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Abstract— We study the geometric convergence rate of
discrete-time primal-dual algorithms for solving strongly-convex
equality-constrained optimization problems. Our approach sep-
arates the primal-dual algorithm into an interconnection of
two exponentially stable systems, and a composite Lyapunov
approach is used to establish stability of the interconnection
and provide new bounds on the geometric rate of convergence.
Analogous convergence results are developed for two variations
of the primal-dual algorithm: an extrapolated version which
accelerates convergence, and an inner-loop version which in-
terpolates between the vanilla primal-dual method and dual
ascent. The obtained bounds are compared and contrasted with
existing bounds from the literature.

I . I N T R O D U C T I O N

Primal-dual algorithms are a broad set of methods for
solving constrained optimization problems, with applications
across economics [1], signal processing [2], and machine
learning. The analysis of such methods has attracted signif-
icant attention in recent years from the control community,
particularly in the continuous-time setting, in which multiple
distinct Lyapunov constructions have been developed for as-
sessing asymptotic, exponential, and semi-global exponential
stability; [3]–[13]. Applications of the algorithms have also
appeared in the area of feedback-based online optimization
[14], [15], wherein they are implemented as real-time dy-
namic controllers which process measurements.

Our focus in this work will be on primal-dual algorithms
for strongly convex problems with linear equality constraints;
see Section II for a review. For such problems, it is known
that exponential/geometric convergence is achievable, and a
key problem of interest is the non-conservative quantification
of convergence rates. We will here focus exclusively on
algorithms in the discrete-time setting, in which the selection
of algorithm step sizes also becomes a key issue.

To review some related work, in [16], a continuous-time
primal-dual algorithm is considered for equality-constrained
optimization problems, and an Euler discretization is used to
show that an associated discrete-time primal-dual algorithm
also converges exponentially. The approach limits itself in
requiring that the step sizes for both the primal and dual
updates are identical. A similar Euler discretization approach
is taken in [17] to translate a continuous-time exponential
stability result for a proximal primal-dual method into a
discrete-time convergence rate.
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Building upon the robust control approach to optimization
algorithm analysis in [18], LMI-based methods have recently
been used to quantify the convergence rates of primal-
dual algorithms in [19]. In [20], a continuous-time primal-
dual algorithm is considered in which no rank assumptions
are placed on the constraint matrix, and tight bounds are
provided on the achievable convergence rates. However, no
corresponding rates for discrete-time algorithms are provided,
and the frequency-domain analysis does not lead to an explicit
parametric Lyapunov construction. Our objective here will be
the parametric construction of Lyapunov functions, and in this
respect the closest references are [21] and [22], which both
study discrete-time primal-dual methods and provide step-
size selections and convergence rates; these will be reviewed
in detail in Section II-D, and our Lyapunov constructions will
be similar to those in [22].

Contributions: Our work here contains three contributions.
We first revisit the analysis of [22], providing an interpretation
of the analysis method as a loop transformation which
separates the dynamics into the interconnection of two stable
systems. We improve upon the previous analysis in [22], yield-
ing a less conservative step size selection and improvement in
the guaranteed rate; our rate is the best that can be achieved
with this particular Lyapunov construction. Second, we extend
this analysis to a new family of algorithms which incorporate
extrapolation in the primal variable, quantifying how the
tuning of the extrapolation parameter leads to acceleration.
Finally, inspired by [23] and [20] where primal and dual
updates run at different rates, we extend still further the
previous analysis technique to study an inner-loop primal
dual method, wherein N primal steps are taken in between
each dual update. Our analysis quantifies how this inner-loop
method smoothly interpolates between the rate of the original
primal-dual method at N = 1 and the rate of gradient ascent
applied to the dual problem as N → ∞.

