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Abstract— We consider the problem of data-driven predictive
control for an unknown discrete-time linear time-periodic (LTP)
system of known period. Our proposed strategy generalizes
both Data-enabled Predictive Control (DeePC) and Subspace
Predictive Control (SPC), which are established data-driven
control techniques for linear time-invariant (LTI) systems. The
approach is supported by an extensive theoretical development
of behavioral systems theory for LTP systems, culminating in a
generalization of Willems’ fundamental lemma. Our algorithm
produces results identical to standard Model Predictive Control
(MPC) for deterministic LTP systems. Robustness of the algo-
rithm to noisy data is illustrated via simulation of a regularized
version of the algorithm applied to a stochastic multi-input
multi-output LTP system.

I . I N T R O D U C T I O N

Control design methods can broadly be classified into
model-based methods and data-driven methods. Model-based
design methods rely on an accurate parametric representation
of the system, which may come from first-principles modeling
or from system-identification. Data-driven control, on the
other hand, produces a control strategy directly from recorded
historical data. As modern systems of interest become increas-
ingly complex and difficult to identify, data-driven control
techniques become increasingly preferable, and have attracted
significant research interest in recent years. A comprehensive
survey of early data-driven methods can be found in [1].

Model Predictive Control (MPC) is a particular model-
based design method which has been widely used in industrial
applications, such as autonomous driving [2] and mobile
robots [3]. MPC is applicable to time-varying systems, and
can incorporate input and output constraints, which typically
model actuator saturation and safety constraints, respectively.
Despite these benefits, MPC requires a parametric system
model, and the modeling process (e.g., system identification)
can be expensive [4].

Originating from the work by J. C. Willems, behavioral
systems theory provides an alternative to the now-standard
state-space framework [5]. In the behavioral approach, a
system is characterized as a set of possible input-output
trajectories (the behavior). Of particular note, the behavior
of a finite-dimensional discrete-time linear time-invariant
(LTI) system over a finite time interval can be expressed
using collected historical data, a result now known as the
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Fundamental Lemma [6]. See [7] for an introduction of the
behavioral approach with relevant algorithms, and [8] for
perspectives of developing the theory. Currently, many results
in the behavioral framework are restricted to LTI systems.

By leveraging the fundamental lemma, system outputs can
be predicted without a parametric system model. From this
observation, data-driven MPC (DDMPC) methods have been
developed wherein the need for a parametric system model is
eliminated [9]–[16]. A particular DDMPC algorithm named
Data-enabled Predictive Control (DeePC) [12]–[16] has been
successfully applied to control problems in power systems
[17], [18], motor drives [19] and quad-copters [20]. While
the methods [9]–[16] focus on LTI systems, some extensions
have been developed for linear parameter-varying systems
[21] and for specific types of nonlinear systems [22]. In the
spirit of these extensions, the extension to linear time-varying
(LTV) systems is also of interest, and our focus here will be
on developing analogous theory and control techniques for
linear time-periodic (LTP) systems — a particular class of
LTV systems. LTP systems can arise from linearization of
nonlinear systems around periodic trajectories, such as in
models of helicopters [23] and wind turbines [24].

Contributions: This paper develops behavioral systems
theory and associated DDMPC results for LTP systems of
known periods. Our key insight is that an established lifting
technique (see [25], [26] and Section II) which transforms
an LTP system into an LTI system can be leveraged to
extend the behavioral theory of LTI systems to LTP systems.
Based on this, in Section III we develop the behavioral
theory for LTP systems — generalizing notions such as order
and lag — and culminating in a natural extension of the
fundamental lemma [6]. A benefit of this development is that
all theory is stated directly in terms of the data and trajectories
of the original LTP system, as opposed to the associated
collection of lifted LTI systems. Leveraging this theory, in
Section IV we put forward a DDMPC algorithm for LTP
systems, generalizing the established DeePC and Subspace
Predictive Control (SPC) [17]–[19] methods for LTI systems.
We provide a performance guarantee that for deterministic
LTP systems, our algorithm gives the same control policy as
obtained from MPC. Finally, we illustrate the effectiveness
of our approach via a simulation study in Section V. Due to
space limitations, the majority of the proofs are omitted, but
can be found in the extended version [27].

Notation: Let [M1; . . . ;Mk] := [M⊤
1 , . . . ,M⊤

k ]⊤ denote
the column concatenation of matrices M1, . . . ,Mk. Given
a Rq-valued discrete-time signal z with an integer index,
for integers t1, t2 with t1 ≤ t2, let z[t1,t2] (resp. z[t1,∞))
denote either the sequence {zt}t2t=t1 (resp. {zt}∞t=t1) or the



concatenated vector [zt1 ; . . . ; zt2 ] ∈ Rq(t2−t1+1) (resp. the
semi-infinite vector [zt1 ; zt1+1; . . .]). Similarly, for integers
t1 < t2, let z[t1,t2) := z[t1,t2−1]. Let M† denote the pseudo
inverse of a matrix M .

