
Model-Free Game-Theoretic Feedback Optimization

Anurag Agarwal John W. Simpson-Porco Lacra Pavel
University of Toronto, Department of Electrical and Computer Engineering

email: anurag.agarwal@mail.utoronto.ca, jwsimpson@ece.utoronto.ca, pavel@ece.utoronto.ca

Abstract— This paper extends recent work in feedback-based,
game-theoretic optimization. We first identify limitations of
existing approaches to this problem, often requiring a priori
knowledge to construct a nominal sensitivity model. Leverag-
ing zero-order optimization techniques inspired by stochastic
perturbation, we develop a model-free algorithm that allows
agents to estimate these sensitivities during runtime, rather
than a priori. We outline the convergence properties of this
algorithm as a forward-backward operator-splitting technique.
Finally, we compare this model-free algorithm’s performance
to existing approaches, outlining its benefits and drawbacks.

I. INTRODUCTION

Game theory studies the strategic interaction between mul-
tiple self-interested, rational agents (players), each aiming to
optimize their own goals. Modelling agents as selfish, ratio-
nal players enables the implementation of decentralized opti-
mization techniques, where agents are aware of the dynamics
in their learning caused by other agents’ behaviours [1, 2].
This framework can be applied to a variety of applications
such as swarm robotics, [3–5], wireless communication [6,
7], power systems [8], and smart cities [9].

Recent work in [3, 8] studies the case of game-theoretic
optimization problems wherein each agent’s decision has
an impact on an output generated by the systems within
the network [10, 11]. In such cases, existing gradient-play
techniques for solving game-theoretic problems [4, 12, 13]
require a precise model of the output’s sensitivity to the
players’ actions. To alleviate this limitation, a feedback-based
optimization framework (akin to [11, 14–16]) can be used,
based on a nominal model of the output sensitivities. The
robustness of this approximation is studied in [17, 18].

In this work, we consider the scenario wherein the use of
a fixed nominal sensitivity model is insufficient, as it may
and result in a quite suboptimal equilibrium point, and an
adaptive model-free approach is preferred. Our approach is
based on the model-free optimization techniques outlined in
[19], where two perturbed evaluations of the cost function
are used to estimate its gradient for a time-varying opti-
mization problem where the cost function is affected by
an unmodelled, exogenous process. In this approach, the
function perturbations are chosen quasi-stochastically, rather
than stochastically, as this has been shown to reduce noise
during convergence [19, 20]. Leveraging these methods, our
novel contributions are that we

• replace the nominal sensitivity approximation made in
the game-theoretic framework in [8] with an online
estimation of the sensitivity, using quasi-stochastic per-
turbation techniques developed in [19];

• use operator-theoretic techniques from [12] to prove the
convergence of the resulting model-free algorithm, by
noting that the model-free estimation technique tracks
a “perfect information” forward-backward operator-
splitting algorithm;

• validate our results on two examples, a power dis-
tribution feeder and an academic example motivated
by a swarm robotics application, and compare the
performance of the model-free technique to the nominal
sensitivity method outlined in [8].

Literature Review

Most prior work in this area assumes that the agents are
able to compute their local cost function gradients reliably [3,
4, 12, 13]. This assumption becomes unreasonable if the cost
function is dependent on an output generated by an unknown
or difficult-to-model process or system, as computing the
gradient now requires access to the sensitivity (Jacobian
matrix) between the agent decisions and system outputs. This
difficulty is often addressed with simplifying assumptions;
in [3] the agents are said to have decoupled dynamics (and
thus it is reasonable to assume each agent has a model of
its own output process), and in [8] the output sensitivity is
nominally approximated as a fixed Jacobian (which is often
only a good model if the output has a near-linear relation
to the control inputs). Our work differs from prior work in
this area by lifting the requirement for an a priori model
entirely, and using zero-order techniques to approximate the
model during run time.

Zero-order (or model-free) techniques have been an on-
going area of research in the optimization, control, and
machine learning community. The seminal work in this
area is [21], which solves a one-dimensional problem using
two perturbations. The Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm devised in [22, 23] uses
zero-mean, independent, random perturbations and requires
two function evaluations at each step of an l-dimensional
problem. In [24, 25] quasi-stochastic perturbations, generated
by deterministic processes, were used instead to improve
convergence properties. Analyses in [19, 20] also show that
the quasi-stochastic approaches reduce noise.

Our work closely relates to the recent work in [19, 26].
Similar to these works, we consider a constrained, time-
varying distributed optimization problem, and use a perturba-
tion signal to approximate a gradient based on two function
evaluations. Our work differs from these as follows:

1) We consider a game-theoretic setting, rather than the
additive distributed optimization problem considered in
[19], or the centralized optimization problem considered
in [26]. The key benefit of this approach is the ability
to encode selfish, competitive behaviour in the network
and to minimize communication overhead. In this re-
gard, our work also differs from most existing literature
in the area of distributed zero-order optimization [27].

2) It was noted in [19] (in which entire gradient was
estimated, similar to [26]) that directly estimating sen-
sitivity was an area of future work. Our work uses tech-
niques developed therein to estimate only the sensitivity
model, computing the rest of the gradient precisely.

3) As a consequence of only estimating the sensitivity
rather than the whole gradient, we use operator-theoretic
techniques inspired by [12] to present the error-bound
on the convergence of our approach.
Organization: The rest of this paper is organized as

follows. Section II outlines the game-theoretic model studied
at the core of this problem. Section III proposes a model-free
forward-backward operator splitting algorithm and analyzes
its convergence. Section IV validates the convergence of
the proposed algorithm and compares it to [8]. Section V
concludes the paper and proposes future areas of research.