I I . B A C K G R O U N D A N D P R O B L E M S E T U P

A. Preliminaries from Convex Analysis

To begin we recall some basic notions from convex
analysis; see, e.g. [24]. A continuously differentiable mapping
f : Rn → R is convex if its gradient ∇f : Rn → Rn satisfies
(∇f(x) − ∇f(y))T(x − y) ≥ 0 for all x, y ∈ Rn, and for
m > 0 is m-strongly convex if

(∇f(x)−∇f(y))T(x− y) ≥ m∥x− y∥22



for all x, y ∈ Rn. Similarly, for L > 0 we say f is L-smooth
if ∇f is globally L-Lipschitz continuous, i.e., if

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2
for all x, y ∈ Rn. The set of all continuously differentiable m-
strongly convex and L-smooth functions will be denoted by
S(m,L), and we let κ(f) = L/m ≥ 1 denote the condition
ratio of f . The convex conjugate of f is the function f∗

defined by

f∗(z) := sup
x∈Rn

[
xTz − f(x)

]
.

It is a standard result that if f ∈ S(m,L), then f∗ : Rn →
R, f∗ is continuously differentiable, and f∗ ∈ S( 1

L ,
1
m ).

Moreover, in this case, ∇f is invertible and (∇f)−1 = ∇f∗.

B. Linearly-Constrained Convex Optimization

Our focus will be on first-order algorithms for solving the
equality-constrained optimization problem

minimize
x∈R

f(x) subject to Ax = b, (1)

where f ∈ S(m,L) is the objective function to be minimized
over the constraint set C = {x ∈ Rn | Ax = b} with
A ∈ Rr×n and b ∈ Rr. With little loss of generality, we
assume throughout that A has full row rank, with minimum
and maximum singular values σmin(A) > 0 and σmax(A),
and we let κ(A) = σmax(A)

σmin(A) ≥ 1; see [13] for a recent
continuous-time study where A is not full row rank.

Under the previous standing assumptions, (1) is feasible
and possesses a unique optimal solution x⋆. Primal solution
techniques such as projected gradient descent

xk+1 = ProjC(x
k − α∇f(xk)), α > 0,

could be applied to solve (1), but computation of the projec-
tion at each step will be expensive in large problems. Instead,
methods based on the dual problem can considered. The dual
problem associated with (1) can be determined by introducing
the Lagrangian L : Rn × Rr → R given by

L(x, λ) := f(x) + λT(Ax− b), (2)

where λ ∈ Rr is the dual variable. Under our assumptions
L has a unique saddle point (x⋆, λ⋆) where λ⋆ is the unique
optimal solution of the dual problem [25, Theorem 4.1.2]

maximize
λ∈Rr

f∗(−ATλ)− λTb (3)

with x⋆ recoverable as x⋆ = argminx L(x, λ⋆) =
∇f∗(−ATλ⋆). Applying gradient ascent to (3) one obtains

λk+1 = λk + β(A∇f∗(−ATλk)− b), β > 0,

which can be expressed as the two step method

x̃ = argmin
x∈Rn

[
f(x) + (Ax)Tλk

]
= ∇f∗(−ATλk) (4a)

λk+1 = λk + β(Ax̃− b). (4b)

Each iteration of (4) requires the solution of the sub-
optimization problem (4a), which is again not appealing in
large-scale applications.

C. Primal-Dual Algorithms

Primal-dual algorithms iteratively update both the primal
and dual variables, with each iteration of the algorithm
being considerably simpler than an iteration of the projected
gradient descent or dual gradient ascent described above. The
most basic such method would be

xk+1 = xk − α
(
∇f(xk) +ATλk

)
(5a)

λk+1 = λk + β
(
Axk − b

)
, (5b)

where α > 0 and β > 0 are step sizes. The iteration (5) can be
interpreted as simultaneous descent/ascent on the Lagrangian
(2) in search of the saddle point, or alternatively, (5a) can be
viewed as a crude approximation of (4a). Note that each step
of (5) requires only evaluation of ∇f and the evaluation of
matrix-vector products involving A and AT.

The vanilla primal-dual algorithm (5) is but one option.
As a generalization, we will also consider in this work the
“extrapolated” primal-dual (EPD) algorithm

xk+1 = xk − α
(
∇f(xk) +ATλk

)
(6a)

x̃ = xk + τ
(
xk+1 − xk

)
(6b)

λk+1 = λk + β (Ax̃− b) , (6c)

where τ ∈ [0, 1], α > 0, and β > 0. The parameter τ modifies
the value of x used in the dual update (6c), extrapolating from
xk towards xk+1; indeed, (6) reduces to (5) when τ = 0. Our
subsequent analysis will first begin with (5) to motivate our
approach, and then will be extended to (6).