I I . L I N E A R T I M E - P E R I O D I C S Y S T E M S A N D T H E
L I F T I N G T E C H N I Q U E

In this section we review some classical notions for linear
time-periodic systems. Consider a discrete-time linear time-
varying (LTV) system

S :

{
xt+1 = Atxt +Btut

yt = Ctxt +Dtut

(1)

with initial time t0 ∈ Z and initial state xt0 , where t ∈ Z
is the time and xt ∈ Rn, ut ∈ Rm, and yt ∈ Rp are the
state, input, and output of the system. The system (1) is said
to be linear time-periodic (LTP) if there exists T ∈ N (a
period) such that At+T = At (and similarly for Bt, Ct, Dt)
for all t ∈ Z. The smallest T satisfying this condition is the
fundamental period; without loss of generality, we assume
going forward that T is the fundamental period. Note that
when T = 1, the system (1) is linear time-invariant (LTI).
A discrete-time LTP model may arise naturally in discrete
time, or may have been obtained via appropriate sampling of
a continuous-time LTP system.

For the LTV system (1) and integers t1, t2 with t1 ≤ t2,
the state-transition matrix Φt2

t1 ∈ Rn×n and impulse response
matrix Gt2

t1 ∈ Rp×m from step t1 to t2 are defined as

Φt2
t1 :=

{
I, if t2 = t1
At2−1At2−2 · · ·At1 , if t2 > t1,

(2a)

Gt2
t1 :=

{
Dt1 , if t2 = t1
Ct2Φ

t2
t1+1Bt1 , if t2 > t1.

(2b)

Similarly, the associated (reversed) extended controllability
matrix C t2

t1 ∈ Rn×(t2−t1+1)m, the extended observability
matrix Ot2

t1 ∈ R(t2−t1+1)p×n, and the block matrix I t2
t1 of

impulse-response coefficients are defined as
C t2
t1 :=

[
Φt2+1

t1+1Bt1 , Φ
t2+1
t1+2Bt1+1, . . . , Φ

t2+1
t2+1Bt2

]
, (2c)

Ot2
t1 :=

[
Ct1Φ

t1
t1 ; Ct1+1Φ

t1+1
t1 ; . . . ; Ct2Φ

t2
t1

]
, (2d)

I t2
t1 :=


Gt1

t1

Gt1+1
t1

Gt1+1
t1+1

...
...

. . .
Gt2

t1
Gt2

t1+1 · · · Gt2
t2

 . (2e)

With this notation, the unique solution of (1) with initial
condition xt1 at time t = t1 can be expressed as

xt2 = Φt2
t1xt1 + C t2−1

t1 u[t1,t2), (2f)

y[t1,t2] = Ot2
t1 xt1 + I t2

t1 u[t1,t2], (2g)
for any t2 > t1 in (2f) and any t2 ≥ t1 in (2g).

Throughout the paper, we let w[t1,t2] := [u[t1,t2]; y[t1,t2]]
denote a trajectory of the system (1).

A. Lifting an LTP System to an LTI System

We now recall a classical technique for “lifting” an LTP
system into an LTI system [25].

Definition 1 (Lift of an LTP System). For an LTP system S
as in (1) of period T and an initial time t0 ∈ Z, the associated

lifted system SL(t0) of S with initial time t0 is the LTI system

SL(t0) :
{
xτ+1 = Axτ +Buτ

yτ = Cxτ +Duτ

(3a)

with state xτ ∈ Rn, input uτ ∈ RmT , output yτ ∈ RpT , and
time τ ∈ Z, where

A := Φt0+T
t0 ,

C := Ot0+T−1
t0 ,

B := C t0+T−1
t0 ,

D := I t0+T−1
t0 .

(3b)

The idea behind lifting is that each time step τ of the lifted
system SL(t0) corresponds to T successive time steps of the
original LTP system S. The state/input/output of SL(t0) are
related to the state/input/output of S via

xτ = xt0+τT ,

uτ = u[t0+τT, t0+(τ+1)T ),

yτ = y[t0+τT, t0+(τ+1)T ).

Each input vector uτ (or output vector yτ ) of SL(t0) stacks
the inputs (or outputs) of S over one period, and the state
vector xτ is the state of S at the “beginning” of this period,
as specified by the initial time t0; see Fig. 1. Note from (3b)
that the matrices A,B,C,D depend on the initial time t0.
Nonetheless, some properties of the lifted system — such as
the eigenvalues of A — are invariant under the choice of the
initial time t0. See [26] for more information on lifting and
properties of the lifted system.

I I I . B E H AV I O R A L S Y S T E M S T H E O RY F O R
L I N E A R T I M E - P E R I O D I C S Y S T E M S

In this section we develop a set of results on behavioral
systems theory for linear time-periodic systems.

A. Behavioural Representation of LTV Systems

In the framework of behavioral systems theory, the input-
output trajectories of the system (1) are described independent
of the state representation through the behavior.

Definition 2 (Behavior). For the LTV system S in (1) and
an integer t1, the behavior BS

[t1,∞) of S on the time interval
[t1,∞) ∩ Z is the set

BS
[t1,∞) :=

{[
u[t1,∞)

y[t1,∞)

] ∣∣∣ ∃xt1 s.t. (1) holds for all t ≥ t1

}
.

Given BS
[t1,∞) and an integer t2 ≥ t1, we let BS

[t1,t2]

denote the restriction of BS
[t1,∞) to the interval [t1, t2], and

in the case t2 > t1, we let BS
[t1,t2)

:= BS
[t1,t2−1]. The

behavior defines a subspace of the vector space of semi-
infinite sequences, and contains all possible input-output
trajectories of the system. Going forward, we focus primarily
on the restricted behavior.

