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Abstract—Reactive power sharing and voltage containment
within limits for inverter-based resources (IBRs) are two important,
yet coupled objectives in ac networks. In this article, we propose
a distributed control technique to simultaneously achieve these
objectives. Our controller consists of two components: a purely
local nonlinear integral controller which adjusts the IBR voltage
setpoint, and a distributed primal-dual optimizer that coordinates
reactive power sharing between the IBRs. The controller prioritizes
the voltage containment objective over reactive power sharing at
all points in time; excluding the IBRs with saturated voltages, it
provides reactive power sharing among all the IBRs. Considering
the voltage saturation and the coupling between voltage and angle
dynamics, a formal closed-loop stability analysis based on singular
perturbation theory is provided, yielding practical tuning guidance
for the overall control system. To validate the effectiveness of
the proposed controller for different case studies, we apply it
to a low-voltage microgrid and a microgrid adapted from the
CIGRE medium-voltage network benchmark, both simulated in
the MATLAB/Simulink environment.

Index Terms—Distributed optimization, inverter-based resources,
reactive power sharing, voltage stability.

I. INTRODUCTION

POWER systems are moving toward the use of more re-
newable energy, leading to an increasing share of inverter-

based resources (IBRs) in electric networks [1]. Together with in-
creased power supply-demand uncertainties, this shift introduces
new operation and control challenges, which in turn require new
control solutions [1], [2]. Among others, proportional active
and reactive power sharing among dispatchable IBRs are two
important control objectives. Moreover, IBRs that are non-
dispatchable in terms of active power, e.g., wind and solar units,
may also participate in reactive power sharing [2], [3].

Since frequency is a globally-common variable, it can be
exploited to facilitate active power sharing among the IBRs [4].
Voltage (magnitude), however, is not globally unique and differs
from bus to bus depending on the line impedance values; there-
fore, it cannot be used to enforce global reactive power sharing
[2], [3]. Reactive power flow depends most strongly on the bus
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voltages and their differences, in inductive networks in particular.
This dependency causes an inherent trade-off between precise
reactive power sharing and individual bus voltage regulation,
motivating a significant volume of research work on this topic.
Different centralized, decentralized, and distributed voltage and
reactive power control techniques have been proposed for IBRs.
The distributed techniques have attracted significant attention in
power system control, especially for large-scale integration of
IBRs [3]. Compared to their centralized counterparts, they rely
on the exchange of information only between neighboring IBRs.
In addition, they show better performance and accuracy than
decentralized solutions, such as the droop control technique [5].
Therefore, it seems that the real-time distributed techniques can
be a viable strategy in many situations [3], [6].

A. Literature Review and Research Gaps

Distributed voltage and reactive power sharing control of IBRs
has been studied in many papers. Some works have focused
solely on the voltage regulation task and have not considered
the reactive power sharing problem. The only objective in these
papers is to regulate the voltages of the IBRs to a setpoint. This
setpoint may be constant, or may, be updated by an external
controller. For example, in [7]–[12] and some references therein,
assuming that only a few IBRs can directly access the voltage
setpoint, a leader-follower consensus algorithm is used for the
IBRs to follow this setpoint which is considered a virtual leader.

Conversely, in other lines of research, reactive power sharing
is considered as the main objective, and the voltage control
requirements are either neglected or discussed only briefly. For
example, in [13]–[19], distributed consensus algorithms are used
to ensure a proportional reactive power sharing among the IBRs,
regardless of the impacts of the controllers on the voltages.
However, voltage regulation and reactive power sharing are both
important, yet coupled and conflicting; therefore, they should be
considered simultaneously.

Simultaneous reactive power sharing and voltage regulation
has also been studied. In [20], a leader-follower consensus-
based control is proposed for reactive power sharing and voltage
tracking problems, where the voltage setpoint is given by a
critical bus voltage regulator. Different versions of this scheme
are studied and proposed in [21]–[24]. A somewhat similar
controller is proposed in [25], where unlike in [20], [22]–[24]
it is assumed that all the IBRs can directly access the voltage
setpoint. These controllers, however, use a single integrator for
achieving both the objectives; therefore, the accuracy of reactive
power sharing and voltage regulation highly depends on the
choice of control gains. The existence of the trade-off between
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the two objectives is discussed in [24], [25] as well. In [25],
tuning of the control gains is suggested as a possible solution
for dealing with this trade-off, while in [24], the issue is left as
an open problem.

Another combination of control objectives is precise reactive
power sharing and average voltage regulation [26]–[35]. In this
approach, instead of the individual voltages of the IBRs, their
estimated average is regulated at a setpoint. To this end, in [26]–
[28], the leader-follower consensus algorithm is used for average
voltage regulation. Based on the leader-less consensus algorithm,
a controller is proposed in [29] where the voltage setpoint of
each IBR is corrected by two terms providing average voltage
regulation and accurate reactive power sharing, separately. Simi-
larly, two other approaches are proposed in [30], [31], but power
sharing is achieved by adjusting the droop coefficient [30] or by
changing the virtual impedance [31]. To improve the voltage
profile and accuracy under input disturbances, some modified
controllers are also proposed in [32]–[35].

While the above-mentioned control schemes can provide aver-
age voltage regulation, they may result in large deviations in the
individual voltages of the IBRs, violating the limits provided
by grid standards, e.g., IEEE 1547 [36]. Therefore, in many
applications, constraining the individual voltages within limits
(voltage containment) seems to be a more practical objective
[34], [35], [37], [38]. In [34], [37], the problem is formulated
as an optimization problem, and some controllers based on
the primal-dual gradient method are developed. However, these
methods require knowledge of the grid model and exchange a
relatively large amount of information among the IBRs. In [38],
along with a consensus-based control for reactive power sharing,
a leader-follower voltage containment controller is proposed to
force the voltages into a safe band imposed by some minimum
and maximum “leader” IBRs. However, the accuracy of reactive
power sharing and voltage containment in this method relies on
the selection of the right leaders; i.e., one must already know
which IBRs take voltages closer to the minimum and maximum
limits and select them as the leader IBRs. In another attempt to
bound the voltages, [35] introduces a voltage variance estimation
and control loop to the scheme of [29]. However, in this method,
one “special” IBR is left out of the reactive power sharing task
so that the other units can reach simultaneous accurate reactive
power sharing and bounded voltages.

