
overall generation/demand in the system (≈ 800 MW).3
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Fig. 2: Persistently exciting IBR set-point change for data collection
phase.

For each LCA, measurements of frequency deviation and
net inter-area power flow were collected for 10 seconds with
a sampling period of 0.1s, leading to a total of T = 101 total
historical data points for each LCA. The length of recent past
data used in (12) was Tini = 7, which is a minimal value
obtained by starting from a large value and reducing until
performance degradation was first observed in simulation. The
controller gain ε in (12) was set via tuning at ε = 0.1.

Finally, to improve the numerical conditioning of the matrix
inversion step in (12), the matrix col(Up, Yp, Uf) is replaced by
a low-rank approximation thereof, obtained by computing the
singular value decomposition and retaining only the first three
dominant singular values and vectors [32]. The interpretation of
this regularization step is that retaining only a small number of
singular values takes into account only the most dominant sub-
behaviours, and therefore removes the effects of unimportant
fast dynamics embedded in the data [19].

C. Case Studies

We consider five disturbance scenarios to illustrate the
effectiveness of our data-driven fast frequency controller design.
The scenarios are:

(i) two large step load changes of different sizes in one area,
the first being small enough to compensate with local IBR

3Further investigation into the design of practical input signals for data
collection is deferred to future work, but see [30], [31] for recent theoretical
results.
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Fig. 3: Cyber-physical system illustrating frequency control approach
[3].

resources, while the second requires active power support
from IBRs in adjacent areas;

(ii) two simultaneous disturbances, consisting of a step load
change and a rate-limited change in the wind power
system; the test system in this case is modified to have
reduced inertia and increased wind turbine penetration;

(iii) the loss of a generator;
(iv) a symmetric three phase-to-ground fault;
(v) a step load change in a larger five-area test system.

In all scenarios, we consider the hierarchical fast frequency
control architecture proposed in [3], and compare the model-
based disturbance estimator of that work against the data-driven
disturbance estimator presented in this paper. a comparison
of the model-based scheme and an AGC-type scheme can
be found in [3], where it was shown that our model-based
redispatch can significantly outperform a more traditional
AGC-type implementation, and thus we compare only against
the model-based scheme. The performance is also compared
against a baseline case without any supplementary control
scheme, wherein frequency support is provided only through
primary droop control action of both generators and IBRs. All
simulations are performed with measurement and control signal
delays of 300ms, representing worst-case wide-area communi-
cation delays, and with white noise of standard deviation 10−6

(resp. 2×10−2) added to the frequency (resp. inter-area power
flow) p.u. measurements.

a) Scenario #1: Step Load Increase: This scenario il-
lustrates the performance of the control scheme during step
changes in loading. In the first case, a large load disturbance
of 60 MW is introduced at t = 2s at bus 8 in Area 2. The
frequency response and disturbance estimate of the system
is shown in Figure 4. Both the data-driven and model-based
disturbance estimators localize the disturbance to Area 2,
and quickly redispatch the IBRs in Area 2 (Figure 5) to
compensate, with minimal transient response from the other
areas. The frequency is quickly restored to the nominal value,
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with minimal oscillation. Similarly, the measured net tie-line
deviation and IBR output power plots in Figure 5 show a fast,
non-oscillatory response. Due to the area-wise decentralized
nature of the control scheme, the disturbance estimate, tie-line
deviation and IBR outputs in the non-contingent areas return to
their pre-disturbance values in steady-state. The black dotted
lines overlaid on the responses in Figure 4 show the response
when ε is decreased by a factor of 10 to ε = 0.01. Tuning of
the single scalar parameter ε therefore allows for adjustment
of the transient response.
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Fig. 4: Frequency and disturbance estimate during a 60 MW load
change at bus 8 in Area 2.
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Fig. 5: Tie-line deviation and active power profiles during a 60 MW
load change; dashed lines in the lower plots indicate the responses
under model-based estimation.

Figures 6 and 7 show the closed-loop response under a more
severe load disturbance of 130 MW, again at bus 8 in Area

2. The disturbance exceeds the available spare IBR resources
in the contingent area, and the inter-area coordination scheme
proposed in [3] is activated to facilitate support from IBRs
in neighboring areas. While the details of these coordination
scheme are not germane to our discussion here, the plots
illustrate that the purely data-driven approach presented here
produces similar results to a model-based approach. In sum-
mary, for both large and small load disturbances, our data-driven
estimator is able to quickly spatially localize and compensate
for a load disturbance, using absolutely no model information.
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Fig. 6: Frequency and disturbance estimate during a 130 MW load
change at bus 8 in Area 2.
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Fig. 7: Tie-line deviation and active power profiles during a 130 MW
load change; dashed lines in the lower plots indicate the responses
under model-based estimation.

b) Scenario #2: Heavy Renewable Penetration: This
scenario assesses the performance of the controller when one
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area of the power system is fed entirely by renewable energy
sources. For this scenario, we have modified area three of
the test system shown in Figure 3: in the modified system,
generators G4 and G5 are replaced by a non-dispatchable IBRs
with similar capacities and pre-disturbance dispatch points. A
synchronous condenser is connected at bus 15 in area 3 to
regulate the voltage by providing reactive power support.