Lemma 3. The restricted behavior BS
[t1,t2]

of the LTV system
S in (1) is a finite-dimensional vector space and

BS
[t1,t2]

= ColSpan

[
0 I

Ot2
t1

I t2
t1

]
.

Corollary 3.1. dimBS
[t1,t2]

= rank(Ot2
t1 ) +m(t2 − t1 + 1).

When S is an LTI system, the behavior is invariant under
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period T
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xt0+1
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xt0+T

xt0+T+1

...
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...
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x2

Input
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ut0+1

...
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...
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...

u0

u1

Output
yt0

yt0+1

...

yt0+T

yt0+T+1

...

yt0+2T

...

y0

y1

Fig. 1. Relationship between the state xt, input ut, output yt of an LTP
system S and the state xτ , input uτ , output yτ of its lifted system SL(t0).

shift of the time interval, meaning that
BS

[t1,t2]
= BS

[t1+s,t2+s] for all s ∈ Z.

This follows from Definition 2, due to shift-invariance of the
system matrices. A similar result holds when S is an LTP
system of period T , namely that

BS
[t1,t2]

= BS
[t1+sT,t2+sT ] for all s ∈ Z.

Unlike the case of LTI or LTP systems, the behavior of
a general LTV system is not a shift-invariant subspace.
However, given the behavior over an interval, the behavior on
the first several steps of the interval can be easily constructed.

Lemma 4. For the LTV system S in (1) and integers t0 ≤
t1 ≤ t2, if

BS
[t0,t2]

= ColSpan[Ut0 ; . . . ;Ut2 ;Yt0 ; . . . ;Yt2 ]

for some matrices Ut0 , . . . , Ut2 ∈ Rm×h and Yt0 , . . . , Yt2 ∈
Rp×h with some h ∈ N, then

BS
[t0,t1]

= ColSpan[Ut0 ; . . . ;Ut1 ;Yt0 ; . . . ;Yt1 ].

1) Controllability: In the behavioral framework, control-
lability is defined in a trajectory-based sense, as opposed to
the more classical notion of state-controllability.

Definition 5 (Controllability [7], [28]). An LTV system S is
controllable if for any t0 ∈ Z, any two trajectories wI

[t0,∞),
wII

[t0,∞) ∈ BS
[t0,∞), and any time t1 ≥ t0, there exists a time

t2 ≥ t1 and a trajectory w⋄
[t0,∞) ∈ BS

[t0,∞) such that

w⋄
[t0,t1)

= wI
[t0,t1)

, w⋄
[t2,∞) = wII

[t2,∞). (4)

Put differently, an LTV system is controllable if we can
“drive” from one trajectory to any other trajectory in a finite
number of time steps. When S is an LTI system, the second
equality in (4) is sometimes replaced by w⋄

[t2,∞) = wII
[t0,∞)

in the literature (e.g. [6], [12]). This alternative definition is
equivalent to Definition 5 for LTI systems [28, Remark 4(i)].

B. A Definition of Order and Lag for LTV Systems

In behavioral systems theory, the order and lag are so-
called integer invariants of an LTI system, and can be
expressed using a minimal state representation of the behavior.
In this subsection, we generalize those notions to LTV
systems, and do so in a manner that avoids introducing notions
of minimality for LTV models.

First, we review the LTI definitions of order and lag from
the literature (e.g., [7], [29]). For an LTI state-space model
S : (A,B,C,D), a minimal representation S̄ of its behavior
BS

[0,∞) is a state-space model S̄ : (Ā, B̄, C̄, D̄), having
the minimal possible state dimension and sharing the same
behavior as of S , i.e., BS

[0,∞) = BS̄
[0,∞). The order n(S) of

S is equal to the state dimension of S̄. Define matrix Ot2
t1

(resp. Ōt2
t1 ) from (2d) for system S (resp. S̄). The extended

observability matrix Ōs−1
0 of S̄ reaches full column rank

equal to n(S) when s is sufficiently large, and the lag l(S)
of S is the smallest integer s that Ōs−1

0 has full column rank.
We can express both n(S) and l(S) in terms of the model
S, which is not necessarily a minimal representation, as

n(S) = lim
s→∞

rank(Ōs−1
0 ) = lim

s→∞
rank(Os−1

0 ),

l(S) = min{s ∈ N : rank(Ōs−1
0 ) = n(S)}

= min{s ∈ N : rank(Os−1
0 ) = n(S)},

(5a)

where we used the equality rank(Os−1
0 ) = rank(Ōs−1

0 )
which follows from BS

[0,s) = BS̄
[0,s) and Corollary 3.1.

Motivated by the above considerations, we introduce the
following definition.

Definition 6 (Order and Lag). For the LTV system S in
(1), the order n(S, t) at time t and lag l(S, t) at time t are1

n(S, t) := lim
s→∞

rank(Ot+s−1
t ),

l(S, t) := min{s ∈ N : rank(Ot+s−1
t ) = n(S, t)}.

(5b)

When S is an LTI system, we write its order and lag in
the sense of (5b) as n(S) and l(S) respectively, since they
are time-independent. The definitions in (5b) are consistent
with (5a) in the LTI case. Moreover, via Corollary 3.1,

dimBS
[t,t+L) = n(S, t) +mL ∀t ∈ Z (5c)

for all integers L ≥ l(S, t), which coincides with an estab-
lished result [29, Cor. 5] or [7, Eq. (1)] in the LTI case.