Notation: The sets R,R+ denote the sets of real
numbers and nonnegative real numbers respectively. Given
a symmetric positive definite matrix P ≻ 0, ⟨·, ·⟩P : Rn ×
Rn → R denotes the inner product ⟨x, y⟩P = x⊤Py and
∥ · ∥P : Rn → R+ denotes the corresponding induced norm
∥x∥P =

√
x⊤Px. If P is omitted, it is assumed that P = I ,

the identity matrix, inducing the Euclidean 2-norm ∥ · ∥2. A
block diagonal matrix A with matrices A1, . . . , AN along
its diagonal is denoted A = diag(A1, . . . , AN). Denote
col(x1, . . . , xN) as the column vector obtained by stacking
vectors x1 , . . . , xN . Given a matrix A ∈ Rn×m, denote
[aij] or [A]ij to be the component in its ith row and jth

column. We denote the n-dimensional vector of ones as
1n = col(1, . . . , 1) ∈ Rn, the n-dimension vector of
zeroes as 0n = col(0, . . . , 0) ∈ Rn and the n-dimensional
identity matrix as In = diag(1n) ∈ Rn×m. We denote the
zero matrix 0n×m ∈ Rn×m, with each element equal to
zero. The zero set of a set-valued operator A is zer(A) =
{x : 0 ∈ A(x)}. We denote the identity operator as Id
where x = Id(x). Given a closed, convex set Ω ⊂ Rn,
let NΩ(x) = {y ∈ Rn|y⊤(x′ − x) ≤ 0 ∀x′ ∈ Ω} denote the
normal cone of Ω at x ∈ Ω.

II. GAME-THEORETIC MODEL SETUP

A. Problem Formulation

Consider a set of players N = {1, . . . , N}, each with
some goals it is trying to fulfill in the game. Each player i ∈
N chooses an action ui ∈ Ωi ⊆ Rni . The overall action set is
denoted u ∈ Ω =

∏
i∈N Ωi. To explicitly show dependence

on agent i’s actions and all other agents’ actions, we often
denote u as (ui,u−i), where u−i ∈ Ω−i =

∏
j∈N\{i} Ωj is

the vector of all agents’ actions other than agent i’s. Each

agent has a decision cost function fi : Ω→ R that encodes
its goals in the game as a function of all agents’ actions.

We assume that the agents collectively wish to enforce
some constraints on an output from a system impacted by
their control decisions (for example, safety constraints). We
suppose that the output is generated by a continuous mapping
yi = πi(u, w), where w ∈ W ⊆ Rp is some exogenous
disturbance, and the mapping πi : Ω×W → Rli is unknown
to each player. Each agent measures a portion of that output
yi ∈ Rli , and we define the stacked vectors y ∈ Rl, l =∑

i∈N li and the vector y−i as we defined u−i above. We
define a stacked mapping π : Ω ×W → Rl such that y =
π(u, w), and a mapping π−i such that y−i = π−i. We endow
each agent with an output cost function gi : R

l → R which
encodes that agent’s goals regarding the outputs. Finally, we
define affine constraints on the players’ actions:

U :=

N∏
i=1

Ωi ∩

{
u ∈ Rn

∣∣∣∣∣∑N

i=1
Aiui ≥

∑
i∈N

bi

}
. (1)

This corresponds to a global constraint Au ≥ b, where

A :=
[
A1 · · · AN

]
∈ Rm×n, b :=

∑
i∈N

bi ∈ Rm. (2)

Let Ui(u−i) := {ui ∈ Ωi | (ui,u−i) ∈ U} ⊂ Rni denote the
feasible decision set for a given player’s action, given each
other player’s chosen action. With this setup, each player is
interested in optimizing the following problem:

minimize
ui∈Rni

fi(ui,u−i) + gi(yi,y−i)

subject to yi = πi(ui,u−i, w)

ui ∈ Ui(u−i) ⊂ Rni .

(3)

Assumption 1: For each player i ∈ N , the mapping
ui 7→ fi(ui,u−i) is continuously differentiable and convex
for fixed u−i. The mapping y 7→ gi(y) is continuously
differentiable and convex in y. The feasible decision set Ωi

compact and convex. The constrained decision sets, U and
Ui(u−i) given fixed u−i, have nonempty interiors. □

B. KKT Conditions and Lagrangian

We introduce the notion of a generalized Nash equilibrium,
a point chosen such that no player can unilaterally deviate
for a lower cost. We refer to [28] for a deep dive into game
theory.

Definition 1: A generalized Nash equilibrium (GNE) of
the game (3) is a decision profile u∗ ∈ Ω such that for all
i ∈ N

u∗
i ∈ argmin

ui

fi(ui,u
∗
−i) + gi(yi,y

∗
−i)

s.t. yi = πi(ui,u
∗
−i, w)

ui ∈ Ui(u∗
−i).

We next seek to introduce the KKT conditions for the
game (3). For a full analysis of how the KKT conditions
relate to a GNE as defined above, we refer the reader to
Section 4.1 of [8]. Following the analysis for (6)-(8) in the

paper [8], the variational KKT conditions for our problem
are given by

0 ∈ Hw(u
∗)−A⊤λ∗ +NΩ(u

∗)

0 ∈ (Au∗ − b) +NRm
+
(λ∗),

(4)

where λ∗ is a multiplier such that λ∗
1 = · · · = λ∗

N = λ∗

at a KKT point1, and Hw(u) is the pseudogradient of the
agents’ cost functions, defined as

Hw(u) = col(∇u1
[f1(u1,u−1) + g1(y1,y−1)],

. . . ,∇uN
[fN (uN ,u−N) + gN (yN ,y−N)]).

