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Abstract— This paper presents an algorithm that solves the
AC power flow problem for balanced, three-phase transmission
systems at steady state. The algorithm extends the ‘“fixed-point
power flow”” algorithm in the literature to include transmission
losses, phase-shifting transformers, and a distributed slack bus
model. The algorithm is derived by vectorizing the component-
wise AC power flow equations and manipulating them into
a novel equivalent fixed-point form. Preliminary theoretical
results guaranteeing convergence are reported for the case of
a two-bus power system. We validate the algorithm through
extensive simulations on test systems of various sizes under
different loading levels, and compare its convergence behavior
against those of classic power flow algorithms.

I. INTRODUCTION

A fundamental problem which underpins many others in
power system operations and control (e.g., optimal power
flow, contingency analysis) is that of computing solutions to
the power flow equations. These equations describe the flow
and balance of power in a synchronous AC power system
at steady state [1], and are typically difficult to solve due
to the inherently nonlinear relationship between power and
voltage. Analytic solutions are rarely available, and solutions
are instead computed via numerical methods.

A plethora of heuristics and algorithms for analyzing
power flow have been developed [2]-[5]. The most standard
approach to accurately solve the power flow problem is to
use an iterative algorithm such as Newton-Raphson (NR)
[1, Chapter 6]. The NR algorithm in particular is highly
sensitive to initialization [6], and heuristic or approximation
procedures are sometimes needed to find suitable initial
conditions [7], [8]. More generally, when iterative algorithms
fail, the failure mechanism can be difficult to determine,
in that one cannot distinguish between poor initialization
and an infeasible power flow case. Thus, a robust algorithm
for the power flow problem with transparent conditions for
convergence is highly desirable.

In recent years, there have been many fixed-point or
contraction-based studies on the power flow problem and
its solvability in various contexts (see, e.g., [9]-[12]). These
approaches provide sufficient conditions for the existence
(and often, uniqueness) of a suitable power flow solution,
and the contraction property naturally leads to a fixed-point
iteration for computing that solution, which is guaranteed
to converge from any initialization within the contraction
region. Among these studies, our focus is power flow in
balanced AC transmission systems. A recently developed
research direction resulted in novel and particularly robust
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fixed-point based algorithms, termed fixed-point power flow
(FPPF) [13], [14] and lossy DC power flow [15], to solve the
power flow problem in the lossless and decoupled contexts,
respectively. While typical transmission lines have small
losses, their presence can fundamentally change the physical
behavior of the system and the solvability of the power flow
problem [7], [16], and as such the algorithm proposed in
[13], [14] cannot be applied. Similarly, to accurately solve
the full power flow problem, the coupling between active
and reactive power cannot be ignored. Our goal here is to
extend this line of research to incorporate network losses
and other physically realistic modelling aspects not present
in the original works, and derive an extended FPPF algorithm
to solve the AC power flow problem.

Contributions: The paper contains three main contribu-
tions. First, we develop a novel vectorization procedure for
the AC power flow equations, which extends the vectoriza-
tion developed in [13], [14] by incorporating resistive losses,
phase-shifting transformers (PSTs), and a distributed slack
bus (DSB) model [17]. Key to our vectorization is what we
term the asymmetrically weighted (AW) incidence matrix of
the weighted bidirected graph describing the transmission
grid. The proposed algorithm is derived by exploiting a rank
property of the AW incidence matrix. Second, we present
preliminary theoretical results for a two-bus power system
model, providing sufficient conditions for convergence of
the algorithm towards the unique high-voltage power flow
solution. Third and finally, we validate the algorithm via
extensive numerical tests on standard power flow cases, and
compare its performance to that of NR and the fast-decoupled
(FDLF) method [18]. While our method is generally slower
to converge than NR, it is more robust to changes in
initialization in both lightly and heavily loaded networks.
Due to space limitations, some proofs are omitted, but can
be found in the thesis [19].

Notation: We use I, to denote the n X n identity ma-
trix, and use 1,,0,,0,x.,, to denote the nm-dimensional
vector of all ones, zeros and the n X m zero matrix,
respectively.! We use MT, M, and M~' to denote the
transpose, left/right inverse, and inverse of a matrix M,
respectively. Given an z € R", [z] denotes the diagonal
matrix with = on its main diagonal, and =z > 0 (resp.
x > 0,2 < 0) means that it is element-wise strictly positive
(resp. nonnegative, strictly negative). In addition, sin(z) =
[sin(z1) sin(z,)]", with cos(z), arcsin(z) and /Z
defined element-wise similarly. Given v € R™ and v € R™,
col(u, v) = [Ug, ..., Un, U1y .., U] € RPF™,

The subscripts are omitted when the the dimensions are easy to infer
from the context.