The lag specifies a sufficient length of a trajectory such
that, with any subsequent input, the resulting output after the
trajectory is uniquely determined, as captured in Lemma 7(ii).
This result generalizes [30, Lemma 1] or [7, Lemma 1] which
is for the LTI case. Lemma 7(iii) gives an expression for the
unique output, generalizing [31, Lemma 2] as the LTI case.

Lemma 7 (Uniqueness of Future Output). Consider the LTV
system S in (1), a time step t ∈ Z, and positive integers L,N .
The following statements hold:

(i) For any trajectory w[t−L,t) ∈ BS
[t−L,t) and any input

u∗
[t,t+N), there exists an output y∗[t,t+N) satisfying

[u[t−L,t);u
∗
[t,t+N); y[t−L,t); y

∗
[t,t+N)] ∈ BS

[t−L,t+N).

(ii) If L ≥ l(S, t−L), the output y∗[t,t+N) from (i) is unique.
(iii) Moreover, if the behavior BS

[t−L,t+N) can be expressed
as

BS
[t−L,t+N) = ColSpan [Up;Uf ;Yp;Yf ]

for some matrices Up ∈ RmL×h, Uf ∈ RmN×h, Yp ∈
RpL×h, Yf ∈ RpN×h with some h ∈ N, then the unique

1n(S, t) is well-defined in (5b), since rank(Ot+s−1
t ) is bounded by the

state dimension n and is non-decreasing as we increase s because Ot+s−1
t

is augmented with extra rows. Thus, l(S, t) is also well-defined in (5b).



output y∗[t,t+N) from (ii) is given as2

y∗[t,t+N) = Yf

[
Up

Uf

Yp

]† [u[t−L,t)

u∗
[t,t+N)

y[t−L,t)

]
.

C. Behavioral Systems Theory for LTP Systems

Now we limit our discussion to LTP systems. We first
establish the relationship between the behavior of an LTP
system and the behavior of any corresponding lifted system.

Lemma 8. For an LTP system S of period T and its lifted
system SL(t0) with initial step t0 ∈ Z, it holds that

BS
[t0, t0+sT ) = B

SL(t0)
[0,s) ∀s ∈ N.

Remark 9 (Dependence on Initial Step t0). The lifted system
and its behavior depend on the initial step t0. For instance,
consider the following single-state SISO LTP system S of
period T = 2.

S :

{
xt+1 = xt + (−1)tut

yt = xt

The corresponding lifted system SL(t0) for t0 ∈ Z.

SL(t0) :
{
xτ+1 = xτ + (−1)t0 [1 −1]uτ

yτ =
[
1
1

]
xτ + (−1)t0

[
0 0
1 0

]
uτ

It follows (via Lemma 3) that for t0 ∈ Z the restricted
behavior of SL(t0) on interval [0, 0] is

B
SL(t0)
[0,0] = ColSpan

 0 1 0
0 0 1
1 0 0
1 (−1)t0 0

 .

One can now observe that B
SL(0)
[0,0] and B

SL(1)
[0,0] are different

subspaces. Hence, it is necessary to specify the initial time
t0 when introducing the lifted system. □

1) Order and Lag: Notions of order and lag for LTV
systems have been introduced in Definition 6. The next result
relates the order and lag of an LTP system to the order and
lag of its lifted system.

Lemma 10. For an LTP system S of period T , we have (i)
n(SL(t)) = n(S, t), and (ii) l(SL(t)) = ⌈l(S, t)/T ⌉.

For unknown LTP systems with known periods and state
dimensions, we can establish bounds of their orders and lags.

Corollary 10.1. For an LTP system S as in (1) of period T ,
we have (i) n(S, t) ≤ n, and (ii) l(S, t) ≤ nT .

2) Controllability: The controllability of an LTP system
is equivalent to the controllability of its lifted systems.

Lemma 11. An LTP system S is controllable if, and only if,
its lifted systems SL(t0) are controllable for all t0 ∈ Z.

D. A Fundamental Lemma for LTP Systems

According to the so-called Fundamental Lemma [6, Thm.
1], under technical conditions, the restricted behavior of an LTI
system can be completely described via recorded historical
data. This result is reviewed as Lemma 13 below. We first
review the notion of persistent excitation.

2Note that y∗
[t,t+N)

is unique even though the matrices Up, Uf , Yp, Yf

may not be unique.

Definition 12 (Persistent Excitation). A sequence z[t1,t2] is
persistently exciting (p.e.) of order K, for positive integer
K ≤ t2 − t1 + 1, if the associated block-Hankel matrix of
depth K

HK(z[t1,t2]) :=

 zt1 zt1+1 · · · zt2−K+1

zt1+1 zt1+2 · · · zt2−K+2
...

...
. . .

...
zt1+K−1 zt1+K · · · zt2


has full row rank.

Lemma 13 (Fundamental Lemma [6]). Let S be an LTI
system, and let wd

[t1,t2]
be a trajectory of S. For K ∈ N, if

(i) S is controllable, and
(ii) ud

[t1,t2]
is p.e. of order K + n(S),

then
ColSpan

(
HK(wd

[t1,t2]
)
)
= BS

[0,K),

where HK(wd
[t1,t2]

) :=
[
HK(ud

[t1,t2]
);HK(yd[t1,t2])

]
.