Applying the chain rule component wise and grouping com-
ponents, we can express the pseudogradient as

Hw(u) = F (u) + E(∂uπ(u, w)
⊤∂yg(y)

⊤), (5)

where F (u) = col(∇u1
f1(u), . . . ,∇uN

fN (u)) is the pseu-
dogradient of the agents’ decision cost functions and g(y)
is the stacked version of the output cost functions gi. The
operator E : Rn×N → Rn is a linear operator defined as

E(M) =
∑N

k=1

∑
l∈Nk

(e⊤l Mek)el, (6)

where Nk =
{
1 +

∑k−1
i=1 ni , · · · ,

∑k
i=1 ni

}
. Under As-

sumption 1, the existence of a point that satisfies the varia-
tional KKT conditions (vKKT point for short) is guaranteed
by Corollary 2.2.5 of [29]. We now seek to modify the al-
gorithm presented in [8] to estimate the Jacobian ∂uπ(u, w)
during runtime, using zero-order measurements of the output.

III. MODEL-FREE ALGORITHM

A. Algorithm Development

We begin our analysis by noting that the true Jacobian
∂uπ can be expressed row-wise as

[∂uπ(u, w)]ij = ∇⊤
u πij(u, w) (7)

where for each player i ∈ N , the mapping πij represents the
jth component of their measured output, with j ∈ {1, . . . , li}.
We now seek a relation that allows us to approximate these
rows using measurements from the vectors yi ∈ Rli . We
borrow the following result from [19].

Lemma 1: Let f : Rn → R be a C3 function, with
Lipschitz continuous∇f and∇2f . Consider a point x ∈ Rn,
a perturbation vector ϕ ∈ Rn, and a perturbation scaling
constant ϵ ∈ R. Then

1

2ϵ
ϕ [f(x+ ϵϕ)− f(x− ϵϕ)] = ϕϕ⊤∇f(x) +O(ϵ2) (8)

We use the left side of (8) as an approximation of the
gradient function f , and denote it:

∇̂f(x;ϕ, ϵ) := 1

2ϵ
ϕ [f(x+ ϵϕ)− f(x− ϵϕ)] . (9)

The right side of (8) quantifies the error between the two-
perturbation gradient evaluation from a true gradient of the

1The equality of the Lagrange multipliers enforces that each player is
equally responsible for obeying the global coupling constraints.

function f . The proof for Lemma 1 in [19] requires the Tay-
lor Theorem, thus we outline a differentiability assumption.

Assumption 2: For each agent i, each output mapping
πij : Ω×W → R, j ∈ {1, . . . , li} is C3 and has Lipschitz
continuous ∇πij(u, w) and ∇2πij(u, w).

We follow the quasi-stochastic approach outlined in [19,
20]. To approximate the gradient, our algorithm will iterate
over some steps k ∈ {1, . . . ,K} in the same manner as [8].
We seek to provide a technique to sample a perturbation
vector ϕk ∈ Rn during each of these steps.

Assumption 3: The perturbation vector ϕk ∈ Rn, at the
iteration k ∈ {1, . . . K}, is sampled from a continuous
time signal ϕ(t) with sampling period Ts as ϕk = ϕ(kTs).
The signal ϕ(t) is continuous, periodic with period T ∈ R,
and Ts is chosen such that Ts > 2T . The signal ϕ(t) satisfies

1

T

∫ t+T

t

ϕ(τ)ϕ(τ)⊤dτ = In, t ∈ R. (10)

We refer the reader to [19] for a detailed proof on why this
assumption minimizes the error between gradient approxima-
tions and the true gradient. We next outline the notations used
within our algorithm. Each player has access to its local cost
function data fi and gi and can compute the gradients ∇ui

fi
and ∇yj

gi. The approximation of the sensitivity matrix ∂uπ

at the kth iteration is denoted as Π̂k ∈ Rl×n, and each player
computes the submatrix Π̂i,k ∈ Rli×n. The matrix Π̂i,k is
composed of submatrices Π̂iq,k ∈ Rli×nq , each of which
corresponds to the sensitivity of the outputs of player i to
the inputs from player q ∈ N .

At the k-th iteration, the perturbation vector is denoted
ϕk, and player i’s segment of that vector is denoted ϕi,k.
The perturbed inputs are denoted ui,k+ := ui,k + ϵϕi,k and
ui,k− := ui,k − ϵϕi,k respectively, and their corresponding
output measurements are denoted yi,k+ and yi,k−.

The global affine constraint Au ≥ b is not known in full
by any agent; each agent only knows Ai, bi, and Ωi, which
characterize its own involvement in the constraint. Agent i
controls its local decision ui ∈ Rni and a local multiplier
λi ∈ Rm

+ . It has a local auxiliary variable zi ∈ Rm to
coordinate with neighbours and achieve consensus on λi.
The interference graph Gf describes communication between
agents with cost-decision dependencies, as in [12, 30], with
edges (i, j) for any agents i and j that communicate. The
weighted multiplier graph Gλ similarly describes the (two-
way) sharing of λi and zi between agents, with wij = wji

being edge weights. The neighbour set of agent i is defined
as all agents with whom it shares an edge, denoted NGf

(i)
(similarly NGλ

(i)).

Assumption 4: The graph Gλ is undirected and connected.

With that we are ready to present our algorithm.

Algorithm 1 Distributed OA vGNE-seeking algorithm with
Jacobian Estimation

Initialization: ui,0 ∈ Ωi, λi ∈ Rm
+ , and zi,0 ∈ Rm

+

Iteration k ∈ {0, . . . , K}: Player i ∈ N
Step 1: Exploration - Applies ui,k, ui,k+ and ui,k−

in order. Receives corresponding output
measurements yi,k, yi,k+ and yi,k−, and total
perturbation vector ϕk.