D. Analysis Methods and Known Rates

Here we review some analysis methods and associated con-
vergence rates from the literature. If ξk+1 = F (ξk) denotes
a discrete-time system with F continuous and possessing a
unique equilibrium ξ⋆, the sequence of iterates {ξk}k∈Z≥0

is
said to converge to ξ⋆ geometrically with rate ρ ∈ [0, 1) if
there exists C > 0 such that ∥ξk−ξ⋆∥2 ≤ Cρk∥ξ0−ξ⋆∥2 for
all ξ0 and all k ≥ 0. For instance, it is a standard result that
if f ∈ S(m,L), the unconstrained gradient method xk+1 =
xk−α∇f(xk) with α = 2

m+L converges geometrically with
rate ρg = κ(f)−1

κ(f)+1 [18]. Using the properties of the convex
conjugate from Section II-A, one may establish that the dual
objective in (3) belongs to S(m̄, L̄), where we use the short
form notation

L̄ :=
σmax(A)2

m
, m̄ :=

σmin(A)2

L
, κ̄ :=

L̄

m̄
. (7)

Hence, the dual ascent method (4) with step size β = 2
m̄+L̄

converges geometrically with rate ρd = κ̄−1
κ̄+1 .

Returning to the primal-dual methods (5) and (6), we
highlight two bounds from the literature on convergence
rates. In [22], an analysis technique for (5) based on “ghost
sequences” is developed. The method uses the Lyapunov
function

V (xk, λk) = ||xk −∇f∗(−A⊤λk)||2 + ω||λk − λ⋆||2



with ω = L
m2

σ3
max

σ2
min

, leading to the step size selections

α =
2

m+ L
, β =

m

(m+ L)
(
(σmax

m ) + ωσmax

) , (8)

and a guaranteed geometric convergence rate of

ρ = 1− 1

12κ(f)3κ(A)4
. (9)

In [21], the authors analyze (6) with τ = 1. The approach
uses the quadratic Lyapunov function

V (xk, λk) = (1− αβσ2
max)||xk − x∗||22 +

α

β
||λk − λ∗||22

with step-sizes satisfying

α ≤ 1

L
, β ≤ m

σ2
max(A)

.

The approach provides a convergence rate

ρ = max{1− αm(1− αL), 1− αβσ2
min(A)}.

Optimizing the step sizes to achieve the best possible rate in
this bound yields

ρ2 =

{
1− 1

2κ(f) , if κ(A) ≤
√
2

1− 1
κ(f)

(
1

κ(A)2 − 1
κ(A)4

)
, otherwise.

(10)

These rates will be used as points of comparison for our
subsequent results.

I I I . I M P R O V E D C O N V E R G E N C E R AT E S V I A
C O M P O S I T E LYA P U N O V A N A LY S I S

One challenge in establishing convergence of (5) or (6) is
the lack of internal stability in the dual update when isolated;
stability of (5) relies on the stability of the primal variable
being “passed through” to the dual update. Our approach in
essence will be to perform a loop transformation, separating
the dynamics into two exponentially stable subsystems, and
then constructing a composite Lyapunov function which
establishes exponentially stability of the interconnection. We
begin with (5), where the Lyapunov construction is clearer,
before proceeding to analyze (6).

A. Analysis of Simultaneous Primal-Dual

Consider the simultaneous primal-dual (SPD) method (5).
If one interprets the ATλk term in the primal update (5a) as
an external input, then (5a) can be rewritten as a gradient
descent algorithm with an external input, given by

xk+1 = xk − α∇f(xk)− αuk

uk = ATλk.

Next, we interpret (5b) as a perturbation of the ideal dual
update given by the dual ascent method (4). Adding and
subtracting, (5b) can be expressed as

λk+1 = λk + β
(
A∇f∗(−ATλk)− b

)
+ βAyk

yk = xk −∇f∗(−ATλk).

Combining the above ideas, we obtain an alternative repre-
sentation of the dynamics (5) as the feedback interconnection
F(Σ1,Σ2) of the system Σ1 defined by

Σ1 :

{
xk+1 = xk − α∇f(xk)− αuk

yk = xk −∇f∗(−uk)

with the system Σ2 defined by

Σ2 :

{
λk+1 = λk + β

(
A∇f(−ATλk)− b

)
+ βAyk

uk = ATλk.