Summarizing, we have observed the following research gaps.
The works in [7]–[19] have studied either regulation of the
individual IBR voltages or reactive power sharing, but not
both, while none of the papers in [7]–[33] have considered the
operational IBR voltage limits. The accuracy of reactive power
sharing and voltage regulation/containment under the proposed
controllers in [20]–[25], [34], [35], [37], [38], depends strongly
on the choice of control parameters such that if not properly
designed, even when steady-state reactive power sharing under
voltage limits is possible, these controllers may not provide
it. Finally, a rigorous study of stability and synchronization of
the power network considering the coupling between angle and
voltage dynamics is absent in the above works.

B. Contributions
To address the observed research gap, we propose a distributed

control scheme for IBRs to simultaneously achieve voltage

containment and reactive power sharing. The main contributions
made in this paper are as follows. C1) In our proposed method,
we make use of a distributed primal-dual optimizer to generate a
globally-unique setpoint to be tracked by a purely local nonlinear
integral controller that regulates the IBR’s reactive power and
tunes its voltage setpoint. This architecture allows maintaining
the user-defined voltage constraints, not only in steady state
but at all points in time while ensuring that the reactive power
demand is shared among the IBRs with a high accuracy. If the
above-described reactive power sharing is not possible due to
saturation of the voltages, then our controller excludes only the
IBRs with saturated voltages from the reactive power sharing
task and allows the other IBRs, which are operating away
from the voltage limits, to reach a high-accuracy reactive power
sharing; i.e., the controller prioritizes voltage containment over
reactive power sharing but does not punish all the IBRs. C2)
We analyze the system’s steady state using graph theory and
state its properties. Considering the coupling between voltage
and angle dynamics and the voltage saturation, we rigorously
study the stability of the system using the Lyapunov method
(as recommended in [2]). To this aim, we consider a timescale
separation between the dynamics of the primal-dual optimizer
and the voltage-angle dynamics, conduct a singular perturbation
analysis, and find the stability conditions. We also provide some
practical insights into the selection of the control parameters
based on the IEEE 1547 standard [36] and the stability analysis.
C3) To validate our findings, we adapt the proposed scheme to
two test systems, simulated in the MATLAB/Simulink environ-
ment. One of the systems is based on a subnetwork of the CIGRE
benchmark medium-voltage distribution network.

The rest of the paper is structured as follows. Section II con-
tains the system modeling and problem statement. In Section III,
we introduce our proposed control scheme. We conduct steady
state and stability analyses of the closed-loop system in Sec-
tion IV, where we also provide parameter selection guidelines.
In Section V, we present and discuss the simulation results for
different case studies. Finally, Section VI concludes the paper.

II. SYSTEM MODELING, POWER SHARING DEFINITION, AND
DROOP CONTROL BEHAVIOR

A. Inverter-based Electric Power Network

Under the hierarchical control policy [2], [3], the innermost
control loops of inverters are tasked with controlling the LC
filter’s inductor current and capacitor voltage by generating
proper switching signals (see Fig. 1). While different inner
loop designs have been proposed, all are designed to act very
fast, such that the subsystem denoted by red dashed lines in
Fig. 1 has a high bandwidth [3]; virtual impedance control
can also be embedded in this subsystem to provide additional
decoupling between active and reactive powers and improve
system performance [39]. For example, in our simulation case
studies in Section V, we use the cascaded control structure
described in [39] and references therein. We also assume that
the IBRs use the well-known droop control [39] or equivalently
virtual synchronous machine (VSM) control technique [40] as
their primary controller, which operates slowly compared with
the internal control loops.

In a multi-vendor power system, however, the detailed struc-
ture and dynamics of the fast internal controllers are not easily
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Fig. 1. An inverter-based resource (IBR), governed by the primary control in
(1). The high-bandwidth subsystem is denoted by dashed lines. The detailed
low-level control structure used in this paper can be found in, e.g., [39].

accessible. Therefore, for high-level control design and stability
studies, it is preferable to use a simplified generic model for
each primary-controlled IBR [41]–[43]. For the ith IBR we will
use the model

θ̇i = ωi = ωnom +Ωi (1a)
τΩΩ̇i = −Ωi −mω

i Pi/S
rated
i (1b)

Vi = V set
i = Vnom + vi (2a)

τv v̇i = −vi −mV
i Qi/S

rated
i (2b)

where θi and ωi are the phase angle and angular frequency
of the IBR, Vi and V set

i are the IBR voltage and its setpoint,
and ωnom and Vnom are the nominal frequency and voltage.
The state variables Ωi and vi are the frequency and voltage
deviations induced by droop (VSM) controllers in (1b) and
(2b), respectively. The constants τΩ and τv are the frequency
and voltage time constants, respectively. The constants mω

i and
mV

i are the IBR’s frequency and voltage droop coefficients,
respectively. The apparent power Srated

i is the rated capacity of
the IBR while Pi and Qi are respectively its active and reactive
power injections, which are related to θ = (θ1, . . . , θn) and
V = (V1, . . . , Vn) through the following power flow equations

Pi = fP
i (θ, V )=

∑n

j=1
ViVj

(
Gij cos(θij) +Bij sin(θij)

)
(3a)

Qi = fQ
i (θ, V )=

∑n

j=1
ViVj

(
Gij sin(θij)−Bij cos(θij)

)
(3b)

where θij = θi − θj is the phase difference between IBRs i
and j; Gij and Bij are the elements of the network’s reduced
conductance and susceptance matrices [44, Ch. 6.4].

B. Power Sharing Definition and Review of Droop Control

In this subsection, we define power sharing among IBRs and
review the steady-state behavior of droop control. As notation,
for any variable x, let x̄ denote its steady-state value.

Definition 1. The microgrid system (1)–(3) achieves reactive
power sharing if Q̄i/S

rated
i = Q̄j/S

rated
j = αQ for some αQ.

We define active power sharing similarly, using P instead of Q.

According to the droop control in (1b) and (2b) we have

P̄i/S
rated
i = −Ω̄i/m

ω
i , Q̄i/S

rated
i = −v̄i/m

V
i .

Since steady-state frequency is global, for every i and j we have
Ω̄i = Ω̄j . Thus, following the conventional droop control design
criteria [39], by selecting equal frequency droop coefficients for
the IBRs, i.e., mω

i = mω
j , we have P̄i/S

rated
i = P̄j/S

rated
j for

every i and j, i.e., the frequency droop controller (1b) enforces

proportional active power sharing. However, since v̄i = v̄j for
every i and j does not necessarily hold, selecting mV

i = mV
j

does not guarantee Q̄i/S
rated
i = Q̄j/S

rated
j ; i.e., the voltage

droop controller (2b) cannot enforce reactive power sharing in
the same way. In what follows, we propose a distributed control
scheme to provide reactive power sharing considering the IBRs
voltage limits.