For this scenario, a step disturbance of 40 MW is introduced
at bus 14 in Area 3 at t = 2s. Simultaneously, a rate limited
change in the wind speed to the wind turbine power system
connected at bus 17 occurs. This is done to simulate the net-
load variability and uncertainty in power supply introduced by
renewables [26]. From the responses shown in Figures 8, 9,
we observe that the IBRs in Area 3 respond quickly to the
disturbance, and additionally, slowly ramp up their injections
in response to the rate-limited decrease in the wind power.
Throughout this process, the frequency is maintained very close
to the nominal value.

From this test, we conclude that the data-driven controller
functions well in a low-inertia area, and even produces a closed-
loop frequency response which is slightly improved compared
to the crude model-based design from [3].
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Fig. 8: Frequency response and disturbance estimates during combined
step load change and a rate-limited change in wind speed.

c) Scenario #3: Generator Trip: This scenario examines
the performance of the controller during the loss of generator
G2 in Area 2 at t = 2s. The response of the system to this loss
is plotted in Figure 10. Similar to Scenario #2 above, we can
observe that while the response of the controller under both
data-driven and model-based disturbance estimation is quite
fast and satisfactory, the data-driven controller also outperforms
the model-based controller. This scenario illustrates the robust-
ness of the method, as the collected data used for the design
of the LCA controller was collected on the system including
the inertia and primary response of generator G2. Despite the
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Fig. 9: Tie-line deviation and active power profiles during combined
step load change and a rate-limited change in wind speed; dashed
lines in the lower plots indicate the responses under model-based
estimation.

model mismatch arising from the loss of the generator, the
overall control response is similar to that in Scenario #1.
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Fig. 10: Frequency and disturbance estimate during a loss of generator
G2

d) Scenario #4: Three-Phase Fault: The scenario as-
sesses the performance of the controller during a symmetrical
three-phase line-to-ground fault, which was introduced at bus
10 in Area 2 at t = 2s and cleared after 0.1s. The response of
the system is shown in Figures 11 and 12. It can be observed
that the frequency response of the system with and without
the controllers is very similar, with a small transient response
in the disturbance estimate computed by the estimators. This
indicates that the controller is able to effectively detect and
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respond to frequency events. The performance of the data-
driven estimator in this scenario is satisfactory and is similar
to the model-based estimator.
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Fig. 11: Frequency and disturbance estimate during a three-phase
fault in Area 2.
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Fig. 12: Tie-line deviation and active power profiles during a three-
phrase fault in Area 2; dashed lines in the lower plots indicate the
responses under model-based estimation.

e) Scenario #5: Step loading change in larger test system:
This scenario is introduced to test the performance of the data-
driven approach on the larger 5-LCA system shown in Figure
13, which is an IEEE benchmark model with 68 buses and is
extensively described in [33].

Following the same data collection approach from Section
IV-B, the perturbing set-point change for the IBRs in this
system was as in (13), with the noise term having a power
spectral density of 1. For each LCA, measurements of frequency

deviation and net inter-area power flow were collected for 10
seconds with a sampling period of 25 ms. The selections of
Tini and ε were tuned for each area individually; in particular,
it was found that larger values are beneficial for performance
in larger areas. For instance, in the large NETS area the best
tunings found were Tini = 119 and ε = 0.3, while in Area
4 the smaller values Tini = 7 and ε = 0.01 were found to
be more appropriate. The intuition behind this is that larger
areas are more dynamically complex, and require more data
for initialization within our data-driven approach.

Fig. 13: IEEE 68-bus test system [3].

For this case, we introduce a large step load change of 450
MW at bus 33 in the NYPS area at t = 2s. The frequency
response of the system to this disturbance is plotted in Figure
14, while Figure 15 shows the estimate of the load disturbance
with the data-driven and model-based approaches. Similar to
Scenarios #2 and #3 above, we can observe that while the
response of the controller under both data-driven and model-
based disturbance estimation is quite fast and satisfactory, the
data-driven controller slightly outperforms the model-based
controller. This is because the data-driven controller potentially
captures more of the dynamics of the areas than the simplified
model used for the model-based control approach.

V. C O N C L U S I O N

This paper has detailed the development of a data-driven area-
based fast frequency control scheme, which extends the previ-
ous work in [3] to be completely model-free. The controller
rapidly redispatches inverter-based resources to compensate for
local power imbalances within the bulk power system. The de-
sign is based only on recorded historical data, requires no model
building or identification, and is tuned through adjustment of
a single scalar parameter, making it potentially attractive for
practical implementation. Simulation results on a nonlinear
test system have been presented to validate the approach.
Future work will be primarily concerned with minimizing the
disruption to the system during the data collection phase via
the design of improved excitation signals for IBRs, along with
extension of the approach here to moving-horizon disturbance
estimation.
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Fig. 14: Frequency response to a load change of 450 MW at bus 33.
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Fig. 15: Disturbance estimate during a load change of 450 MW at bus 33.