Note that the output yk captures the difference between the
value xk used in (5a) and the ideal primal value produced
by dual ascent in (4). In contrast, Σ2 is the dual ascent (4),
but with an input perturbation. Thus, one may interpret the
system Σ1 as a perturbation to the “ideal” system Σ2. The
following standard result will be used in our analysis.

Lemma 3.1 (Contraction of Gradient Descent [22]):
Let f ∈ S(m,L) and for α ∈ R define F (z) = z−α∇f(z).
If 0 ≤ α ≤ 2

m+L , then for all z1, z2 ∈ Rn we have

∥F (z2)− F (z1)∥2 ≤ (1− αm)∥z2 − z1∥2.

We can now state the first result.
Theorem 3.2 (Simultaneous PD Method): Consider the

simultaneous primal-dual algorithm (5) for solving (1) under
all previous assumptions, and define the constants

θ1 :=

√
κ̄(κ̄+ 1)

κ̄+
√
κ̄(κ̄+ 1)

, θ2 := 1 + κ̄+
√

κ̄(κ̄+ 1)

where κ̄ is as in (7). If the step sizes (α, β) are chosen as

α =
2

m+ L
, β =

1

κ+ 1
· 2

θ1m̄+ θ2L̄

then the iterates of (5) converge geometrically to the unique
optimal solution (x⋆, λ⋆) of (1) with rate

ρ = ρg + (1− ρg)
θ2κ̄

θ1 + θ2κ̄
, where ρg =

κ− 1

κ+ 1
. (11)

Theorem 3.2 provides a modest improvement in guaranteed
rate over the analysis in [22]; we defer to the simulation
section for a quantitative comparison. The formula for the
dual update step size illustrates that the dual steps must
be significantly more conservative compared to the optimal
tuning β = 2

m̄+L̄
for the dual ascent method (4), even when

the primal step size α = 2
m+L is chosen optimally.

Proof: The system (5) is equivalent to the interconnec-
tion of the systems Σ1 and Σ2 defined above Lemma 3.1.
We will construct a Lyapunov function for the closed-loop
system. First, define V1(y

k) = ∥yk∥2, and compute along



closed-loop trajectories that

V1(y
k+1) = ∥xk+1 −∇f∗(−uk+1)∥2

≤ ∥xk+1 −∇f∗(−uk)∥2
+ ∥∇f∗(−uk+1)−∇f∗(−uk)∥2

≤ ∥xk −∇f∗(−uk)− α
(
∇f(xk) + uk)

)
∥2

+ σmax

m ∥λk+1 − λk∥2
= ∥xk − α∇f(xk)−∇f∗(−uk)− αuk∥2
+ σmax

m ∥λk+1 − λk∥2
(12)

Inserting uk = −∇f(∇f∗(−uk)) for uk in the last term
within the first normed quantity, for α ≤ 2

m+L we may invoke
Lemma 3.1 with F (z) = z − α∇f(z), z2 = xk, and z1 =
∇f∗(−uk) to further bound as

V1(y
k+1) ≤(1− αm)∥yk∥2

+ β σmax

m ∥A∇f∗(−ATλk)− b+Ayk∥2
≤
(
1 + β

σ2
max

m − αm
)
∥yk∥2

+ β
σ3
max

m2 ∥λk − λ⋆∥2.

(13)

The second inequality holds because f∗ ∈ S( 1
L ,

1
m ) and A is

full row-rank. Next, define V2(λ) = ∥λ−λ⋆∥2, and similarly
compute along trajectories that

V2(λ
k+1) = ∥λk − λ⋆ + βA(∇f∗(−ATλk)

−∇f∗(−ATλ⋆)) + βAyk∥2
≤ ∥λk − λ⋆ + β(A∇f∗(−ATλk)

−A∇f∗(−ATλ⋆))∥2 + βσmax∥yk∥2
≤ (1− β

σ2
min

L )∥λk − λ⋆∥2 + βσmax∥yk∥2

(14)

for β ≤ 2
L̄+m̄

due to Lemma 3.1. Now let ω > 0,
and consider the composite Lyapunov function V (x, λ) =
V1(y) + ωV2(λ), where again y = x − ∇f∗(−ATλ). By
construction, V (x⋆, λ⋆) = 0 and V is positive definite with
respect to (x⋆, λ⋆). Combining the inequalities, tedious but
routine algebra shows that

V (xk+1, λk+1) ≤ c1V1(y
k) + c2ωV2(λ

k) (15)

where

c1(α, β, ω) := 1− αm+ β
(
L̄+ ωσmax

)
c2(β, ω) := 1 + β(L̄σmax

ωm − m̄).