III. PROPOSED CONTROLLER

In this section, we introduce our proposed controller. The
controller consists of two subsystems that will be introduced
separately: a) a nonlinear leaky integral controller for regulating
reactive power ratios of the IBRs and maintaining the voltage
limits, and b) a distributed optimizer for obtaining the optimal
setpoint for this integrator.

A. Integral Reactive Power Regulation Under Voltage Limits

Let V min
i and V max

i denote minimum and maximum the
desired operational voltage limits for IBR i, with average value
V ⋆
i = 1

2 (V
max
i + V min

i ) and maximum allowable deviation
∆i = 1

2 (V
max
i − V min

i ) from that average. In place of the
conventional voltage controller (2), we propose the nonlinear
integral controller

Vi = V set
i = V ⋆

i +∆i tanh(vi/∆i), (4a)
τv v̇i = V ⋆

i (λi −Qi/S
rated
i )− β∆i tanh(vi/∆i)− ρi(vi)vi,(4b)

where vi is the state variable of the integrator (4b) with time
constant τv , and where β > 0 is sufficiently small. The variable
λi is a setpoint for the utilization ratio Qi/S

rated
i , obtained by

the optimizer, which will be subsequently described in (8), in the
next subsection. The non-negative function ρi(vi) is a nonlinear
leakage coefficient, defined as

ρi(vi) =

{
|vi/∆i| − 3 if |vi| > 3∆i

0 otherwise.
(4c)

The main ideas behind the controller (4) are as follows.
• Since tanh is bounded between −1 and 1, (4a) ensures that
V min
i < Vi < V max

i at all points in time. In other words,
voltage containment is achieved by construction.1

• The first term in (4b) provides integral action for the utilization
ratio Qi/S

rated
i to track the provided setpoint λi. The (small)

term β∆i tanh(vi/∆i) provides damping, which will assist in
our subsequent stability analysis.

• The nonlinear gain ρi(vi) in (4c) prevents integrator wind-
up when |vi| > 3∆i. The particular choice of the constant
3 is because |tanh(±3)| ≈ 0.995 and tanh(vi/∆i) does
not change significantly for |vi| > 3∆i. In words, roughly
speaking, for |vi| > 3∆i the voltages are saturated with an
acceptable accuracy.

B. Distributed Optimization of the Integrator Setpoint λi

In (4b), λi acts as a setpoint for the utilization ratio Qi/S
rated
i .

By Definition 1, reactive power sharing will be achieved if the
equilibrium values λ̄i are equal, i.e., if λ̄i = λ̄j for all IBRs i
and j. We now discuss the optimal selection λ̄i for this setpoint
and introduce a distributed algorithm for its online computation.

1As we will see in the stability analysis, the use of a smooth hyperbolic tangent
instead of the standard saturation function, allows us to define a positive-definite
Lyapunov function and facilitates the stability analysis under voltage constraints.
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Following the above discussion, the optimal setpoint selection
λ̄i can be formulated via the following optimization problem

min
λ̄i

∑n

i=1

1
2

(
λ̄i − Q̄i/S

rated
i

)2
(5a)

subject to 0 = λ̄i − λ̄j , ∀i, j. (5b)

We will be seeking a distributed online solution to this
optimization problem. To this end, we assume that the IBRs can
exchange information over a communication network modeled
with an undirected (bidirectional) and connected communication
graph; see Appendix A for more info on graph theory. With aij
denoting the elements of the adjacency matrix and Ni the set of
neighbours of IBR i, the problem (5) is equivalent to

min
λ̄i

∑n

i=1

1
2

(
(λ̄i −

Q̄i

Srated
i

)2 + k
2

∑n

i,j=1
aij(λ̄i − λ̄j)

2
)
,(6a)

subject to z̄i =
∑

j∈Ni

aij(λ̄i − λ̄j) = 0, ∀i, (6b)

where k > 0. The constraint (6b) implies that λ̄i = λ̄j for all
i and j. We define the Lagrangian associated with the problem
(6) as

L(λ̄1, ζ̄1, . . . , λ̄n, ζ̄n) = C(λ̄1, . . . , λ̄n) +
∑n

i=1
ζ̄iz̄i,

where C(λ̄1, . . . , λ̄n) is the total cost function used in (6a) and ζ̄i
is the Lagrange multiplier associated with the constraint z̄i = 0.
The problem (6) is a quadratic minimization program with linear
constraints; hence, Slater’s condition holds, and KKT conditions
provide necessary and sufficient conditions for optimality [45].
In other words, λ̄i, ζ̄i, and z̄i are optimal if and only if they
satisfy the KKT conditions [45, Ch. 5.5]

0 = λ̄i − Q̄i

Srated
i

+
∑
j∈Ni

aij(ζ̄i − ζ̄j) + k
∑
j∈Ni

aij(λ̄i − λ̄j), (7a)

0 = z̄i =
∑

j∈Ni

aij(λ̄i − λ̄j). (7b)

The solution (λ̄i, ζ̄i) of (7) can be computed in a distributed
manner via the so-called primal-dual dynamics [46]

τpλ̇i =
Qi

Srated
i

− λi −
∑
j∈Ni

aij(ζi − ζj) + k
∑
j∈Ni

aij(λj − λi), (8a)

τdζ̇i =
∑

j∈Ni

aij(λi − λj), (8b)

where λi and ζi are now dynamic state variables which are ex-
changed between neighboring IBRs in real-time. The parameters
τp and τd are the primal and dual dynamics time constants, which
for our purposes are tunable gains.

To summarize the overall control architecture: the subsystem
(8) generates the setpoint λi to be tracked by the regulator (4b),
while the regulator (4b) generates the voltage setpoint (4a) that
is saturated within limits; (4b) also provides an anti-wind-up
function through the leakage term ρi(vi)vi when necessary. The
general scheme of the proposed controller is shown in Fig. 2.

IV. STEADY-STATE, STABILITY ANALYSIS, AND
CONTROLLER GAIN SELECTION

The closed-loop system consists of the angle dynamics (1),
the voltage controller (4) and (8), and the power grid model (3).
In this section, we analyze the steady state of the closed-loop
system, study its stability, and state its properties. We also give
some insights on the selection of the control parameters.
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Fig. 2. An IBR under the proposed controller.