II. MODEL FORMULATION

A. Bidirected Graph Model of Transmission System

To define the bidirected graph model used in this paper,
we first review the standard notion of a weakly connected
directed graph (digraph) and its properties [20]. A digraph is
a pair G = (N, ), with the node set N == {1,...,n+m},
and the edge set £ = {e1,...,eg} € N x N. The edge
er = (i,7) models the connection between nodes ¢ and j,
where one can travel from ¢ to j (denoted by i — j) but
not vice versa. There is a weight function W : £ — (0, c0)
that equips each edge e; with a positive weight wy [21]. A
digraph is simple if there are no self loops, and it is weakly
connected if there exists an undirected path from any node
to any other node in the graph. The incidence matrix A €
R(+m)XIEl of G is defined element-wise as A;; = 1 if
(i,7) € €, and A;, = —1if (j,i) € &; otherwise, A;; = 0.
Extracting only the 1 and —1 entries, we can write A =
At — A, where A;Z = 1 if and only if A;; = 1, and
A = lifandonly if A;;, = —1[13], and allows us to define
the undirected incidence matrix |A| as |A] .= AT + A~. A
cycle matrix C' € RI€1X"e has full column rank and satisfies
AC =0, where n. = |€] — (n+m — 1) [22].

In a transmission systems without PSTs, the physical
branch models are symmetric with respect to changes in the
current direction, resulting in a symmetric admittance matrix
Y [23], and it suffices to model the circuit as a weighted
digraph where each edge has one complex weight [24].
However, PSTs create asymmetries in Y, and we require a
slightly more complex bidirectional digraph structure which
assign different edge weights to each direction. A bidirected
graph is a digraph G, = (N,&,) such that (7,5) € &
if and only if (j,4) € &, [16]. In transmission systems,
a branch is a singular physical object (transmission line
and/or transformer), so we use the symbol e; to denote both
directions of a branch, i.e., {(4,7), (j,i)} rather than just
(i,7) like in a digraph.? Exactly one of the two elements
{(4,7), (4,4)} is termed the “forward” edge and the other
is the “backward” edge, and we may partition &, to be
two disjoint sets &, & representing the set of forward and
backward edges. Similar to the weight function of a digraph
G, there are the “forward” and “backward” weight functions
W+, W~ mapping 8; &, to (0,00), respectively. For a
branch ex, we denote the k-th “forward” edge weight by

= W*((i,7)), and the k-th “backward” edge weight
by w, = W7((4,7)); these weights can be collected into
vectors wT,w™ > O respectively. With this definition, every
bidirected graph Gy, induces a digraph G, whose edge set
is 5{}' and weight function is W+. We say Gy, is simple
and weakly connected if G is simple and weakly connected.
Throughout, we let A and C' denote the incidence and cycle
matrices of this induced forward-edge-only digraph G [25].

A novel graph matrix that describes the structure of G,
while accounting for the forward and backward edge weights

2In order to not double-count, we still use || to denote the number of
branches in the system.
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Fig. 1. Bidirected graph model of a transmission system; forward and
backward directions are marked in red and black, respectively.

wt, w™ is the asymmetrically-weighted (AW) incidence ma-
trix denoted by I', which is defined element-wise as

wi if (i,) € &F
—w, if (i,5) € & (D
0 otherwise.

Lo =

One can quickly establish that T' = A*[w™] — A7 [w™].
Similar to the construction of undirected incidence matrix
|A|, the undirected AW incidence matrix is || = AT [w™]+
A~ [w™]. The following lemma forms a key step in the proof
of Lemma 2 in Section III-B.

Lemma 1. Suppose that Gy, is simple and weakly connected.
Given w™,w™ > 0, if there exists a nonzero x € R" such
that TTx = 0,,,, then either x > 0 or z < 0.

Proof. See [19, Lemma 2.1] for the proof. O

B. Transmission System Power Flow Modelling

We model a balanced transmission network at steady state
as a simple, weakly connected bidirected graph discussed
previously. The node set A/ models the buses, where N =
{1,...,n} is the set of load (PQ) buses, Ng = {n+1,...,n+
m} is the set of generator (PV) buses and N' = N, UNg.
The edge set &, models the branches. Figure 1 demonstrates
an example. Each bus 7 € N is associated with four physical
quantities of interest: voltage magnitude V;, phase angle 6;,
real power injection P;, and reactive power injection ;. For
load buses, P;, Q); are known and V;, #; are unknown. For
generator buses, P;, V; are known and @);,; are unknown.
We can vectorize the quantities associated with each bus
and partition the vectors according to the N7, N subsets as
P= COl(PL, Pg), Q = COI(QL, QG), and V = CO](VL, Vg),
where P, Q1,, Vg are known, and ()¢, V1, and 6 are unknown.
In particular, the goal of the power flow study is to solve for
voltage magnitudes V7, and phases 6.