Based on the lifting operation, we now define a natural
extension of persistent excitation for LTP systems, and present
a corresponding version of the fundamental lemma.

Definition 14 (Periodic Persistent Excitation). A sequence
z[t1,t2] is T -periodically persistently exciting (T -p.p.e.) of
order K, for K,T ∈ N satisfying K ≤ t2 − t1 + 1, if

HT
K(z[t1,t2]) :=

 zt1 zt1+T · · · zt1+PT

zt1+1 zt1+T+1 · · · zt1+PT+1
...

...
. . .

...
zt1+K−1 zt1+T+K−1 · · · zt1+PT+K−1


has full row rank, where P := ⌊(t2 − t1 −K + 1)/T ⌋.3

Lemma 15 (Fundamental Lemma for LTP Systems). Let S
be an LTP system of period T , and let wd

[t1,t2]
be a trajectory

of S on interval [t1, t2]. For K ∈ N, if
(i) S is controllable, and

(ii) ud
[t1,t2]

is T -p.p.e. of order (⌈K/T ⌉+ n(S, t1))T ,
then

ColSpan
(
HT

K(wd
[t1,t2]

)
)
= BS

[t1,t1+K), (6)
where HT

K(wd
[t1,t2]

) :=
[
HT

K(ud
[t1,t2]

);HT
K(yd[t1,t2])

]
.

Proof. We first prove the case when K is a multiple of T ,
i.e., where K = K1T for some K1 ∈ N. Let

w[τ1,τ2] := [u[τ1,τ2];y[τ1,τ2]]

denote a trajectory of the lifted system SL(t1). From Lemma
8, we know that B

SL(t1)
[0,s) = BS

[t1,t1+sT ) for all s ∈ N, so we

can establish such a trajectory wd
[0,P ) ∈ B

SL(t1)
[0,P ) that

wd
[0,P ) := wd

[t1,t1+PT )

with P := ⌊(t2− t1 +1)/T ⌋, i.e., P is the number of whole
periods in the interval [t1, t2]. With abuse of notation, we let
n := n(S, t1) and nL := n(SL(t1)) in this proof, then we
have n = nL via Lemma 10(i). By direct substitution, one
can verify that4

HK1+nL
(ud

[0,P )) = H
T
(K1+n)T (u

d
[t1,t2]

), (7a)

HK1(w
d
[0,P )) = H

T
K(wd

[t1,t2]
). (7b)

3One can observe that HT
K(z[t1,t2]) is obtained by retaining every T -th

column of HK(z[t1,t2]).
4Note that in (7a), the block rows on the left-hand side are of size mT ,

where m is the input dimension of S, while on the right-hand side, the
block rows are of size m. Similarly for (7b).



Since ud
[t1,t2]

is T -p.p.e. of order (K1 + n)T (i.e., the right-
hand side of (7a) has full row rank), we know that ud

[0,P )

is p.e. of order K1 + nL (as the left-hand side of (7a) has
full row rank). We also know via Lemma 11 that SL(t1) is
controllable because S is controllable. Thus by Lemma 13
we have

ColSpan(HK1
(wd

[0,P ))) = B
SL(t1)
[0,K1)

. (7c)
Substitute (7b) into the left-hand side of (7c), and replace
the right-hand side of (7c) using B

SL(t1)
[0,K1)

= BS
[t1,t1+K) (via

Lemma 8), and then we obtain the result (6).
Next, we show the result for all K ∈ N. Let K1 := ⌈K/T ⌉

and K̂ := K1T , i.e., K̂ is the smallest multiple of T greater
than or equal to K. Since ⌈K/T ⌉ = ⌈K̂/T ⌉, ud

[t1,t2]
is T -

p.p.e. of order (⌈K̂/T ⌉+n(S, t1))T , so we have the condition
(ii) of this lemma for the case K ← K̂ (as a multiple of T ),
which case we have already proved. We therefore have

ColSpan(HT
K̂
(wd

[t1,t2]
)) = BS

[t1,t1+K̂)
. (7d)

Define H△ := HT
K(wd

[t1,t2−(K̂−K)]
). One can verify that

HT
K(ud

[t1,t2−(K̂−K)]
) consists of the first K block rows of

HT
K̂
(ud

[t1,t2]
), and similarly for yd. Hence, applying Lemma

4 for (7d) we have
ColSpan(H△) = BS

[t1,t1+K). (7e)
However, note that
ColSpan(H△) ⊆ ColSpan(HT

K(wd
[t1,t2]

)) ⊆ BS
[t1,t1+K),

(7f)
where the first inclusion (⊆) above is because H△ is a
sub-matrix of HT

K(wd
[t1,t2]

) with the same column size, and
the second inclusion above is because each column of
HT

K(wd
[t1,t2]

) is a vector in the behavior set BS
[t1,t1+K). The

equality (6) now follows by combining (7e) and (7f).

When n(S, t1) is unknown but bounded by some n ∈ Z,
we may obtain (ii) in Lemma 15 by requiring the input ud

[t1,t2]

to be T -p.p.e. of a sufficient order (⌈K/T ⌉ + n)T . This is
because by definition a signal being T -p.p.e of order K ′ is
also T -p.p.e. of any smaller order K ′′ ≤ K ′.