A. System Steady State and its Properties

We begin by writing write the system dynamics in a
compact form. Let x = col(x1, . . . , xn) denote the column
vector composed of elements x1, . . . , xn. We define m =
diag(mω

1 , . . . ,m
ω
n), S = diag(Srated

1 , . . . , Srated
n ), and ρ(v) =

diag(ρ1(v1), . . . , ρn(vn)) as well. With this, we can write the
differential equations of (1), (4), and (8) in the compact form

θ̇ = ω = ωnom1n +Ω, (9a)
τΩΩ̇ = −Ω−mS−1P, (9b)
τv v̇ = −ρ(v)v − β∆tanh(∆−1v) + [V⋆](λ− S−1Q), (9c)
τpλ̇ = −kLλ− Lζ + (S−1Q− λ), (9d)

τdζ̇ = Lλ, (9e)

where L is the Laplacian matrix of the communication
graph defined in Appendix A, 1n = col(1, . . . , 1) ∈ Rn,
V⋆ = col(V ⋆

1 , . . . , V
⋆
n ), ∆ = diag(∆1, . . . ,∆n), tanh(x) =

col(tanh(x1), . . . , tanh(xn)), and [V⋆] = diag(V ⋆
1 , . . . , V

⋆
n ).

We can also compactly write the power flow equations (3) and
the voltage (4a) as

P = fP (θ, V ) = col(fP
1 (θ, V ), . . . , fP

n (θ, V )), (10a)

Q = fQ(θ, V ) = col(fQ
1 (θ, V ), . . . , fQ

n (θ, V )), (10b)
V = V⋆ +∆tanh(∆−1v). (10c)

Out first result describes equilibrium points of (9)-(10).

Lemma 1 (Steady State). Consider the system (9)-(10) and sup-
pose that the ac power network has a synchronization frequency
of ωsyn. Then any steady state of the system satisfies

˙̄θ = ωsyn1n = ωnom1n + Ω̄, (11a)
0n = −Ω̄−mS−1P̄ , (11b)
0n = −ρ(v̄)v̄ − β∆tanh(∆−1v̄) + [V⋆](λ̄− S−1Q̄), (11c)
0n = −kLλ̄− Lζ̄ + (S−1Q̄− λ̄), (11d)
0n = Lλ̄, (11e)

where 0n = col(0, . . . , 0) ∈ Rn, P̄ = fP (θ̄, V̄ ), Q̄ = fQ(θ̄, V̄ ),
and V̄ = V⋆+∆tanh

(
∆−1v̄

)
. Moreover, if mω

i = m⋆ for some
m⋆ > 0 and all i, then

Ω̄ = −m⋆αP 1n, where αP = ( 1n1
⊤
nS

−1P̄ ) ∈ R, (12a)

λ̄ = αQ1n, where αQ = ( 1n1
⊤
nS

−1Q̄) ∈ R. (12b)
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Proof. If the ac network has a synchronization frequency of
ωsyn, then we have ˙̄θ = ωsyn1n. Setting this equality together
with ẋ = 0n for any other variable x in (9), we can simply
derive the steady-state equations (11). Next, we prove (12).
According to (11a), we have Ω̄ = (ωsyn−ωnom)1n. Multiplying
this equation by 1⊤n , we get ωsyn − ωnom = 1

n1
⊤
n Ω̄ and

hence Ω̄ = 1
n1n1

⊤
n Ω̄. On the other hand, from (11b) we have

Ω̄ = −m⋆S
−1P̄ , where we used mω

i = m⋆ for all i. Using the
last two equations, we can derive (12a). By connectivity of the
communication graph, every solution of equation (11e) has the
form λ̄ = αQ1n for some αQ ∈ R [47, Ch. 6]. Since the graph
is undirected, we also have 1⊤nL = 0n [47, Ch. 6]; multiplying
(11d) by 1⊤n and using this property we get 1⊤n λ̄ = 1⊤nS

−1Q̄.
Setting λ̄ = αQ1n in this equation, we can finally arrive at
(12b). ■

Based on Lemma 1, we can now state several practically im-
portant properties of the steady state enforced by our controller.

Proposition 1 (Steady State Properties). Consider a steady state
as given in (11), let N denote the set of all the IBRs, and define
the set of voltage-saturated IBRs as

Nsat = {i ∈ N | ρi(v̄i) > 0}.

If mω
i = m⋆ for all i ∈ N , then the steady state described by

Lemma 1 has the following properties:

1) Active Power Sharing and Frequency Regulation: Active
power sharing is achieved among all the IBRs and the
microgrid’s synchronization frequency is ωsyn = ωnom −
m⋆

1
n1

⊤
nS

−1P̄ .
2) Voltage Containment: The steady-state voltages are all in

the safe range, i.e., V̄i ∈ (V min
i , V max

i ) for all i ∈ N .
3) Global Reactive Power Sharing: If Nsat = ∅, then

|Q̄i/S
rated
i − αQ| = β|1− V̄i/V

⋆
i |, ∀i ∈ N ,

i.e., the IBRs achieve reactive power sharing with a small
error proportional to β.

4) Partial Reactive Power Sharing: If Nsat ̸= ∅, then

|Q̄i/S
rated
i − αQ| = β|1− V̄i/V

⋆
i |, ∀i /∈ Nsat,

|Q̄i/S
rated
i −αQ| ≤ β|1−V̄i/V

⋆
i |+ρi(v̄i)|v̄i/V ⋆

i |, ∀i ∈ Nsat.

i.e., only the IBRs that are not in Nsat achieve the described
almost accurate reactive power sharing, and for the IBRs that
belong to Nsat, the sharing accuracy decreases (deteriorates)
as ρi(v̄i) increases.

Proof. According to (12a) and (11b), we have S−1P̄ = αP 1n
and hence P̄i/S

rated
i = P̄j/S

rated
j = αP , for every i and j,

which according to Definition 1 underlines that active power
sharing is achieved among all the IBRs. Inserting (12a) into
(11a), we can also write ωsyn = ωnom −m⋆

1
n1

⊤
nS

−1P̄ , which
proves property 1. The second property is obvious, as we have
−1 < tanh(·) < 1. Next, we prove properties 3 and 4.