Step 2a: Jacobian Approximation - For each j ∈
{1, . . . , li}, updates:

∇̂uπij,k ← 1
2ϵϕk [(yi,k+)j − (yi,k−)j]

Π̂ij,k ← ∇̂⊤
u πij

Step 2b: Approx. Primal Step and Consensus -
Receives uj,k, yj,k, j ∈ NGf

(i), λj,k, j ∈ NGλ
(i),

Π̂ji, j ∈ N\{i}, yi,k, and updates:
ui,k+1 ← PΩi

(
ui,k − τi(∇ui,k

fi(ui,k,u−i,k)

+
∑

Nj∈Gf
(i)

Π̂⊤
ji,k∇yjgi(yi,k,y−i,k)−A⊤

i λi,k)
)

zi,k+1 ← zi,k + νi
∑

j∈NGλ
(i)

wij(λi,k − λj,k)

Step 3: Consensus and Dual Step - Receives zj,k+1,
j ∈ NGλ

(i) and updates:
λi,k+1 ← PRm

+

(
λi,k − σi[Ai(2ui,k+1 − ui,k)− bi

+
∑

j∈NGλ
(i)

wij [2(zi,k+1 − zj,k+1)− (zi,k

− zj,k)] +
∑

j∈NGλ
(i)

wij(λi,k − λj,k)
)

This algorithm is a modification of the forward-backward
algorithm outlined in [8, 12], with the difference being the
estimation of the Jacobian in steps 1 and 2a. We next present
a convergence-analysis for the algorithm. The choice of the
scalar step sizes τi, νi, and σi is formalized later.

B. Convergence Analysis

We define a variation of the algorithm presented in [8],
where the Jacobian ∂uπ is known precisely, as the “golden
algorithm”. The key idea for the convergence of Algorithm 1
is that it tracks (within bounded error) this golden algorithm.
We can show that the golden algorithm converges to a vKKT
point of the game, which then leads to the conclusion that
Algorithm 1 converges to a limit set around that point. We
begin by representing our algorithm as a forward-backward
iteration. We first note that a point u∗ and a corresponding
Lagrange multiplier λ∗ satisfying the vKKT conditions (4)
must also satisfy col(u∗, λ∗) ∈ zer(A+B) where

A : col(u, λ) 7→ col(Hw(u),−b)
B : col(u, λ) 7→ col(−A⊤λ+NΩ(u), Au+NRm

+
(λ)).

(11)
The above result follows from Theorem 2 in [12]. We intro-
duce some additional notation to allow us to express the al-
gorithm in a compact form. Define uk=col(u1,k, . . . , uN,k),
λk = col(λ1,k, . . . , λN,k), with zk and b defined similarly.

Let Λ = diag(A1, . . . , AN) and L=L⊗ Im, where L is
the Laplacian matrix of the communication graph Gλ (Def-
inition 6.1, [31]). Finally, let τ = diag(τ1In1 , . . . , τNInN

)
and τ−1 = diag(1

τ1
In1

, . . . , 1
τN

InN
), with ν, σ, ν−1, σ−1

defined similarly. With this, we can use Lemma 1 from [12]
to rewrite each step of the algorithm as

ϖk+1 = (Id+Φ−1B̄)−1(Id−Φ−1Ā)(ϖk), (12)

where ϖ = col(u, λ), the operators Ā and B̄ are defined as

Ā : ϖ 7→ col(Hw(u),0, L̄λ̄− b̄)

B̄ : ϖ 7→ NΩ(u)× 0×NRmN
+

(λ̄) + Ψϖ,
(13)

and the matrices Φ and Ψ are defined identically to [12] as

Φ =

τ̄−1 0 Λ⊤

0 ν̄−1 L̄
Λ L̄ σ̄−1

 , Ψ =

0 0 −Λ⊤

0 0 −L̄
Λ L̄ L

 . (14)

Finally, we impose an additional assumption so that this
forward-backward iteration matches the assumptions in [12].

Assumption 5: The pseudogradient Hw(u) defined in (5)
is η̄-strongly monotone and θ̄-Lipschitz continuous.

Assumption 5 appears rather strict, given that the mapping
π is unknown. In Chapter 5 of [32], we developed techniques
using matrix inequalities to verify Assumption 5 without full
knowledge of the mapping π. These techniques are omitted
here for reasons of space.

Proposition 1: Suppose Assumptions 1-5 hold. Take 0 <
β ≤ min

{
1

2d∗ ,
η̄
θ̄2

}
, where d∗ is the maximal weighted

degree of Gλ, and η̄, θ̄ are the monotonicity and Lipschitz
parameters from Assumption 5. Take δ > 1

2β , and choose
step-sizes τi, νi, σi to satisfy the following:

0 < τi ≤
(

max
j=1,...,ni

{∑m

k=1
|[A⊤

i]jk|
}
+ δ

)−1

0 < σi ≤
(

max
j=1,...,m

{∑ni

k=1
|[Ai]jk|

}
+ 2di + δ

)−1

0 < νi ≤ (2di + δ)−1.
(15)

Then, using the golden algorithm (as defined in the beginning
of this section), each player’s local strategy ui,k converges to
its corresponding component of a point satisfying the vKKT
conditions (4), and their local multipliers λi,k converge to
the multiplier satisfying those conditions for that point, i.e.,
limk→∞ ui,k = u∗

i and limk→∞ = λ∗, i ∈ N .
Proof: The assumptions ensure that the operators A

and B, as well as the augmented operators Ā and B̄ satisfy
Lemmas 1, and 5-7 in [12]. From that, we simply apply the
proof for Theorem 3 in [12], with the caveat being that a
fixed point of the iteration is not guaranteed to be a vGNE
of the game (3), rather it simply fulfills the vKKT conditions
(4). This difference is due to the potential non-convexity
introduced into the cost function via the mapping π.