The idea is now to select (α, β, ω) to minimize
max{|c1|, |c2|}. First note that since α ≤ 2

m+L , it holds
that c1 > 0, and thus since α 7→ c1(α, β, ω) is monotonically
decreasing for all positive (β, ω), the optimal selection will
always be α = 2

m+L . Substitution and simplification yields

c1(β, ω) :=
κ−1
κ+1 + β(L̄+ ωσmax)

c2(β, ω) := 1− βm̄
(
1− κ̄σmax

ωm

)
For there to exist β > 0 such that |c2| < 1, we certainly
require that ω > κ̄σmax

m , in which case, since β ≤ 2
m̄+L̄

,
we must have that c2 > 0. Now observe that (i) c1 is an
increasing function of both β and ω, and (ii) c2 is a decreasing

function of both β and ω. It follows that max{c1, c2} will
be minimized when c1 = c2. Equating the expressions and
solving for β in terms of ω, one finds that

β(ω) =
2

κ+ 1

1

(L̄+ ωσmax) + m̄
(
1− κ̄σmax

ωm

) ,
and substitution into c(ω) := c1(β(ω), ω) yields

c(ω) =
κ− 1

κ+ 1
+

2

κ+ 1

(L̄+ ωσmax)

(L̄+ ωσmax) + m̄
(
1− κ̄σmax

ωm

) .
Through straightforward analysis, one can now argue that
c(ω) possesses a unique minimum over ω ∈ (κ̄σmax

m ,∞) at

ω⋆ = σmax

m (κ̄+
√
κ̄(κ̄+ 1)),

and direct computation of β(ω⋆) ≤ 2
m̄+L̄

and ρ := c(ω⋆)
lead to the step size and rate values in the theorem statement.
The inequality (15) now simplifies to V (xk+1, λk+1) ≤
ρV (xk, λk) which establishes global exponential stability at
the claimed rate.

B. Analysis of Extrapolated Primal-Dual

We now extend our analysis to the extrapolated primal-dual
method (6). Our approach is again to separate the dynamics
(6) into a new feedback interconnection, and following similar
reasoning as in Section III-A, we consider the feedback
interconnection of the following two input-output systems

Σ1 :


xk+1 = xk − α

(
∇f(xk) + uk

)
yk1 = xk −∇f∗(−uk)

yk2 = xk+1 −∇f∗(−uk),

Σ2 :


λk+1 = λk + β

(
A∇f∗(−ATλk)− b

)
+ βA(τyk1 + (1− τ)yk2 )

uk = ATλk.

The interpretation is that the primal subsystem now produces
two “error outputs” y1 and y2, and the dual subsystem takes
these both as inputs and interpolates between them. The
previous analysis generalizes to yield the following result.

Theorem 3.3 (Extrapolated PD Method): Consider the
Extrapolated primal-dual (EPD) algorithm (6) for solving
(1) under all previous assumptions, and define the constants

θ1 :=


√

κ̄(κ̄+1)

κ̄+
√

κ̄(κ̄+1)
, τ ≤ (m+L)(κ̄+

√
κ̄(κ̄+1))

κ̄+
√

κ̄(κ̄+1)+1

1, otherwise

θ2 :=

1 + κ̄+
√

κ̄(κ̄+ 1), τ ≤ (m+L)(κ̄+
√

κ̄(κ̄+1))

κ̄+
√

κ̄(κ̄+1)+1
,

1− 1−τ+τρg

τρg
, otherwise

Let ρg := κ−1
κ+1 < 1. If the step sizes (α, β) are chosen as

α =
2

m+ L
, β =

1

κ+ 1
· 2

θ1m̄+ (1− τ + τρg)θ2L̄

then the iterates of (5) converge geometrically to the unique
optimal solution (x⋆, λ⋆) of (1) with rate

ρ = ρg + (1− ρg)
(1− τ + τρg)θ2κ̄

θ1 + (1− τ + τρg)θ2κ̄
. (16)



Theorem 3.3 allows the user to guarantee a convergence
rate for (6) for any desired selection of τ ∈ [0, 1]. When
τ = 0, Theorem 3.3 reduces exactly to Theorem 3.2. When
τ = 1, the given dual update step size becomes

β =
1

κ+ 1

2

θ1m̄+ ρgθ2L̄
.