I V. D ATA - D R I V E N M O D E L P R E D I C T I V E
C O N T R O L F O R L I N E A R T I M E - P E R I O D I C S Y S T E M S

Based on our previous results extending behavioral systems
theory to LTP systems, in this section, we develop a DDMPC
algorithm for LTP systems S as in (1) of known period T .

A. Prediction, Control, and Initial Horizons

We consider a receding-horizon control strategy, in which
at time t the control signal u on interval [t, t+Nc)∩Z (the
control horizon) is computed by minimizing an appropriate
cost function of the predicted trajectory over a finite horizon
[t, t+N)∩Z (the prediction horizon), where Nc, N ∈ N are
design parameters with Nc ≤ N .

In the present data-driven scenario, the initial condition of
the system at time t is specified by the recent trajectory in
a past interval [t− L, t) ∩ Z called the initial horizon, with
parameter L ∈ N. According to Lemma 7, if L ≥ l(S, t−L),
we can uniquely predict the future output, given any future

input. Notice via Corollary 10.1 that the lag l(S, t − L) is
bounded by nT , so the output prediction is always unique
when we select L ≥ nT . We call the union [t−L, t+N)∩Z
of the initial and prediction horizons as the total horizon; see
Fig. 2.

B. Offline Data Collection
The restricted behavior BS

[t−L,t+N) on the total horizon
must be known for us to predict future trajectories and com-
pute control actions in the DDMPC framework. In previous
work on DDMPC for LTI systems [9]–[16], the behavior
BS

[t−L,t+N) can be represented using recorded offline data.
We may extend this strategy to the case where S is an LTP
system. However, since the system is periodic, its behavior
BS

[t−L,t+N) can equal one of T different possible subspaces,
depending on the time t. Fortunately, all T possibilities for
the behavior BS

[t−L,t+N) can be covered using collected data.
1) Offline Data: Let wd

[td1,td2]
be offline data collected

from the system S on the interval [td1, td2], where we require
that the input signal ud

[td1,td2]
is T -p.p.e. of order (⌈K/T ⌉+

n)T , with K := L+N + T − 1. Arrange the data into the
“uncropped” data matrices Ud ∈ RmK×h and Y d ∈ RpK×h:

Ud := HT
K(ud

[td1,td2]
), Y d := HT

K(yd[td1,td2]),

where h denotes the common width of Ud and Y d, given by
h := ⌊(td2− td1−K +1)/T ⌋+1. We extract from Ud and
Y d the T sets of data matrices Uθ

p ∈ RmL×h, Uθ
f ∈ RmN×h,

Y θ
p ∈ RpL×h and Y θ

f ∈ RpN×h, defined as

Uθ
p := Ud

[θ,θ+L−1],

Y θ
p := Y d

[θ,θ+L−1],

Uθ
f := Ud

[θ+L,θ+L+N−1],

Y θ
f := Y d

[θ+L,θ+L+N−1],
(8a)

where each set has an exclusive index θ ∈ {1, . . . , T}. In
(8a), we let Ud

[r1,r2]
∈ Rm(r2−r1+1)×h denote the sub-matrix

consisting of the r1-th, ..., r2-th block rows of Ud, and
similarly for Y d

[r1,r2]
, with abuse of notation.

2) Representation of Behavior: The matrices Uθ
p , Uθ

f ,
Y θ
p , Y θ

f built from offline data can represent the behavior on
the total horizon at time tθ := td1 + θ + L− 1, that is,

ColSpan
[
Uθ
p ;U

θ
f ;Y

θ
p ;Y

θ
f

]
= BS

[tθ−L,tθ+N). (8b)

under assumption that S is controllable and the input ud
[td1,td2]

is T -p.p.e of order (⌈K/T ⌉+n(S, td1))T ; see Fig. 3. A proof
of (8b) can be found in the extended version [27].

Since {tθ}Tθ=1 are consecutive time steps in one period, by
periodicity of S , the subspaces BS

[tθ−L,tθ+N) with different
selections of the index θ ∈ {1, . . . , T} cover all T possibil-
ities of the behavior BS

[t−L,t+N) for different time steps t.
Define the proper index Θ(t) at time t.

Θ(t) := 1 + (t− td1 − L mod T ) (8c)

Thus, θ = Θ(t) is the “correct” index θ such that the data
matrices Uθ

p , Uθ
f , Y θ

p , Y θ
f represent the behavior on the total

horizon at time t, i.e.,

ColSpan
[
UΘ(t)
p ;U

Θ(t)
f ;Y Θ(t)

p ;Y
Θ(t)
f

]
= BS

[t−L,t+N), (8d)

because of (8b), periodicity of S and the fact that t− tΘ(t)

is a multiple of T .
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Fig. 2. Time horizons at time t. The initial horizon is a past interval up
to time t− 1. The prediction horizon is a future interval starting at time t.
The total horizon is their union.

The column span of: is the behavior on:

[U1
p ;U

1
f ;Y

1
p ;Y

1
f ] time step· · · · · · · · · · · ·

step
t1−L

step
t1+N−1
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2
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...
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step
tT−L

step
tT+N−1

Fig. 3. The column span of the matrix [Uθ
p ;U

θ
f ;Y

θ
p ;Y θ

f ] is the behavior
on the interval [tθ − L, tθ +N) ∩ Z. Note that {tθ}Tθ=1 are consecutive
time steps in one period.