Next, we aim to represent Algorithm 1 presented here as
a similar forward-backward iteration. We define equivalents
for A and Ā (note that B and B̄ remain unchanged for

the two algorithms). First we need an equivalent to the
pseudogradient operator Hw to be used in Algorithm 1:

Hw,Π̂(u) = F (u) + E
(
Π̂⊤∂yg(y)

⊤), (16)

where Π̂ is the approximation of the Jacobian matrix ∂uπ,
as computed using the model-free method outlined above.
Note here that when applied to a single iteration, the matrix
Π̂ is a constant, even though it varies over the course of the
algorithm. We also suppress the index k when writing it as
Π̂. Then the equivalent operators can be defined as

Â : col(u, λ) 7→ col(Hw,Π̂(u),−b) (17)
ˆ̄A : ϖ 7→ col(Hw,Π̂(u),0, L̄λ̄− b̄). (18)

Steps 2b and 3 of Algorithm 1 can then be similarly written
as a forward-backward iteration:

ϖ̂k+1 = (Id+Φ−1B̄)−1(Id−Φ−1 ˆ̄A)(ϖ̂k), (19)

Consider some arbitrary point ϖk, and suppose we apply one
iteration of the golden algorithm to obtain ϖk+1. Similarly
apply Algorithm 1 to the original ϖk to obtain ϖ̂k+1.
We denote the backward step of the iteration as T2 :=
(Id+Φ−1B̄)−1, and the respective forward step as T1 :=

(Id−Φ−1Ā) and T̂1 := (Id−Φ−1 ˆ̄A). From Lemma 5 in
[12], B̄ is maximally monotone. Thus, by Proposition 23.7
in [33], T2 is firmly nonexpansive. Following the definition
of nonexpansive operators (Definition 4.1 in [33]), we say

∥ϖk+1 − ϖ̂k+1∥2Φ = ∥T2T1ϖk − T2T̂1ϖk∥2Φ
≤ ∥T1ϖk − T̂1ϖk∥2Φ.

We expand the definition of T1 above and simplify to obtain

∥T1ϖk − T̂1ϖk∥2Φ = ∥Φ−1(Ā− ˆ̄A)(ϖk)∥2Φ.

Assuming that the steps-sizes for both algorithms are chosen
as per Proposition 1 above, we can apply Lemma 6 from
[12] to conclude that Φ− δIn+2mN is positive semidefinite.
Let σmax(Φ) and σmin(Φ) be the maximal and minimal
eigenvalues of Φ respectively, then σmax(Φ) ≥ σmin(Φ) ≥ δ.
Further, since ∥Φ∥2 = σmax(Φ),

1
∥Φ−1∥2

= σmin(Φ), we

know that ∥Φ−1∥2 ≤ 1
δ . Noting that Ā and ˆ̄A are both

single-valued (for a given value of Π̂), and the matrix Φ−1

is nonsingular, we know that for any x, y ∈ Ω̄

∥Φ−1(Ā− ˆ̄A)(ϖk)∥2Φ

=
[
(Ā− ˆ̄A)(ϖk)

]⊤
Φ−1

[
(Ā− ˆ̄A)(ϖk)

]
= ∥(Ā− ˆ̄A)(ϖk)∥2Φ−1

≤ 1

δ
∥(Ā− ˆ̄A)(ϖk)∥22.

We can then expand the definitions of Ā and ˆ̄A to obtain

1

δ
∥(Ā− ˆ̄A)(ϖk)∥22 =

1

δ

∥∥∥∥E [(
∂uπ(u, w)− Π̂

)⊤
∂yg(y)

⊤
]∥∥∥∥2

2

,

where y = π(u, w) as before. Since E is linear and bounded,
and stating its upper bound to be Emax ∈ R,

∥ϖk+1 − ϖ̂k+1∥Φ

≤ Emax

δ

∥∥∥∥(∂uπ(u, w)− Π̂
)⊤

∂yg(π(u, w))
⊤
∥∥∥∥2
2

,
(20)

i.e., the distance between an iterate of the golden algorithm
and an iterate of Algorithm 1 is bounded by the expression
on the right-hand side, if we can show that the norm of the
difference between the true Jacobian and estimated Jacobian
is bounded. Note that Π̂ is a value that is unique to a specific
iteration, and varies quasi-stochastically during runtime. We
note that at each iteration, a single row of the Jacobian is
constructed as per (9), and thus satisfies Lemma 1:

∇̂uπij(u, w) = ϕϕ⊤∇uπij(u, w) +O(ϵ2),

Hence the error between a row of the estimate and that of
the true Jacobian can be written as

∥∇̂uπij(u, w)−∇uπij(u, w)∥2
≤ ∥(ϕϕ⊤ − In)∥2∥∇uπij(u, w)∥2 +O(ϵ2).

Since the perturbations are sinusoidal, there exists a worst-
case vector ϕ̄ that maximizes the error between the estimated
row and the true row. Then, for any iteration,

∥∇̂uπij(u, w)−∇uπij(u, w)∥2
≤ ∥(ϕ̄ϕ̄⊤ − In)∥2∥∇uπij(u, w)∥2 +O(ϵ2).

(21)

We introduce an additional assumption now, to ensure that
this estimation error remains bounded for the disturbance.