Since ρg (the optimal convergence rate of pure gradient
descent) is less than 1, this results in a more aggressive
dual update step size compared to that in Theorem 3.2. The
corresponding obtained rate

ρ = ρg + (1− ρg)
ρgθ2κ̄

θ1 + ρgθ2κ̄

is faster as a result. Moreover, the corresponding improvement
in convergence rate is monotonic in τ , which provides a clear
picture of how extrapolation in (6) accelerates convergence
compared to (5).

Proof: The method (6) is equivalent to the intercon-
nection of the systems Σ1 and Σ2 defined above Theorem
3.3; we construct a Lyapunov function for the closed-loop
system. With y = (y1, y2), let V1(y) = (1−τ)∥y1∥2+τ∥y2∥2.
Computations quite similar to those in (13) produce the bound

V1(y
k+1) ≤ (ρg + β(1− τ + ρgτ)L̄)V1(y

k)

+ (1− τ + τρg)
σ3
max

m2
β∥λk − λ⋆∥2,

(17)

for α ≤ 2
m+L , where one again invokes Lemma 3.1. Defining

V2(λ) = ∥λ − λ⋆∥2, computations similar to those in (14)
lead to the bound

V2(λ
k+1) ≤ (1− βm̄)V1(λ

k) + βσmaxV1(y
k), (18)

for β ≤ 2/(m̄ + L̄). For ω > 0 consider the composite
Lyapunov function V (x, λ) = V1(y) + ωV2(λ). Combining
the inequalities (17) and (18) and setting α = 2

m+L tedious
but routine algebra shows that

V (xk+1, λk+1) ≤ max{c1, c2}V (xk, λk) (19)

where

c1(β, ω) = ρg + β((1− τ + ρgτ)L̄+ ωσmax)

c2(β, ω) = 1− βm̄
(
1− (1− τ + ρgτ)κ̄

σmax

ωm

)
.

(20)

For there to exist a positive β such that c2 < 1, we must
necessarily have that ω > δκ̄σmax

m , where δ := 1− τ + ρgτ
for short. Note that c1 is an increasing function of both β > 0
and ω > δκ̄σmax

m , while c2 is a decreasing function of both
β and ω for the same range. The maximum of c1 and c2
therefore will be minimized only when c1 = c2; equating
and solving for β, we obtain

β(ω) =
1− ρg

(δL̄+ ωσmax) + m̄(1− δκ̄σmax

ωm )
(21)

and the back-substitution c(ω) := c1(β(ω), ω) yields

c(ω) = ρg + (1− ρg)
(δL̄+ ωσmax)

(δL̄+ ωσmax) + m̄(1− δκ̄σmax

ωm )

Direct arguments show that c(ω) achieves its minimum at

ω⋆ = δ σmax

m (κ̄+
√
κ̄(κ̄+ 1)).

Notice that β must also be constrained such that it is
compatible with Lemma 3.1. Specifically, it is required that
β(ω) ≤ 2

m̄+L̄
, which after some tedious calculation holds if

2τσmax

m+ L
≤ ω.

The value of ω⋆ decreases below this boundary when

τ ≤
(m+ L)(κ̄+

√
κ̄(κ̄+ 1))

κ̄+
√
κ̄(κ̄+ 1) + 1

. (22)

Thus, by defining θ1 and θ2 as piecewise functions, it is
ensured that when ω⋆ exceeds the lower limit, the value
is capped at the minimum. Direct evaluation of c(ω⋆) and
β(ω⋆) followed by simplification yield the expressions in the
theorem statement.