Each branch is modelled with a PST (located at the side
of bus i if (4,7) € &) connected to a II-model transmission
line [23, Figure 3.1]. The transmission line has a series
admittance y = g — jb, where g < 0 is the conductance and
b > 0 is the susceptance, and a shunt susceptance b.. The
transformer has a complex turns ratio 7 = ¢ exp(jfs) where
t, O respectively represent the tap ratio and phase shift. The
conductance and susceptance matrices are denoted by G and
B, respectively, such that Y = G + jB. When there is at

3In this study we do not consider generator reactive power limits; see [1,
Example 6.11] for further information on this case.



least one PST in the system, i.e., a transformer with nonzero
fs, both G and B become asymmetric. We partition the B
matrix based on the N, Ng subsets as

B [ Brr | Bre ]
Bgr | Bee |’
Assumption 1. The sub-matrix By, is strictly diagonally
dominant. If bus ¢ is connected to bus j, then B;; > 0.

Strict diagonal dominance implies that By, is invertible
[26, Theorem 6.1.10], and physically means that capacitive
shunt elements do not overcompensate the inductive network
[13, Assumption 2.2]. The off-diagonal elements that corre-
spond to network branches being positive requires that as
the angle 05 of the PST increases, the corresponding branch
R/X ratio must be sufficiently small such that b/g > tan 6,
[19, Assumption 2.2]. Together, Assumption 1 also implies
that —BZ£ is a nonnegative matrix [27, Theorem 2.3 Nsg].

III. THE EXTENDED FIXED-POINT POWER FLOW
ALGORITHM

A. A Novel Vectorization of the Power Flow Equations

Our development begins from the standard power flow
equations [1] with the DSB model [17]:

n+m

H = ‘/7 z ‘/](Glj COS Yjj + BU singaij), xS N (23)

j=1
n+m

Q;=V; Z V}(GU singoij — Bij COS(pij), xS NL (2b)

j=1

where ¢;; is the branch-wise phase difference 6; — 60;. In
a DSB model, the nodal real power injection P; = P, +
a; Py is the sum of the known injection P, and a portion
of the unknown slack power Ps. The known constants o
are called participation factors, such that a; > 0 for all the
generator buses in the distributed slack bus subset of Ng
and 0 otherwise, subject to Zl a; = 1.

The goal of this subsection is to vectorize (2), which will
involve a change of variables. We first define the open-circuit
load voltage Vi € R" as V} = —BZiBLng, which is
fixed since By, Brg and Vg are known, and one can show
that V7 > 0 [13]. Using this quantity and the generator

voltage magnitudes Vg, we let V° = col(V7,Vs), and
define the normalized load voltage as
vi=[VP]7'VL € R, (3)

and extend this normalization scheme for all bus voltage
magnitudes V;’s as g(v) € R™™™, where

v

o) = VIV = || = vl @

Definition 1 (Branch stiffness matrices). Given V° and the
matrices G and B, the branch stiffness matrices are the
following diagonal matrices

D¢ = [VPVyPGy]
Df; = [V°V} By

Dg = [VPVPGyil
Dy = [VSVy B

(i.5)e&t (1,9)€&;,

(i,5)€EF (i,5)€E,

These matrices are extensions of those defined in [13];
the diagonal elements form the forward and backward edge
weights in our bidirected graph model of the transmission
system. Consequently, following Section II-A, we define the
following asymmetrically weighted incidence matrices as

I'p=A"D}L - A Dy |I'pl=ATDL+ A Dj

(5
I'g=ATDL—-A"D; |Ig|=A"Df+ A Dg ©)

Lastly, we define the following nonlinear map [13]

h(v) = (A1) Tg()| (A7) (), ©)

which transforms the nodal normalized voltage magnitudes
g(v) to branch-wise normalized voltage magnitude products
h(v). One can easily verify that the diagonal elements of
DE[h(v)], Dg[h(v)] are the V;V;B;j, ViV;Bj; terms in (2),
respectively, and similarly for DZ[h(v)], Dg[h(v)]. These
elements are associated with the branches, and multiplication
by matrices in (5) maps them into the nodal quantities
captured by the summation in (2).