Assumption 6: Given an output mapping π(u, w), defined
in (3), it has a finite sensitivity to all possible action profiles
u for any disturbance w, i.e., there exists some Smax < ∞
such that for each j ∈ {1, . . . , li}, and for each i ∈ N

∥∇uπij(u, w)∥2 ≤ Smax ∀u ∈ Ω, ∀w ∈ W.
Combining the bound (21) with Assumption 6, we obtain

∥∇̂uπij(u, w)−∇uπij(u, w)∥2
≤ σmax(ϕ̄ϕ̄

⊤ − In)Smax +O(ϵ2),
(22)

where σmax(ϕ̄ϕ̄
⊤ − In) is the maximal eigenvalue of the

matrix (ϕ̄ϕ̄⊤−In). Thus each row of the estimated Jacobian
Π̂ is within a bounded distance of the corresponding row of
the true Jacobian ∂uπ(u, w). To combine (20) and (22), we
note that the induced 2-norm of a matrix is upper-bounded
by its Frobenius norm, which is in turn equal to the sum of
the 2-norms of its rows. Summing the 2-norms of each row
is upper-bounded by multiplying the right side of (22) by the
number of rows (l), and thus

∥ϖk+1 − ϖ̂k+1∥2Φ ≤
Emaxl

2

δ
∥∂yg(π(u, w))∥22 (σmax(ϕ̄ϕ̄

⊤

− In)Smax +O(ϵ2))2.
(23)

Combining with Proposition 1, we conclude that Algorithm
1 converges to a limit set around a KKT point of game (3).

Theorem 1: Suppose that Assumptions 1-6 are satisfied.
Take 0 < β ≤ min

{
1

2d∗ ,
η̄
θ̄2

}
, where d∗ is the maximal

weighted degree of Gλ, and η̄, θ̄ are the monotonicity and
Lipschitz parameters from Assumption 5. Take δ > 1

2β .
Suppose that τi, νi, σi are chosen to satisfy Proposition 1.
Then with Algorithm 1, the overall action profile u converges
to an open ball Bnκ(u∗) where u∗ is a point satisfying
the vKKT conditions (4) (for some consensus value of the
multipliers λ∗), and the radius κ is defined by

κ =
Emaxl

2

δ
∥∂yg(π(u∗, w))∥22

(
σmax + Smax +O(ϵ2)

)2
.

IV. SIMULATION STUDIES

A. Control of a Distribution Feeder

We first consider a practical example, arising in control of
renewable power systems. Our setup is identical to that of
[8], with a power distribution feeder whose details can be
found in [17]. The agents in this game-theoretic problem are
the nodes equipped with photovoltaic (PV) panels. Variations
in solar irradiance can cause voltage to rise above acceptable
safety levels. Each node’s goal is to maximize power pro-
duction (minimize curtailment) while enforcing safety limits.

Fig. 1. IEEE 37-node feeder [11]. Node 1 is the Point of Common Coupling
(PCC), with all other nodes connected to a load and a voltage sensor. The
square nodes are equipped with PV systems. Black lines denote electrical
connections in the feeder and red lines are edges of the multiplier graph
Gλ.

We let the players in this game be the set N =
{4, 7, . . . , 36}, the PV-equipped, controllable nodes within
this distribution feeder (the grey nodes in Figure 1). The
voltage levels throughout the network are dictated by the
power flow equations of the distribution feeder. We assume
the nodes can measure the voltages, but do not have access to
a system model to compute them with. We define the safety
constraints on each output to be the set Y =

∏
i∈V Yi, where

Yi = {yi | y ≤ yi ≤ ȳ}, with y = 0.95 p.u. and ȳ = 1.05
p.u. Then each PV-equipped node, i ∈ N , aims to solve the
following optimization problem:

min
ui

∥(uref)i − ui∥2 +
1

2

∑
j∈N

[max(0, y − yj , yj − ȳ)]2

s.t. yi = πi(u, w)

ui ∈ Ui(u−i).
(24)

The coupling constraints set is chosen to enforce an upper
bound on the total power curtailed throughout the feeder, i.e.,

∑
i∈N (pmax

i − pi) ≤ l where we use l = 0.02 p.u. We use a
perturbation distance of ϵ = 0.0001

√
2, and we use the per-

turbation signals ϕi(t) =
√
2[sin(2πfipt) sin(2πfiqt)]

⊤ i ∈
{1, . . . , 18}, with fip and fiq sampled uniquely from the
ranges [2.2 3.9] Hz and [4.1 5.8] Hz respectively. The
frequency ranges were tuned to yield the least noisy results,
similar to [19]. A standard, algorithmic approach for per-
forming this tuning is an area of future research.

Fig. 2. Simulation results for 4 hours of solar irradiance data of an IEEE37
distribution feeder.

Figure 2 illustrates the results of the optimization over 4
hours of real-time solar irradiance data (with a resolution
of 1 second). As solar irradiance causes power fluctuations
(peaking at 2:30 pm), the model-free controllers curtail the
requisite power to ensure that voltages are maintained within
safety limits. Note that due to the uncertainty and stochastic-
ity in the sensitivity estimation, power fluctuates to a larger
degree than in the nominal approach in [8]. The model-free
approach thus requires less overhead, as a nominal model
needn’t be calculated, but has poorer convergence properties
due to the uncertainties in the model-estimation framework.

B. Simple Swarm Robotics Example

We next consider a problem inspired by swarm robotics,
where the robots i ∈ {1, 2} each seek to approach a target
position r̄i ∈ R2. We assume that the robots are equipped
with a position controller that asymptotically tracks position
set-point ui ∈ R2, in this instance a PD controller. Thus the
robot position ri(t) asymptotically approaches the chosen
control input ui. We suppose that each robot measures the
squared distance between the two, biased by a disturbance
wi ∈ R (e.g., noise on the channel that they communicate
with each other while localizing). Each robot seeks to drive
to the target position r̄i. Further, the robots wish to reach
their targets while ensuring that they do not go further than

a specified distance away from one another. This constraint
could be motivated, for example, by a communication con-
straint for the robots, the distance marking a point of failure.