C. Online Process

Now we introduce the online process of the algorithm.
Suppose we have collected the offline data in Section IV-B.

1) Warm-Up Process: Before controlling the system, we
require to know the proper index Θ(t) at current time t.
However, this value will be unknown unless td1 is known
during the data collection process, and will generally be
unknown in a practical implementation. To address this, we
developed a heuristic algorithm to identify the value of Θ(t),
which can be found in the extended version [27]. Let Θ̂(t)
denote the estimate of Θ(t) at time t.

Once we obtain the estimate Θ̂(t) at time t, the value of
Θ̂(t′) for any future time t′ ≥ t is derived according to

Θ̂(t+ 1) :=

{
Θ̂(t) + 1, if Θ̂(t) ∈ {1, . . . , T − 1},
1, if Θ̂(t) = T,

which is the same way that Θ(t) evolves with time t.
2) Control Process: With the proper index identified

or known, we can start the control process. We provide
for the LTP system S two alternative controllers, which
generalize Data-enabled Predictive Control (DeePC) and
Subspace Predictive Control (SPC) methods in the literature.

Let u∗ and y∗ denote the future input and predicted output
respectively. At step t, we consider the quadratic cost∑t+N−1

i=t ∥y∗i − ri∥2Q + ∥u∗
i ∥

2
R (9a)

with cost matrices Q ⪰ 0 and R ≻ 0 as parameters, and
constrain the future input-output signal

u∗
i ∈ U , y∗i ∈ Y, ∀i ∈ [t, t+N) ∩ Z (9b)

with user-defined constraint sets U ⊆ Rm and Y ⊆ Rp. The
periodic DeePC (P-DeePC) problem at time t is

minimize
g,u∗,y∗

(9a) s.t. (9c) and (9b) (P-DeePC)

with an auxiliary variable g ∈ Rh, where (9c) is given as
U

Θ̂(t)
p

U
Θ̂(t)
f

Y
Θ̂(t)
p

Y
Θ̂(t)
f

g =


u[t−L,t)

u∗
[t,t+N)

y[t−L,t)

y∗[t,t+N)

 . (9c)

The periodic SPC (P-SPC) problem at time t

minimize
u∗,y∗

(9a) s.t. (9d) and (9b) (P-SPC)

with (9d) given as

y∗[t,t+N) = Y
Θ̂(t)
f

U
Θ̂(t)
p

U
Θ̂(t)
f

Y
Θ̂(t)
p

† u[t−L,t)

u∗
[t,t+N)

y[t−L,t)

 . (9d)

After solving the optimal future trajectory w∗
[t,t+N) from

either (P-DeePC) or (P-SPC), we apply the first Nc inputs
u∗
[t,t+Nc)

to the system S. The whole control process is
illustrated in Algorithm 1.

Algorithm 1 Control Process

Input: the time step t, the estimated proper index Θ̂(t), the
reference signal r and the data matrices Uθ

p , U
θ
f , Y

θ
p , Y

θ
f

for θ ∈ {1, . . . , T}.
1: while true do
2: Solve w∗

[t,t+N) from (P-DeePC) or (P-SPC).
3: Input u[t,t+Nc) ← u∗

[t,t+Nc)
to the system S.

4: Set t← t+Nc and update Θ̂(t) correspondingly.

3) Performance Guarantee: In the deterministic case,
both P-DeePC and P-SPC produce the same control actions
that one would obtain from traditional MPC applied to the
LTP system. The MPC problem for (1) at time t,

minimize
x∗,u∗,y∗

(9a) s.t. (9e) and (9b) (MPC)

where (9e) is given as follows.
x∗
i+1 = Aix

∗
i +Biu

∗
i , ∀i ∈ [t, t+N) ∩ Z

y∗
i = Cix

∗
i +Diu

∗
i , ∀i ∈ [t, t+N) ∩ Z

x∗
t = xt

(9e)

Proposition 16. Consider an LTP system S as in (1) of
period T . Let wd

[td1,td2]
be offline data from S on interval

[td1, td2]. For time step t ∈ Z and L,N ∈ N, assume that
(i) L ≥ l(S, t− L),

(ii) S is controllable in the sense of Definition 5,
(iii) ud

[td1,td2]
is T -p.p.e. of order (⌈K/T ⌉ + n(S, td1))T ,

with K := L+N + T − 1, and
(iv) Θ̂(t) = Θ(t).

Suppose we know the state xt and recent trajectory w[t−L,t)

of S. Then,
• the unique optimal trajectory w∗

[t,t+N) by (P-DeePC),
• the unique optimal trajectory w∗

[t,t+N) by (P-SPC), and
• the unique optimal trajectory w∗

[t,t+N) by (MPC)
are all same.

This result generalizes [12, Cor. 5.1] and [31, Thm. 1],
which results claim the equivalence of DeePC, SPC and MPC
for LTI systems.