We are now ready to vectorize the power flow equations
(2). We begin with the active power flow equation (2a), and
expand its right-hand side to be

V2Gii+ Y ViViGijcos iy + Y ViViBijsingij. (1)
J#i J#i

For the first term in (7), we extract the diagonal entries of
G into the diagonal matrix [G'y;]. Applying (4), we vectorize
the V;2G,; terms for each bus by collecting them into the
vector [V°][g(v)][Gi:][V°]g(v). Using the incidence matrix
A, we vectorize the phase differences ;; in (7) as AT#, and
we define the following change of variable

Y :=sin(AT0) = cos(AT0) = /1| — [Y]Y. (8

Applying the asymmetrically weighted incidence matrices in
(5), we can verify that

P = [V°][g(v)|[Gul[VZ]g(v) + [T |[h(v)]
+ T'p[h(v)]Y

is the vectorization of (2a) by expanding right-hand side.
As mentioned at the beginning of this section, we can write
the nodal power injection as P = P + P,a. In power flow
computations with a single slack bus, we solve for n +m —
1 phase angles and n load voltage magnitudes using 2n +
m — 1 power flow equations since the slack bus with fixed
voltage is chosen to compensate for the unknown P and
its corresponding active power flow equation is removed.
With the DSB model, a slightly more nuanced procedure
is required to eliminate this degree of freedom. To this end,
since > «a; = 1, we can construct a full column rank matrix
R € R(vtm)x(ntm=1) guch that RTa = 0. Left-multiplying
(9) by RT, we eliminate P, and obtain

RTP = RT([V°][g(v)][Ga][V°]g(v)

+ |Tallh(v)]y/11e) — [¥]¥ + Talh(v)]), ()

g — [y



which is now a system of n + m — 1 active power flow
equations. This reduction is a generalization of the standard
single-slack-bus elimination procedure for power flow stud-
ies [19, Chapter 3.1]. Once 1 and v are known, P can be
uniquely recovered. Denoting the right-hand side of (2a) by
P (3, v), since >, a; = 1Tar = 1, from (2a) we have

Paa=P—-P(v) = P.=1T(P-P(%,0)).

We now proceed to vectorize the n reactive power flow
equations (2b) corresponding to @)1, € R", the known load
reactive power injections. We extract the n x n submatrix
of [B;;], and the top n x |€| submatrices of I'g, |'gl, and
denote them with the additional -7, subscript. We may then
write the vectorized reactive power flow equation as

Qr = — [VEIPI[BiulL[VE]v + Do, [h(v)]d

— T, [[h()]\/11g] — W]

Finally, we define the invertible n X n nodal stiffness matrix

S = 1 [VZ1BLLlVEl,

(10)

and by [13, Lemma A.3], the vectorized reactive power flow
equation (10) is equivalent to

Qu = 4[v]S(1, = v) + L, [h(v)w
+ 105, ()] (Lie = /L) — 1) -

B. Fixed-Point Reformulation of Power Flow Equations

(11

To derive the proposed algorithm, we will manipulate the
vectorized power flow equations (9), (11) into a fixed-point
form. We begin with (9), and define

MB — RTFB c R(n+m71)xlg‘7

which can be interpreted as a “reduced” version of the
AW incidence matrix I'g. The following lemma is a key
result used to show the equivalence between the fixed-point
reformulation and the standard power flow equations (2).

Lemma 2. The matrix Mp has full row rank.

Proof. We equivalently prove that M} has a trivial kernel.
By contradiction, assume that there exists a nonzero =z €
ker M. Then either

1) =z € ker R, or
2) there exists some y = Rz such that y € ker 1"}2,.

By construction, R has full column rank, so case 1) cannot
occur. For case 2), suppose that such y exists and is nonzero.
Denote the k-th column of I'g by 7, then T'Ly = 0 if and
only if (ry,y) =0 for all k =1, ...,|&|. By the construction
of the branch stiffness matrices Dg, Dy and Assumption 1,
for each k € {1,...,|€]}, r contains exactly two nonzero
elements at wy ; = Viij"Bij and wy; = —V,i"Vjiji, SO
I'Ly = 0 if and only if (ry,y) = V2V (Bijyi — Bjiys) =
0 for all k = 1,...,[€|. However, since V%,V > 0 and
B;j, Bj; > 0, y;,y; must be both positive, both negative,
or both zero. Lemma 1 implies that y > 0 or y < O, so
a; > 0 implies that y"aw # 0 always holds. Finally, by the

construction of R, y"a # 0 implies that y ¢ im R, i.e., there
does not exist a nonzero x such that y = Rx € ker ' and
case 2) cannot hold, which completes the proof. O

Let K be a matrix whose columns form a basis of ker Mg,
so MpK = 0. By the rank-nullity theorem and Lemma 2,
K must have n, linearly independent columns. In addition,
Lemma 2 implies that matrix Mg has a right inverse denoted
by Mg, where M BM;; = I,,+m—1. Finally, notice that (9)
is linear in 1) € R/l in the last term if we know v and the
square root term. Since v > 0, [h(v)]~! exists, so we can
rearrange (9) to obtain