Finally we outline the coupling constraints between the
robots. We aim to prevent collisions between the robots by
constraining the 1-norm of the difference of their positions
by some lower bound |u1a−u2a|+|u1b−u2b| ≥ l ∈ R, where
a and b respectively denote the first and second components
of vectors in R2. Using the triangle inequality, we can relax
this constraint as |u1a − u2a + u1b − u2b| ≥ l, which is a
non-convex constraint.

To resolve the non-convexity, we follow the method out-
lined in [34] to create a Mixed Integer Program (MIP). In
our framework the introduction of the binary independent
variable (denoted δ ∈ {0, 1}) in the MIP is resolved by
introducing a third player whose goal is enforcing the other
players’ coupling constraints. Thus we have a 3-player game
with the matrices from (1) defined as

A1 = A2 :=

1 −1
−1 1
0 0
0 0

 , A3 :=

M
−M
1
−1

 ,

b1 = b2 :=
1

2

[
l l −M 0 −1

]⊤
, b3 :=

[
0 0 0 0

]⊤
,

(25)
where M ∈ R is a constant significantly larger than l. Each
robot i ∈ {1, 2} then aims to solve

min
ui∈R2

1

2
∥ui − r̄i∥2 − log(d− yi)

s.t. yi = ∥u1 − u2∥2 + wi

ui ∈ Ui(u−i, δ),

(26)

where u−i denotes the other robot’s action (from robot
i’s perspective), δ denotes the coordination variable, and
Ui(u−i) is as defined under (1). The aforementioned third
player 2 attempts to solve the following feasibility problem:

min
δ∈[0,1]

0 s.t. δ ∈ ∆(u), (27)

where ∆(u) = {δ ∈ R : (u, δ) ∈ U}. The sets U and ∆
are defined as per (1) with the matrices Ai and bi chosen in
(25). Note that δ ∈ [0, 1] is a relaxation of the binary variable
δ ∈ {0, 1} introduced earlier.

We run two different simulations to validate Algorithm 1:
1) the algorithm in [8] with a nominal Jacobian, calculated

by sampling the precise Jacobian along a straight-line
path between the starting points and the targets.

2) Algorithm 1, the model-free Jacobian approach.
In Figure 3, the golden ‘O’ denotes the starting point for the
robots, and the green ‘X’ denotes the target position. The
golden ‘X’ denotes the final position they did converge to,
and the blue trajectories are the paths they took to get there.
The red circle denotes the final constraint boundary. The

2The addition of a third player means this game no longer satisfies
Assumption 5. The assumptions we outlined are sufficient, rather than nec-
essary. We believe this example is still worth including as it demonstrates the
convergence of the algorithm via an intuitive, easily-visualized application.

dotted purple line connecting the two green ‘X’ targets is the
optimality line: you would intuitively expect the optimum to
be when both robots are at the intersection of the optimality
line and the final constraint boundary. The figure has two
images, corresponding respectively from left to right to the
two listed above: nominal Jacobian and model-free Jacobian.

1 2 3 4 5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Nominal Jacobian

1 2 3 4 5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Model-Free Jacobian

Fig. 3. Visual of the model-free algorithm’s performance compared to the
algorithm from [8].

Note the performance of the nominal approach compared
to the model-free approach in Figure 3. The nominal Jaco-
bian made the assumption of a relatively straight-line path
between the robots’ starting positions and targets, and this
causes inaccuracy and a large deviation from the optimum
near the end of the trajectory. The model-free approach
converges to a set around the true optimum, since it made
no assumptions about the trajectory the robots would take.

V. CONCLUSION AND FUTURE WORK

We have presented a novel algorithm for online general-
ized Nash equilibrium seeking, which combines ideas from
game theory, feedback-based optimization, and zero-order
optimization. Convergence was established by casting the
algorithm as a forward-backward operator-splitting iteration
that tracks the algorithm presented in [8], assuming the latter
computes the Jacobian perfectly rather than nominally. We
presented simulation results for a power distribution feeder
example and a simple example motivated by swarm robotics.

A key direction for future work would be a more detailed
study of the perturbation signal. We utilize Assumption 3 as a
simplification that enables us to minimize the error between
rows of the estimated and true Jacobians in a convenient
fashion, but there is scope for a better tuned choice that
leads to less noisy convergence. In particular, we qualitatively
assessed the noise and error while tuning the frequencies for
our signal choices. An algorithmic technique to choose the
signal is thus an important area of future work.

REFERENCES

[1] J. S. Shamma, “Game theory, learning, and control
systems,” National Science Review, vol. 7, no. 7,
pp. 1118–1119, Nov. 2019.

[2] J. R. Marden and J. S. Shamma, “Chapter 16 - game
theory and distributed control,” in ser. Handbook of
Game Theory with Economic Applications, H. P.
Young and S. Zamir, Eds., vol. 4, Elsevier, 2015,
pp. 861–899.

[3] G. Belgioioso, D. Liao-McPherson, M. H. de Badyn,
S. Bolognani, J. Lygeros, and F. Dörfler, Sampled-
data online feedback equilibrium seeking: Stability
and tracking, 2021.

[4] A. R. Romano and L. Pavel, “Dynamic NE seeking
for multi-integrator networked agents with disturbance
rejection,” IEEE Trans. Control Net. Syst., vol. 7,
no. 1, pp. 129–139, Mar. 2020.

[5] S. Givigi and H. Schwartz, “A game theoretic ap-
proach to swarm robotics,” Appl. Bionics and Biome-
chanics, vol. 3, 2006.