Remark 17. Our extension of DeePC and SPC to LTP systems
is based on the insight that the data collected from an LTP
system is equivalent to data collected from an appropriate
LTI lifted system. In particular, after stacking LTP-system
data into lifted-system data, we can apply the established LTI
DDMPC methods and compute control signals for the lifted
system, and thereby obtain control signals for the original LTP
system. A benefit of our treatment here is that discussion of
lifted systems can be entirely omitted once proper behavioral
systems concepts are defined directly on the LTP system, as
we have done in Section III. □

4) Regularization: To adapt our methods for stochastic
LTP systems with noisy measurements, we may regularize
both P-DeePC and P-SPC. Regularizing P-DeePC is similar
as regularizing DeePC [13]–[16]. Here we exhibit quadratic
regularization, where (P-DeePC) is modified as follows,

minimize
g,u∗,y∗,σy

(9a) + λy∥σy∥22 + λg∥g∥22 s.t. (9f) and (9b)

with a slack variable σy ∈ RpL, positive parameters λy, λg,
and a modified constraint (9f) from (9c).

U
Θ̂(t)
p

U
Θ̂(t)
f

Y
Θ̂(t)
p

Y
Θ̂(t)
f

g =


u[t−L,t)

u∗
[t,t+N)

y[t−L,t)

y∗[t,t+N)

+


0
0
σy

0

 (9f)

To regularize P-SPC, in the computation of the pseudo-inverse
in (9d), we treat as zero the singular values smaller than a
selected threshold σSPC; the remainder of the settings in
regularized P-SPC are same as in P-SPC.

V. S I M U L AT I O N S

We illustrate the algorithm proposed in Section IV and its
robustness to noisy data via numerical example. Consider the
mass-spring-damper system in Fig. 4.

The control objective is reference tracking for the positions
(x1, x2, x3) of the three masses. There are three control
inputs: the force F applied to the mass m1, and the end
positions x4 and x5 of the free ends of the springs k4 and k5.
The stiffness and damping parameters ki and ci are periodic
functions of time, given in Table I, and each has a period of 1
second. We discretize the system with a sampling time 0.2s,
and thus the period of the discretized system is T = 5. A
process noise wt

i.i.d∼ N (06×1, σ
2I6) and a measurement noise

vt
i.i.d∼ N (03×1, σ

2I3) are added to the discrete-time model,
with noise amplitude σ2 = 10−3. The control parameters are
selected in Table II.

m1

x1

F

m3

x3

m2

x2

k1

c1

k3

c3

k2

c2

k5

c5

x5

k4

c4

x4

Fig. 4. A spring-mass-damper model for simulation.

For collection of offline data, we apply a random input
signal ud

t
i.i.d.∼ N (03×1, I3) and measure the resulting posi-

tions (x1, x2, x3). The online process starts at time t = 0,
with the warm-up process terminating at time t = 40. In our
simulation, the proper index Θ(t) was correctly identified.

We start control at time t = 40, and apply sequential
changes in the reference signals given by rt = [0; 0; 0] for
40 ≤ t < 60, rt = [5; 0; 0] for 60 ≤ t < 80, rt = [5; 15; 0]
for 80 ≤ t < 100, and rt = [5; 15;−10] for t ≥ 100.
We evaluate the control performance via the one-step cost
∥yt − rt∥2Q + ∥ut∥2R, and the results are shown in Fig. 5.

For comparison purposes, we also plot the closed-loop
responses under (i) MPC using a perfect system model with
full-state measurements, and (ii) the regularized DeePC and
regularized SPC methods for LTI systems. For the latter,
the settings are the same as for P-DeePC (resp. P-SPC),
except that we replace the matrices U

Θ̂(t)
p , U

Θ̂(t)
f , Y

Θ̂(t)
p , Y

Θ̂(t)
f

in (9f) (resp. (9d)) by U1
p , U

1
f , Y

1
p , Y

1
f respectively, i.e., we

use a single set of data matrices at all time t. Around the
step changes of the reference signal, all controllers have
comparable performances with similar cost values. For the
steady-state performance when the reference signal stays
constant, the proposed regularized P-DeePC (resp. P-SPC)
method outperforms the direct use of regularized DeePC
(resp. SPC) of LTI systems. This significant difference
indicates the necessity of using different sets of data matrices
Uθ
p , U

θ
f , Y

θ
p , Y

θ
f with different indices θ as in (9f) and (9d)

for P-DeePC and P-SPC respectively at different time steps.

V I . C O N C L U S I O N A N D F U T U R E W O R K

We proposed a DDMPC algorithm for unknown LTP
systems with known periods. For deterministic LTP systems,
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Fig. 5. The cost of the simulated LTP system, using MPC, regularized
P-DeePC, regularized P-SPC, regularized DeePC of LTI systems and regu-
larized SPC of LTI systems, respectively.



the method is equivalent to classical MPC, but without
the requirement of a parametric model. The approach is
supported by extensions of results from behavioral systems
theory to LTV and LTP systems. Simulation results provide
evidence that the approach is robust to measurement noise
and stochasticity, and that it significantly outperforms a naive
application of data-driven LTI control methods.

There are several open directions for future work. First,
as our design requires a priori knowledge of the period T ,
relaxing this assumption is of interest, as is investigating the
robustness of the approach to errors in the selected period.
Second, we note that there remain open questions in the
behavioral theory of LTP systems, such as what relationships
can be established between the behaviors of the T different
lifted systems arising from a given LTP system.
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