¥ = fo(v,z)
= [h()] T MERT (P~ [Volg(0)][GallVlg(v)

— L6l lh(@))y/Lie = 1) + ()] Ko, (12)

where the term [h(v)]~! K. characterizes the homogeneous
part of the solution for i) with an additional variable z. €
R™. While (12) results in the voltage phase solution in
terms of ), we ultimately want the bus voltage phase
6 € R To recover @ from 1, note that for any k €
Z, sin(AT + 27k) = 1 and CTk has integer elements
[13]. Recalling the property that AC' = 0, we must have
CTarcsin(y) = CT (AT6 + 27k) = 27C "k, which results
in the “loop-flow” constraint

CTarcsin(t)) mod 2 = 0,,_. (13)

Next, we manipulate the reactive power flow equation (11)
into a fixed-point form by left-multiplying both sides of the
equation by 15 ![v] ! to obtain

v = folb,v) =1~ 15701 (@1 ~ T, h)w)
T, | (@)] (Liey = \/Lje = [w]8) ). (14)

We summarize our above development in the following
theorem, which is the main theoretical result of this paper.

Theorem 1 (FPPF). Consider the normalized load voltage
magnitudes v € R™ defined in (3), a vector x. € R™ and
the change of variable 1) := sin(A'0) defined in (8). The
following statements are equivalent:
(i) (0, V%) solves the vectorized power flow equations (9),
(11);
(i) (¢, v,x.) satisfy the fixed point equations (12), (14),
and the loop flow constraint (13).

When there are no network losses and PSTs in the system,
Theorem 1 recovers [13, Theorem 3.5]. If the system is
radial, i.e., |€|] = n+m — 1, then the loop flow constraint
(13) and the homogeneous solution in (12) are not required
since the kernel of the incidence matrix A is trivial [20], so
n. = 0 and we no longer need the variable x..

C. The Extended FPPF Algorithm

Based on Theorem 1, we propose the following extended
fixed-point power flow algorithm, which will be tested ex-
tensively in Section V.



Algorithm 1 The extended fixed-point power flow algorithm
Require: Power flow data, tolerance €, max. iterations L
P — Vi JVE , pF < sin(AT0) , ¥ 0,
k<+0
Compute power balance mismatch with % v*
while mismatch > € and £ < L do
vk+1 A fQ(wkv Uk7 xlg)
if n. > 0 then
xF*+1 + Newton step on CTarcsin(y*) = 0,,,
"/Jiﬁ_l — fP(l/ka 1) Ic€+1)
Compute power balance mismatch with /**1 v
k+—Fk+1
return (pF+1 pktl

k+1

, power balance mismatch

The power flow data consist of the matrices and vectors
related to the network topology, admittance matrix, loading
profiles and other constants used in the reformulation; see
[19, Section 6.1] for the discussion on their construction.
The Newton step to evaluate zF+1 i

— (75"
where J¥ = CT (Iig) — [¢*]2) "2 [h(v"+1)] 71K s the

Jacobian matrix of the constraint evaluated at z/zk; note that
J¥ is computed using the most up-to-date v**1.

Remark 1 (Update order). In the spirit of [28], we use the
most updated version of a variable to evaluate the update of
the other variables. For the numerical simulations in Section
v, We follow a “v-z.-¢)” order: we first compute v*+1 with
P v* 2k, then compute 251 with v**! instead of v*, and
finally wk“ with both v*+1 and x*+1. Other orders are also
possible; see [19, Section 6.2.1] for a detailed discussion on
the effect of different update orders. |

gkt = gk CTarcsin(@/}k),

IV. ANALYSIS OF ALGORITHM FOR Tw0O-BUS SYSTEM

As preliminary theoretical analysis of our approach, we
conduct a convergence analysis of the FPPF algorithm on
the two-bus power flow problem [29]. Since a fixed-point
algorithm like ours naturally leads to a contraction analysis,
we re-frame the problem as one of constructing a compact
invariant set on which the FPPF algorithm is a contraction.

A. Problem Setup

Consider the two-bus model in Figure 2, where bus 2 is
the only PV/slack bus, bus 1 is the PQ bus, and the branch
parameters ¢, 65, g, b, b, are as described in Section II-B.