[6] Y. Zhang and M. Guizani. CRC Press, 2019.
[7] A. B. MacKenzie and L. A. DaSilva, Synthesis Lec-

tures on Communications. Springer, 2006.
[8] A. Agarwal, J. W. Simpson-Porco, and L. Pavel,

“Game-theoretic feedback-based optimization,” IFAC-
PapersOnLine, vol. 55, no. 13, pp. 174–179, 2022,
IFAC NecSys Workshop.

[9] E. Ismagilova, L. Hughes, N. Rana, and Y. Dwivedi,
“Security, privacy and risks within smart cities: Lit-
erature review and development of a smart city in-
teraction framework,” Information Sys. Frontiers, Jul.
2020.

[10] A. Bernstein, E. Dall’Anese, and A. Simonetto, “On-
line primal-dual methods with measurement feedback
for time-varying convex optimization,” IEEE Trans.
Signal Proc., vol. 67, no. 8, pp. 1978–1991, Apr. 2019.

[11] M. Colombino, J. W. Simpson-Porco, and A. Bern-
stein, “Towards robustness guarantees for feedback-
based optimization,” in Proc. IEEE CDC, 2019,
pp. 6207–6214.

[12] P. Yi and L. Pavel, “An operator splitting approach for
distributed generalized Nash equilibria computation,”
Automatica, vol. 102, pp. 111–121, 2019.

[13] D. Gadjov and L. Pavel, “A passivity-based approach
to Nash equilibrium seeking over networks,” IEEE
Trans. Autom. Control, vol. 64, no. 3, pp. 1077–1092,
2019.

[14] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler,
“Optimization algorithms as robust feedback con-
trollers,” Unpublished, 2021. arXiv: 2103.11329
[math.OC].

[15] M. Colombino, E. Dall’Anese, and A. Bernstein, “On-
line optimization as a feedback controller: Stability
and tracking,” IEEE Trans. Control Net. Syst., vol. 7,
no. 1, pp. 422–432, 2020.

[16] L. S. P. Lawrence, J. W. Simpson-Porco, and E.
Mallada, “Linear-convex optimal steady-state con-
trol,” IEEE Trans. Autom. Control, vol. 66, no. 11,
pp. 5377–5384, 2021.

[17] E. Dall’Anese and A. Simonetto, “Optimal power
flow pursuit,” IEEE Trans. Smart Grid, vol. 9, no. 2,
pp. 942–952, 2018.

[18] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler,
“Projected gradient descent on riemannian manifolds
with applications to online power system optimiza-

tion,” in Allerton Conf on Comm, Ctrl & Comp, 2016,
pp. 225–232.

[19] Y. Chen, A. Bernstein, A. Devraj, and S. Meyn,
Model-free primal-dual methods for network optimiza-
tion with application to real-time optimal power flow,
2019.

[20] D. Shirodkar and S. P. Meyn, “Quasi stochastic ap-
proximation,” Proceedings of the 2011 American Con-
trol Conference, pp. 2429–2435, 2011.

[21] J. Kiefer and J. Wolfowitz, “Stochastic estimation of
the maximum of a regression function,” SIAM Journal
on Optimization, vol. 23, no. 3, pp. 462–466, 1952.

[22] J. C. Spall, “A one-measurement form of simultaneous
perturbation stochastic approximation,” Automatica,
vol. 33, no. 1, pp. 109–112, 1997, ISSN: 0005-1098.

[23] J. C. Spall, “Implementation of the simultaneous per-
turbation algorithm for stochastic optimization,” taes,
vol. 34, no. 3, pp. 817–823, 1998.

[24] S. Bhatnagar, M. C. Fu, S. I. Marcus, and I.-J. Wang,
“Two-timescale simultaneous perturbation stochastic
approximation using deterministic perturbation se-
quences,” vol. 13, no. 2, pp. 180–209, Apr. 2003, ISSN:
1049-3301. DOI: 10 . 1145 / 858481 . 858486.
[Online]. Available: https : / / doi . org / 10 .
1145/858481.858486.

[25] P. L. A, S. Bhatnagar, N. Bhavsar, M. Fu, and S. I.
Marcus, Random directions stochastic approximation
with deterministic perturbations, 2018. DOI: 10 .
48550/ARXIV.1808.02871.

[26] Z. He, S. Bolognani, J. He, F. Dörfler, and X. Guan,
Model-free nonlinear feedback optimization, 2022.
DOI: 10.48550/ARXIV.2201.02395.

[27] D. Hajinezhad, M. Hong, and A. Garcia, Zeroth order
nonconvex multi-agent optimization over networks,
2017. DOI: 10.48550/ARXIV.1710.09997.

[28] J. N. Webb, “Game theory, Decisions, interaction and
evolution,” in New York, USA: Springer, 2007, ch. 4,
sec. 1, p. 62.

[29] F. Facchinei and J.-S. Pang, Finite-Dimensional Vari-
ational Inequalities and Complementary Problems.
Springer Science & Business Media, 2007.

[30] H. Yin, U. V. Shanbhag, and P. G. Mehta, “Nash
equilibrium problems with scaled congestion costs
and shared constraints,” IEEE Trans. Autom. Control,
vol. 56, no. 7, pp. 1702–1708, 2011.

[31] F. Bullo, Lectures on Network Systems, 1.6. Kindle
Direct Publishing, 2022.

[32] A. Agarwal, “Robust feedback-based nash equilibrium
seeking,” M.S. thesis, University of Toronto, 27 King’s
College Cir, Toronto, Canada, 2022.

[33] H. Bauschke and P. L. Combettes, Convex Analysis
and Monotone Operator Theory in Hilbert Spaces.
Springer, 2011, p. 468.

[34] M. Chan, Y. Yin, B. Amado, P. Williams, and D. Xiao,
Optimization with absolute values, 2020.