Inserting (12b) into (11c), and considering ∆tanh
(
∆−1v̄

)
=

V̄ − V⋆, we have

S−1Q̄ = αQ1n − β[V⋆]
−1(V̄ − V⋆)− [V⋆]

−1ρ(v̄)v̄, (13a)
Q̄i/S

rated
i = αQ − β(V̄i/V

⋆
i − 1)− ρi(v̄i)v̄i/V

⋆
i . (13b)

Now if Nsat = ∅, then for all i we have ρi(v̄i) = 0. From (13b),
we can therefore write

Q̄i/S
rated
i = αQ − β(V̄i/V

⋆
i − 1), ∀i ∈ N ,

which proves property 3. Using the definition of the set Nset,
we can similarly write

Q̄i/S
rated
i = αQ − β(V̄i/V

⋆
i − 1), ∀i /∈ Nsat,

Q̄i/S
rated
i = αQ − β(V̄i/V

⋆
i − 1)− ρi(v̄i)v̄i/V

⋆
i , ∀i ∈ Nsat,

which, according to Definition 1, proves property 4. ■

B. Stability Analysis

We want to analyze the stability for the system (9). To this
end, we first take some steps to simplify the system dynamics
and then analyze stability for the simplified version of (9).

As our controller will maintain voltages within limits around
their nominal values, it seems reasonable to use a linearized
power flow model to describe the network behavior around the
operating point.

Assumption 1. Around a nominal operating point, the power
flow equations in (10) can be approximated by

P = JP
θ θ + JP

V V + wP , (14a)
Q = JQ

θ θ + JQ
V V + wQ, (14b)

where JP
θ and JP

V (resp. JQ
θ and JQ

V ) are the n × n Jacobian
matrices of fP (θ, V ) (resp. fQ(θ, V )) with respect to θ and
V at the linearization point, respectively; wP and wQ are the
corresponding intercepts of the linear functions. The matrices
JP
θ and JQ

θ each have an eigenvalue at 0 with corresponding
right eigenvector 1n.

We next reduce the order of the system and transform it into
relative coordinates, which allows us to leverage singular per-
turbation analysis [48, Ch. 11] and find the stability conditions.

1) Model Reduction and Coordinate Transformation: As
they are tunable control parameters, we can make the following
assumption about the time constants τΩ, τp, τd, τv in (9).

Assumption 2. We have τΩ, τp << τv and τp << τd.

According to the low-pass filters (9b) and (9d), we have
Ω = −mS−1P − τΩΩ̇ and (In + kL)λ = −Lζ + S−1Q− τpλ̇.
Under Assumption 2, the terms τΩΩ̇ and τpλ̇ can be viewed as
some negligible parasitic effects; therefore, the system dynamics
are mainly governed by (9a), (9c), and (9e). Indeed, one may
apply singular perturbation theory to rigorously reduce the order
of the system dynamics to the dynamics of θ, v, and ζ (for
an example, see [49]); instead, we omit the details and simply
eliminate the left-hand sides of equations (9b) and (9d) and
consider Ω = −mS−1P and (In + kL)λ = −Lζ + S−1Q.
Therefore, considering the linearized power flow equations in
Assumption 1, the system (9) reduces to

θ̇ = ωnom1n +Ω, (15a)
τv v̇ = −βV + [V⋆](λ− S−1(JQ

θ θ + JQ
V V + wQ))

−ρ(v)v + βV⋆, (15b)

εζ̇ = −τ−1
v LKLζ + τ−1

v LKS−1(JQ
θ θ + JQ

V V + wQ), (15c)
Ω = −mS−1(JP

θ θ + JP
V V + wP ), (15d)

λ = −KLζ +KS−1(JQ
θ θ + JQ

V V + wQ), (15e)
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where K = (In + kL)−1 and ε = τd/τv .
We now want to study the stability of the steady state for

the system (15) via singular perturbation analysis. In particular,
the analysis in [48, Theorem 11.3] requires a system evolving
on Euclidean space and an exponentially stable fixed point for
the fast dynamics. In order to satisfy these requirements, we
instead analyze a version of the system (15) in which the system
is transformed into relative coordinates. Let us now define the
change of coordinates xθ = Tθ = [θav r⊤θ ]

⊤ and xζ = Tζ =
[ζav r

⊤
ζ ]

⊤, where θav and ζav are respectively the average values
of the elements in θ and ζ, the vectors rθ and rζ belong to Rn−1,
and the transformation matrix T ∈ Rn×n is

T =


1/n 1/n . . . 1/n
−1 1

. . . . . .
−1 1

 , T1n =


1
0
...
0

 ∈ Rn. (16a)

By Assumption 1 and connectivity of the communication graph,
the matrices JP

θ , JQ
θ , and L satisfy JP

θ 1n = JQ
θ 1n = L1n = 0n

[50] [47, Ch. 6]. Using T1n in (16a) and these properties, we
compute that

TJP
θ T−1 = TP

θ =

[
0 c⊤P

0n−1 JP
θred

]
, (16b)

TJQ
θ T−1 = TQ

θ =

[
0 c⊤Q

0n−1 JQ
θred

]
, (16c)

TLT−1 = Tζ =

[
0 c⊤ζ

0n−1 Lred

]
, (16d)

for JP
θred, J

Q
θred,Lred ∈ R(n−1)×(n−1) and cP , cQ, cζ ∈ Rn−1.

Let us now use xθ = Tθ, xζ = Tζ and write the system
dynamics (15) in the new coordinates as

ẋθ = −TmS−1T−1TP
θ xθ − TmS−1JP

V V

+ωnomT1n − TmS−1wP , (17a)
τv v̇ = [V⋆](K − In)S

−1T−1TQ
θ xθ − [V⋆]KT−1Tζxζ

+[V⋆](K − In)S
−1JQ

V V − βV − ρ(v)v

+βV⋆ + [V⋆](K − In)S
−1wQ, (17b)

εẋζ = τ−1
v TLKS−1T−1TQ

θ xθ + τ−1
v TLKS−1JQ

V V

−τ−1
v TLKT−1Tζxζ + τ−1

v TLKS−1wQ. (17c)

According to (16), the first columns of TP
θ , TQ

θ , and Tζ are all
zeros, which means the first elements of xθ and xζ – θav and ζav
– do not influence the dynamics in (17) at all. Therefore, (17)
is the interconnection of the two cascaded subsystems, given by

ṙθ = Rθrθ +RθV V + dθ, (18a)
τv v̇ = Rvθrθ + (RvV − βIn)V +Rvζrζ − ρ(v)v + dv, (18b)
εṙζ = Rζθrθ +RζV V +Rζrζ + dζ , (18c)

θ̇av = Rav
θ rθ +Rav

θV V + davθ , (19a)
εζ̇av = 0n, (19b)

where their components are given in Appendix B. It should be
noted that to obtain (18)-(19) from the dynamics (17), we have
used the properties rθ = Irxθ, rζ = Irxζ , θav = 1⊤n T

⊤xθ,
ζav = 1⊤n T

⊤xζ , xθ = I⊤r rθ+T1nθav, and xζ = I⊤r rζ+T1nζav,
where Ir = [0n−1 In−1] ∈ R(n−1)×n.