Vo = 1540 Vi =V146,
O—+
I I
bus 2 bus 1
Fig. 2. Two bus system

Let t :=t — 1, we define the following system constants
~__ gcosty —bsinbs - bcos s + g sin 6 b E

t+1 P t+1 2

Next, let p == g/ b,p = g/ b be two constants that quantify
the system R/X ratio; realistically, p > 0, and Assumption
1 implies p > 0. We define real and reactive power loading
margins as

P N |

YpP - 6‘/10‘/20 Q- gvlo‘/; )
where the open-circuit load voltage evaluates to be V° =
(b/b)V,. Making the change of variable # = v — 1 and
defining the state vector & := (¢, ), we can write the FPPF
algorithm update rule as

+pler+1) = py/1 -3
Ehi1 = f”;“ (15)
0 - JIm vt -1
Tr+ 1 Pr41 + ¢k+1
Fu (gk)
The p subscript in (15) refers to the vector of “perturbations”
p=1lg be t GS]T.

If © = O, then the system is lossless, the transformer is
absent, and the branch is simply a series reactance given by
1/b; in this case, p = p = 0. We call this case the “nominal
system” and denote the corresponding mapping that defines
the update rule by Fp, otherwise we call it the “full system”.
The ultimate goal of the ensuing analysis is to (i) con-
struct a F),-invariant set for (15), and (ii) provide sufficient
conditions that [}, is a contraction on this set; this will
guarantee convergence of (15) to a (locally) unique solution.
Our approach will be to develop results for Fp, and then
extend these results to F), for sufficiently small ;4 values.

B. Nominal System Results

When p = 0, by construction b=b=1"b> 0,g=g9g=
0, and V° = V3. We denote the reduced constants yp, 7
by vp,7q, respectively. The assumption below provides a
crucial characterization of permissible loading margins.

Assumption 2. 0 < 473 — 4vg < 1.

Assumption 2 is a standing assumption for the rest of this
section. It states that the load is inductive, and restricts the
amount of loading in the system*. Now, define the compact

and convex set
A(ky, k2) = {&: [Y] < by, || < ko,

which is a closed box in R? centered at the origin, parame-
terized by some k1, ko > 0 to be determined.

Theorem 2. Let k| := —vp/(1 — k5 ), where
1 2
1
3T\ g + Q — V-

It is physically valid for vp, 7@ to be both zero, but we are interested
in the case of a strictly positive active power injection at the generator bus.

(16)

L\DM—*




The set A(k1, ko) is Fo-invariant for any ki € [k{,1] and
ko € [ky k3]
Proof. See [19, Section 5.2.1] for the proof. O
We are especially interested in the smallest Fp-invariant
set denoted by A~ := A(k;,k5 ). In fact, one can verify
by direct substitution that £ = [k] — kg ]T is the desired
high-voltage solution, and it exists on the boundary of A~.
Theorem 3. Fy is a contraction on A~ in the {5, norm.

Proof. See [19, Section 5.2.2] for the proof. O

The above results implicitly recover the calculations in
[29, Chapter 2], along with the existence/uniqueness result
of [14] when restricted to the two-bus case.

C. Full System Analysis
We now return to the update rule (15) for p # 0. First, note
that we can write yp = k,vp and 5q = k,7q, where ky, ==
(bb)/b%. Let €1 = €1(p,vp,vq) and €2 = ea(u,vp, Q) be
nonnegative constants to be determined, and define the set
Ac(k1, ko) = A(k1 + €1, k2 + €2),

then we can define A = A (k] + €1, k5 + €2). Intuitively,
this set is “slightly expanded” from A~ when p # 0. We
now derive a condition on € := (e1,€2) such that AZ is
F,,-invariant, which is true if and only if for every &, € A_,

_ku’YP ~
= 1) — py/1 — 43
[r41] ‘xk—i-l +p(rp+1)—p (U
kuvg

|Tk+1| = ‘m-&-l ﬁ¢k+1+m1‘ < ky + e

By triangle inequality and the fact that || < k5, the |¢p41]
term in first inequality can be upper bounded by

Sk;+€1,

_kp’YP — ~
— e 4 p(1+ky +e) +p.
1-— k; — €2 P ( 2 2) P
Adding and subtracting a k; = ~vp/(1 — ky ) in the

expression above, if € satisfies

—kuvp 7P _ _
+ +p(14+k; +e)+p<e, (17a
1—ky —es  1—ky pllthy +e)+p<a, A7)

then any [v;| < k + €1 implies |[¢x41] < k] + €. Note
that we also need ez < 1 — k, to prevent division by zero
in (17a). Similarly, the |xg41| term in the second inequality
can be upper bounded by

-k
IO 4Gk ta) 1 (k ta)’ L
1-— kQ — €2
Adding and subtracting a k, above, if € satisfies
*ku'VQ _ I
— b (1—ky)+p(ky +e
1—ky — e ( 2 ) P( 1 1)

(17b)

— 1= (k7 +a)* <e,

then any |zy| < k5 +e2 implies |xg41| < k5 +€2. Note that
we also require ¢; < 1 — k; for the square root term to be

real-valued. Since F), is a composition of C" functions and
is thus C! on A_, by Brouwer’s fixed-point theorem [30,
Theorem 52], the bounding steps above imply the existence
of a solution in the set .A_, stated below.

Proposition 1. If there exists an € such that the inequalities
in (17) hold, then the set A_ is F),-invariant and the two-bus
system possesses a power flow solution in the set A_.

As the inequalities (17) do not appear to admit straight-
forward analytical solutions, we will proceed via continuity
and argue that (17) are feasible in € for sufficiently small .
Of course, any e that satisfies (17) at the boundary trivially
satisfies the inequalities themselves; we proceed by focusing
on (17) with equality sign. Rearranging (17) and moving all
terms to one side, we define the mapping E : D, x R* — R2,
where D, C [0,1 —k;) x [0,1 — k5 ) C R? is an open set
and E = (E1, E5) is defined by

—kuvp P _
Ei(e,p) = - +p(l1+k
1€, 1) s g p(L+ky +e)

+ﬁ*61:0,

—k _ Y
Es(e,p) = W9 L (1—ky) +p(ky +e)

1—]4)2_—62

—\/1—(kf+61)2—6220.

That is, given a p, an e that satisfies E(e, u) = O satisfies
(17) with equality sign. Using straightforward algebra and
writing ki, k5 in terms of the loading margins yp, g, we
can verify that when p = 0, we can simply choose ¢ = 0
to satisfy F(e,0) = 0 [19, Proposition 5.1]. Using this fact,
we can certify that a general local solution to E(e, u) = 0
exists when p # 0, as summarized below.

Proposition 2. There exists a nonempty open subset, U =
U. xU, C D xR* and a unique C* function f : U, — R?,
such that (02,04) € U, f(04) = Oz and E(f(u), ) = 02
Sfor all € U,,. That is, for each sufficiently small p, there
exists a unique € = f(u) satisfying (17) with equality sign;
consequently, the set A contains a power flow solution of
the two-bus system.

The proof relies on the implicit function theorem [31],
which we can apply since E is a composition of C*! functions
and is thus C'. The existence of a solution then follows from
Proposition 1. The detailed calculations can be found in [19,
Section 5.3.1].

Similar to the result in Theorem 3, the proposition below
states that F), is further a contraction on A_, so the FPPF
algorithm (15) will converge linearly to the unique solution
from any initial condition in A_ .

Proposition 3. For each sufficiently small i, there exists €
such that A_ is F,-invariant and F), is a contraction on A_
in the (., norm.

The proof relies on the fact that F), is a C 1 function, so we
can compute the {,, norm of its Jacobian matrix evaluated
at any &, € A_. Thus, by Theorem 3, we can argue by
continuity that a sufficiently small ;. implies that F), is a



TABLE 1
ITERATIONS REQUIRED TO CONVERGE

Base loading High loading

Test case NR FDLF FPPF NR FDLF FPPF
9 bus system 4 6 8 5 29 22
30 bus system 3 11 18 6 28 22
PEGASE 89 4 9 10 6 26 23
118 bus system 4 11 11 6 33 25
300 bus system 5 15 33 6 33 33
PEGASE 1354 5 11 42 5 25 42
PEGASE 2869 5 11 42 6 29 42
PEGASE 9241 6 17 46 6 23 47

contraction on A_ in the ¢, norm. See [19, Section 5.3.2]
for the detailed derivations. In sum, the above results show
that the extended FPPF inherits the convergence properties
of the original lossless FPPF [13], at least for sufficiently
small losses and transformer tap ratios. Improvement and
extension of this analysis to multi-bus systems is a topic of
ongoing work.

V. NUMERICAL TESTS

We now illustrate the effectiveness of Algorithm 1 using
a selection of MATPOWER test cases, and compare its be-
haviour to that of the conventional NR and FDLF methods.
Due to space limitations we focus on only two aspects of
algorithm performance: (i) iterations required for conver-
gence, and (ii) sensitivity to the initial bus voltage values.
For convergence criteria, we set the maximum iteration count
to be 100, and the power balance mismatch tolerance to be
1028 p.u. for all three algorithms. We use the default single-
slack bus model in these test cases since NR and FDLF are
not implemented to accommodate the DSB model in [32].