Clearly, the dynamics of rθ, rζ , and v do not depend on θav
and ζav. Therefore, the steady states of (17) and hence (15) are
stable, if and only if the steady state of (18) is stable. In what
follows, we discover this.

2) Timescale Separation and Singular Perturbation Analy-
sis: We are now interested in studying the stability of the steady
state of the system (18) using the idea of timescale separation
by considering (18a)-(18b) as the slow dynamics and (18c) as
the fast dynamics. The following theorem states the stability
conditions under these considerations.

Theorem 1 (Exponential Stability for (18)). Suppose that the
linear matrix inequality

Pθ ≻ 0, Dv ≻ 0, Q+Q⊤ ≺ 0, (20a)

in the variables Pθ and Dv has a solution, where Pθ is
symmetric, Dv is diagonal, and Q is

Q =

[
PθRθ PθRθV

DvR
new
vθ Dv(R

new
vV − βIn)

]
, (20b)

where

{
Rnew

vθ = Rvθ −RvζR
−1
ζ Rζθ

Rnew
vV = RvV −RvζR

−1
ζ RζV .

(20c)

Then, there exists ε⋆ > 0 such that for all τd < ε⋆τv the steady
state of the system (18) is exponentially stable.

Proof. We consider ε = τd/τv small and (18c) as the fast
dynamics; therefore, the velocity ṙζ ∝ (1/ε) can be large
when ε is small and rζ in (18c) may rapidly converge to a
root of Rζθrθ + RζV V + Rζrζ + dζ = 0n. In other words,
the subsystem (18c) may quickly achieve a quasi-steady state,
where rζ ≈ −R−1

ζ (Rζθrθ + RζV V + dζ). We now define
the error between the actual rζ and this quasi-steady state as
y = rζ + R−1

ζ (Rζθrθ + RζV V + dζ). We can therefore write
(18) as the singular perturbation problem below [48, Ch. 11].

ṙθ = Rθrθ +RθV V + dθ, (21a)
τv v̇ = Rnew

vθ rθ + (Rnew
vV − βIn)V +Rvζy

−ρ(v)v + dnewv , (21b)
εẏ = Rζy + εR−1

ζ (Rζθ ṙθ +RζV (∂V/∂v)v̇), (21c)

V = V⋆ +∆tanh(∆−1v), (21d)

where Rnew
vθ and Rnew

vV are given in (20c) and dnewv = dv −
RvζR

−1
ζ dζ . We want to examine the stability of the steady

state of (21) by examining the reduced system (22a)-(22b) and
boundary-layer system (22c), given as

ṙθ = Rθrθ +RθV V + dθ, (22a)
τv v̇ = Rnew

vθ rθ + (Rnew
vV − βIn)V − ρ(v)v + dnewv , (22b)

∂y/∂t = Rζy, (22c)

where t = t/ε is a stretched timescale with t the time. From
Appendix B, we have Rζ = −Irτ

−1
v TLKLT−1I⊤r . By the

connectivity of the communication graph and the definitions of
K, Ir, and T , one can establish that the matrix Rζ is negative-
definite; hence, there exists a symmetric matrix Py ≻ 0 such that
PyRζ+R⊤

ζ Py ≺ 0. With the matrix Py and the matrices Pθ ≻ 0
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and Dv ≻ 0 in (20a), we now take the following Lyapunov
candidates for the slow (22a)-(22b) and fast (22c) dynamics.

Ss(rθ, v) =
1
2 r̃

⊤
θ Pθ r̃θ + τv

∫ ṽ

0n

(h̃(τ))⊤Dvdτ, (23a)

Sf (y) =
1
2 ỹ

⊤Py ỹ, (23b)

where r̃θ = rθ − r̄θ, ṽ = v − v̄, and ỹ = y − ȳ with r̄θ, v̄, and
ȳ the steady states in (22), and h̃(τ) the following function

h̃(τ) = ∆tanh
(
∆−1(v̄ + τ)

)
−∆tanh

(
∆−1(v̄)

)
, (24)

which is element-wise strictly increasing in τ . Time derivatives
of Ss and Sf are

Ṡs = r̃⊤θ Pθ
˙̃rθ + (h̃(ṽ))⊤Dvτv ˙̃v, (25a)

∂Sf/∂t = ỹ⊤Py∂ỹ/∂t. (25b)

Inserting the dynamics (22) into (25), we have

Ṡs = −(h̃(ṽ))⊤Dv δ̃(ṽ) + η̃⊤Qη̃, (26a)
∂Sf/∂t = ỹ⊤PyRζ ỹ, (26b)

where δ̃(ṽ) = ρ(v)(v) − ρ(v̄)v̄, η̃ = col(r̃θ, h̃(ṽ)) and Q is as
given in (20b). The functions δ̃(ṽ) and h̃(ṽ) are both element-
wise increasing with respect to ṽ; therefore, we have

−(h̃(ṽ))⊤Dv δ̃(ṽ) ≤ 0. (27a)

If the matrix inequality (20a) holds, we can write

η̃⊤Qη̃ ≤ −αsη̃
⊤η̃, (27b)

where αs > 0 is the smallest eigenvalue of −(Q+Q⊤). We can
also write

ỹ⊤PyRζ ỹ = ỹ⊤(PyRζ +R⊤
ζ Py)ỹ < −αf ỹ

⊤ỹ, (27c)

where αf > 0 is the smallest eigenvalue of −(PyRζ +R⊤
ζ Py).