Remark 2 (R/X Ratios). During testing, it was observed
that Algorithm 1 can fail in test cases with unrealistically
high branch R/X ratios, which do indeed occur for a small
number of branches in certain MATPOWER test cases. The
FDLF and — to a lesser extent — NR algorithms also
struggle in cases with high R/X ratios. As practical trans-
mission networks typically have low branch R/X ratios’,
in the tests that follow we cap all branch R/X ratios at
0.8, which involves modifying less than 1% of the branches
in each case considered. This modification ensures that the
considered cases are convergent for all algorithms. (]

A. Iterations Required for Convergence

Here, we compare the number of iterations each algorithm
required to converge using the “flat-start” initial condition
(V, =1, and 8 = 0,). We present the simulation results
based on two loading scenarios: (i) base loading, which
is the default values on the test systems, and (ii) high
loading, which is computed by continuation power flow
(CPF). For the latter scenario, the base power generation
and demand are set to be 90% of the way to the power flow
insolvability boundary, yielding highly stressed test systems.

5The mean R/X ratios for the systems in Table I are approximately
0.11,0.37,0.14,0.25,0.19,0.15,0.15, and 0.19.
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Fig. 3. Mismatch tracjectories of FPPF and FDLF on the PEGASE 2869

system with high loading.

TABLE II
ALGORITHM SUCCESS RATE (%), 118 BUS SYSTEM

Base loading High loading

é NR FDLF FPPF NR FDLF FPPF
0.1 100.0  100.0 100.0 100.0  100.0 100.0
0.2 98.8  100.0 100.0 98.8  100.0 100.0
0.3 65.6  100.0 100.0 66.7  100.0  100.0
0.4 6.9 100.0 100.0 7.7  100.0 100.0
0.5 0.0 100.0 100.0 0.0 100.0 100.0
0.9 0.0  100.0 100.0 0.0 98.7  100.0
0.95 0.0 100.0 100.0 0.0 89.0 98.9

Table I shows the number of iterations each algorithm takes
to converge. When NR converges successfully, it consistently
outperforms both FDLF and FPPF due to its quadratic
convergence rate. The iterations required by FDLF and FPPF
are comparable, though FDLF is more susceptible to changes
in loading level on large systems (300 buses or more).
However, both FPPF and FLDF exhibit linear convergence
rates, as shown in Figure 3.

B. Sensitivity to Initialization

Next, we test each algorithm’s sensitivity to bus voltage
initialization. For a constant § € (0,1), we generate 1000
random samples of initial voltage magnitudes VLUfi]nit € R",
where the superscript [k] represents the k-th sample. Each
element of VL[’fi]nit is sampled from a uniform distribution on
the interval [1 — 6,1 4 4], and we set the initial load bus
voltage magnitude V = V¥ . for k = 1,...,1000 while
keeping 6 = 0, pn,. '

We first compute the known high voltage solution using
NR with flat-start voltages, then compare this solution against
the ones returned by NR, FDLF and FPPF using the random
voltage initializations. If the solution returned does not match
the known solution up to a small tolerance, or if the algorithm
fails to converge, then the sample is marked as unsuccessful,
otherwise it is successful. Table II demonstrates each algo-
rithm’s success rate for different 6 on the 118 bus system.

Evidently, NR is the least robust against the random volt-
age magnitude initialization since its success rate drastically
decreases as ¢ increases. This observation matches the well-
known fact that the convergence of NR is extremely sensitive



to the initial condition selection [6]. FDLF performs almost
as well as FPPF until § gets close to 1 in the high loading
scenario, where a small number of samples fail to converge.

When the FPPF converges, it always converges to the
known high voltage solution, and is the most robust out of
all three algorithms under this random initialization scheme.
This may be a valuable feature in power flow problems where
there is considerable uncertainty about the location of the
solution. Alternatively, the FPPF may be valuable as a warm-
start tool for a NR-based solver. Curiously, when the FPPF
algorithm fails, it is because during the iterations, the implicit
constraint that ||¢)||. < 1 in (12) is violated; this constraint
keeps v real-valued. A rigorous procedure to ensure that this
constraint remains satisfied during iterations is a subject of
ongoing work.

VI. CONCLUSION

We have derived and tested a new algorithm for the
AC power flow problem by extending the lossless FPPF
algorithm of [13] to accommodate network loss, phase-
shifting transformers, and the distributed slack bus model.
As a first step in the theoretical analysis of the algorithm,
we studied it on the two-bus system and presented sufficient
conditions for the algorithm to converge to the desired
solution. We also tested the numerical performance of the
proposed FPPF algorithm on standard small- and large-scale
test cases. Avenues of future work include improving the al-
gorithm’s robustness against branches with high R/X ratios
(potentially by modifying the fixed-point reformulation) and
extending the convergence conditions of the proposed FPPF
algorithm on the two-bus system to general systems.
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