Using (27a)-(27c), we can now bound the derivatives in (26) as

Ṡs ≤ −αsη̃
⊤η̃, ∂Sf/∂t ≤ −αf ỹ

⊤ỹ, (28)

which, together with the fact that Ss and Sf are both positive-
definite and radially unbounded, show exponential stability of the
steady states of the reduced and boundary-layer dynamics. Now,
we can say that the singularly perturbed system (21) satisfies all
the assumptions of [48, Theorem 11.3]; therefore, there exists
ε⋆ > 0 such that for all ε < ε⋆ or equivalently τd < ε⋆τv , the
steady state of (21) is exponentially stable. ■

C. Intuition on Parameter Selection

The tunable control parameters in (1), (2), (4), and (8) are
mω

i , mV
i , τΩ, τp, τv , τd, k, and β. Following the standard

droop control design [39], we select the droop coefficients
mV

i = ∆i and mω
i = m⋆ = 2π∆fmax for all i, where

∆fmax is the maximum steady-state frequency deviation. In
what follows, we introduce the impacts and limitations of the
remaining parameters and propose a selection procedure.
1) (τp, τΩ): According to Assumption 2, our stability analysis

is based on τΩ, τp << τv and τp << τd; therefore, the
smaller τΩ and τp, the more reliable our stability analysis. We
suggest starting the selection procedure by selecting a small
time constant for the low-pass filter (8a), e.g., τp = 0.01s.
One can, however, select a larger τp for better filtering, if

1 2

345

IBR

Load
Bus

Electric Link
Bidirectional

Data Link

Fig. 3. Test LV microgrid system with specifications given in Table I.

required. On the other hand, according to (1a), decreasing the
frequency time constant τΩ increases |ḟi| = 1

2π |ω̇i| = 1
2π |Ω̇i|,

known as the Rate of Change of Frequency (RoCoF), which
should be limited in practice (see, for example, [36, Table
21]). Thus, we suggest selecting τΩ = mω

i /(2πRoCoF
⋆),

where RoCoF⋆ is the maximum withstandable initial RoCoF
after a step change in Pi from 0 to Srated

i or vice versa.
2) (τv, τd): Following the discussion in the previous step, to

make our stability analysis more reliable we suggest selecting
τd >> τp and τv >> τΩ, τp, for example, τd ≥ 10τp and
τv ≥ max{10τΩ, 10τp}. On the other hand, from Theorem 1,
one should select τd < ε⋆τv . Since the exact value of ε⋆ is
not easily available, we select τv as large as possible and
τd as small as possible, for example, we suggest selecting
τv ≥ 10τd. Combining these suggestions, we get τd ≥ 10τp
and τv ≥ max{10τΩ, 10τd}. Here, it should be noted that,
in practice, a small τd requires fast (low-latency) inter-IBR
data transmissions. But, selecting a large τd leads to a large
τv , which in turn causes slower regulation of the IBR voltage
and its reactive power. Therefore, while selecting the control
parameters, we should consider the practical standards, e.g.,
IEEE 1547 [36], on this matter. For example, according to
[36, Ch. 5.3] the response time for voltage-reactive power
control, depending on the mode and application, varies be-
tween 1 to 10 seconds. Selecting τΩ, τd ∈ [0.1s, 1s] and
following the above suggestions, we get τv ∈ [1s, 10s] which
lies in this acceptable range.

3) (k, β): Clearly, β helps solvability of the linear matrix
inequality (20a); it increases the eigenvalues of −(Q+Q⊤)
and hence the convergence rate αs in (28). But, according
to Proposition 1, it degrades the steady-state reactive power
sharing. Therefore, we suggest selecting a desired k > 0
first2 and then selecting a small β such that: i) the linear
matrix inequality (20a) has a solution, and ii) for every IBR
i, the value β∆i/V

⋆
i is an acceptable upper bound of the

error |Q̄i/S
rated
i − αQ|.

V. CASE STUDIES AND SIMULATION RESULTS

To verify the effectiveness of the proposed controller, we
applied it to a low-voltage 5-bus meshed microgrid system, sim-
ulated in MATLAB/Simscape Electrical software environment.
The nominal voltage and frequency of the grid are 220-V (RMS)
and 50-Hz, respectively. As shown in Fig. 3, the microgrid
consists of five local loads energized by five IBRs. Each IBR
feeds its corresponding main bus/load via an output connector.

2We suggest selecting a desired kd > 0 and computing k = kd/σ2, where
σ2 is the second smallest eigenvalue of L, known as algebraic connectivity of
the communication graph [47, Ch. 6].



8 SUBMITTED FOR PUBLICATION. THIS VERSION: FEBRUARY 17, 2023

5 10 15 20 25 30 35 40 45 50 55
0.2

0.3

0.4

0.5

5 10 15 20 25 30 35 40 45 50 55

0.95

1

1.05

5 10 15 20 25 30 35 40 45 50 55

0.3

0.35

0.4

5 10 15 20 25 30 35 40 45 50 55

-3

-2

-1

0

1

2

3

5 10 15 20 25 30 35 40 45 50 55

-0.04

-0.02

0

0.02

0.04

5 10 15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

5 10 15 20 25 30 35 40 45 50 55
0.4

0.5

0.6

0.7

5 10 15 20 25 30 35 40 45 50 55
49.8

49.85

49.9

Fig. 4. Simulation results for Case Study 1; (a) reactive power ratios Qi/S
rated
i , (b) voltages Vi, (c) primal variables λi, (d) normalized integrator states vi/∆i,

(e) dual variables ζi, (f) leakage coefficients ρi(vi), (g) active power ratios Pi/S
rated
i , and frequencies fi =

1
2
ωi/π.

TABLE I
CONTROL AND ELECTRIC SPECIFICATIONS FOR THE LV SYSTEM IN FIG. 3

Vnom (V min
i , V max

i ) SBase (τΩ,m
ω
i ,m

V
i )

220 [V] (0.95, 1.05) [p.u.] 100 [kVA] (0.1, 1.57, 11)
fnom ∆fmax (τv , τd, τp) (β, kd, k)

50 [Hz] 0.005 [p.u.] (1, 0.1, 0.01) (0.01, 10, 7.24)

IBR Capacity + Load Apparent Power and Power Factor
IBR/Bus # 1 2 3 4 5

Srated
i [p.u.] 1.1 0.6 0.8 0.75 1.3
Sload
i [p.u.] 0.9 0.5 0.7 0.65 1
PFi 0.85 0.9 0.88 0.92 0.87

Bus i to Bus j Interconnection IBR Output Connection
(i, j) rij [Ω] xij [Ω] IBR # ri [Ω] xi [Ω]
(1, 2) 0.2 0.3 1 0.03 0.09
(2, 3) 0.19 0.19 2 0.1 0.25
(3, 4) 0.17 0.25 3 0.05 0.15
(4, 5) 0.15 0.22 4 0.08 0.23
(5, 1) 0.22 0.32 5 0.07 0.2
r is resistance and x is reactance.

Table I shows the electrical and control specifications of the
system. It is to note that, in our simulations, we adapted the
detailed model of the inverters and internal control loops from
[39].

A. Case Study 1: Activation and Load Change

We assume that the droop controllers in (1b) and (2b) control
the system before activating the proposed controller. According

to Fig. 4(a)-(b), we can see that the voltages deviate from the
nominal value, and the IBRs do not share the reactive power
proportionally. After activation of the controller at t = 10s,
the IBRs start changing their voltages so that their reactive
power ratios become equal and, at the same time, their voltages
maintain within limits (0.95, 1.05) [p.u.]. These results are in
line with Properties 2 and 3 in Proposition 1.

At t = 25s, the load at bus number 5 decreases by 80%, which
means to keep the proportional sharing, the 5th IBR must feed
the other loads instead of the lost 80% local load. Therefore, in a
collaborative effort to reach an agreement on a new equal power
ratio, this IBR increases its voltage, and the other ones reduce
their voltages until the IBRs 1, 2, and 4 reach an agreement
on Qi/S

rated
i . However, the 3rd and 5th IBRs fail to join this

agreement because their voltages are already saturated at the
minimum and maximum limits, respectively. However, they have
come close to the point of agreement and stayed there. We
can observe their effort in reaching a consensus with the other
IBRs in Fig. 4(d) and Fig. 4(f). After t = 25s, the 5th IBR
keeps integrating and increasing v5/∆5 to increase its voltage
to the maximum. However, as the voltage is saturated using the
tanh function, the voltage does not change much. Therefore, at
t ≈ 26s, when v5 > 3∆5, the leakage coefficient ρ5 takes a
positive value to prevent the integrator wind-up. Meanwhile, the
3rd IBR also keeps integrating but decreasing h3/∆3, until its
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Fig. 5. Simulation results for Case Study 2; (a) voltages and (b) reactive power
ratios Qi/S

rated
i .

voltage gets saturated at t ≈ 34s and ρ3 also takes a positive
value. These results are in line with properties 2 and 4 in
Proposition 1. After restoring the lost load at t = 40s, the IBRs
re-achieve proportional reactive power sharing, and their leakage
coefficients are all restored to zero. Fig. 4(c) and Fig. 4(e) show
the primal-dual variables; we can see that thanks to the dual
variables, the primal variable always converges to the average of
the reactive power ratios (see (12b)), no matter if the voltages
are saturated or not. Therefore, they are treated as a globally-
common variable like frequency (see Fig. 6(h)) and used as a
reliable reference for the reactive power ratios of the IBRs. We
can also see the active and frequency responses in Fig 4(g)-(h),
reflecting the impacts of the voltage-reactive power controller on
the frequency-active power dynamics.

B. Case Study 2: CIGRE Benchmark and Voltage Level Shift

We also applied our controller to a system based on the
Subnetwork 1 of the European medium-voltage (20-kV,50-Hz)
distribution network benchmark, provided by CIGRE Task Force
C6.04.02 [51]. Except for the following modifications, all the
specifications of the test system are the same as the original
network. Based on the Task Force recommendation, the simu-
lated microgrid is an isolated 9-bus subnetwork of the CIGRE
system composed of buses number 3 to 11. All the distributed
generators at each bus are lumped into one single dispatchable
IBR governed by the proposed controller. To meet the maximum
load demand in the islanded microgrid the rated power of the
IBRs are all increased by 50%. The control gains are similar to
the previous case study, but the voltage limits are (0.98, 1.02)
[p.u.]. The simulation results are shown in Fig. 5. At t = 10s,
the controller is activated and the voltages and reactive powers
are controlled properly. At t = 20s, we shift the voltage level
by setting the new limits (1.01, 1.05) [p.u.]. At t = 30s and
t = 40s, we disconnect and connect back the residential loads
at buses 6 and 8. The results highlight that under the proposed
method, we can shift the voltage level in a controlled way while
keeping reactive power sharing at different voltage levels.

VI. CONCLUSION

Voltage regulation and reactive power sharing in power sys-
tems are two highly coupled control objectives. This coupling
is because reactive power flow between two nodes depends
more strongly on their voltage differences than the absolute
values of the voltages. We proposed a nonlinear controller based
on a hyperbolic tangent function and a distributed primal-dual
optimizer. The controller provides the IBRs with acceptable
reactive power sharing while keeping their voltages within some
user-defined limits. We also found stability conditions for the

system considering the voltage-angle couplings, under timescale
separation between the voltage and optimizer dynamics. The
numerical simulations, followed by a proposed parameter se-
lection guideline, indicated a promising performance from the
proposed method in controlling the voltage level of the network
and achieving reactive power sharing among the IBRs.

APPENDIX A
COMMUNICATION NETWORK MODEL AND GRAPH THEORY

An inter-IBR data network can be modeled by an undirected
graph where the IBRs and communication links are considered
its nodes and edges, respectively. Let G = (N , E ,A) be a graph
with N = {1, ..., n}, E ⊆ N × N , and A = [aij ] ∈ Rn×n

being its node set, edge set, and adjacency matrix, respectively.
If the nodes i and j directly exchange data, they are neighbors,
meaning that (i, j) ∈ E and (j, i) ∈ E , and aij = aji = 0;
otherwise, aij = aji = 0. Let Ni = {j | (j, i) ∈ E} and
di =

∑
j∈Ni

aij be the neighbor set and in-degree associated
with node i, respectively. Laplacian matrix of G is defined as
L = D −A, where D = diag{di}. A walk (or path) from node
i to node j is an ordered sequence of nodes such that any pair
of consecutive nodes in the sequence is an edge of the graph. A
graph is connected if there exists a walk between any two nodes
[47].

APPENDIX B
COMPONENTS OF THE REDUCED DYNAMICS IN (18)

With Ir = [0n−1 In−1] ∈ R(n−1)×n, one can obtain the
components of the system (18) as

Rθ = −IrTmS−1JP
θ T−1I⊤r , RθV = −IrTmS−1JP

V ,

Rvθ = [V⋆](K − In)S
−1JQ

θ T−1I⊤r ,

RvV = [V⋆](K − In)S
−1JQ

V , Rvζ = −[V⋆]KLT−1I⊤r ,

Rζθ = Irτ
−1
v TLKS−1JQ

θ T−1I⊤r ,

RζV = Irτ
−1
v TLKS−1JQ

V , Rζ = −Irτ
−1
v TLKLT−1I⊤r .

Rav
θ = −1⊤n T

⊤TmS−1JP
θ T−1I⊤r

Rav
θV = −1⊤n T

⊤TmS−1JP
V

dθ = IrωnomT1n − IrTmS−1wP

dv = βV⋆ + [V⋆](K − In)S
−1wQ

dζ = Irτ
−1
v TLKS−1wQ

davθ = 1⊤n T
⊤ωnomT1n − 1⊤n T

⊤TmS−1wP .
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