I V. A N A LY S I S O F A N I N N E R - L O O P
P R I M A L - D U A L A L G O R I T H M

As previously discussed, the primal-dual algorithms (5)
and (6) can be viewed as approximations of the dual ascent
method (3), wherein the computation of the dual gradient
— an inner optimization problem — is approximated using
a single primal gradient step. In this section we consider a
generalization of (5) involving an inner loop which takes N ∈
Z≥1 primal gradient steps before updating the dual variable.
With the dual update function D(x, λ) := λ+β(Ax− b), we
express this as

xk+1 = xk − α(∇f(xk) +ATλk)

λk+1 =

{
D(xk, λk), k mod N = 0

λk, otherwise.

(23)

One may think of this as updating the dual variable only
at steps {0, N, 2N, . . .}. When N = 1 we recover (5), and
as N → ∞, we should intuitively recover the dual ascent
method (3). Our result below captures this intuition.

Theorem 4.1 (Inner-Loop Primal-Dual): Consider the
inner-loop primal-dual algorithm (23) for solving (1) under
all previously stated assumptions. Let ϵ = ρN−1

g , set

a := 2σmax(L+m)

b := (L̄+ m̄)((1− ϵ)L+ (1 + ϵ)m)− 2(L+m)(ϵL̄+ m̄)

c := 2ϵL̄
σmax

m
(L+m)(m̄+ L̄),

(24)
and define

ω := max

{
ϵ
σmax

m

(
κ̄+

√
κ̄(κ̄+ 1

)
,
b+

√
b2 + 4ac

2a

}
.

If the step sizes (α, β) are chosen as

α = 2
m+L , β = (1−ϵ)L+(1+ϵ)m

(L+m)(ϵL̄+ωσmax+m̄−ϵL̄σmax
ωm )

(25)

then the iterates of (23) converge geometrically to the unique
optimal solution with rate

ρ = 1−
((1− ϵ)L+ (1 + ϵ)m)(m̄− ϵL̄σmax

ωm )

(L+m)(ϵL̄+ ωσmax + m̄− ϵL̄σmax

ωm )
. (26)



While the above expressions are complex to parse, the
rates guaranteed in Theorem 4.1 do indeed match with the
intuition behind the algorithm. When N = 1, ϵ = 1 and
some rather involved calculations show that the provided rate
reduces to the rate given for the simultaneous primal-dual
method in Theorem 3.2. Conversely, as N → ∞, we have
ϵ → 0, ω → b

a = L̄−m̄
2σmax

, and

ρ → 1− m̄

m̄+ L̄−m̄
2

= 1− 2m̄

L̄+ m̄
=

κ̄− 1

κ̄+ 1

which is the optimal rate of dual ascent (4). Thus, the results
of the theorem interpolate between the simultaneous primal-
dual method (5) and the dual ascent method (4). The proof is
a slightly more complex version of the previously presented
proofs, and is omitted.

V. N U M E R I C A L C O M PA R I S O N S O F R AT E S

A. Simultaneous Primal-Dual Algorithm

The rate obtained in Theorem 3.2, given by (11), will be
compared against (9), the rate achieved in [22]. Two plots will
be used. First, the condition number of A, κ(A) = σmax(A)

σmin(A) ,
will be held constant while the condition ratio of the function
f , κ(f) = L

m , is varied. Figure 1 illustrates the results of
holding κ(A) = 1.5 and varying κ(f) between 1 and 20.
Figure 2 illustrates the results of holding κ(f) = 1.5 and

Fig. 1: Convergence rate as κ varies from 1 to 20 while κ(A) = 1.5

varying κ(A) between 1 and 20. It is clear the result achieved

Fig. 2: Convergence rate as κ(A) varies from 1 to 20 while κ = 1.5.

in Theorem 3.2 improves upon (9). Although the Lyapunov
approach was the same, meticulously selecting the parameters
allowed for an improvement of the rate.

B. Extrapolated Primal-Dual Algorithm

For τ = 0, the rate of the extrapolated primal-dual
algorithm (16) matches that of the simultaneous primal-dual
algorithm (11), but the former rate improves as τ increases.
Figure 3 and 4 illustrate the results of holding τ = 1 and
varying κ(f) and κ(A), respectively. Both approaches are

Fig. 3: Convergence rate as κ varies from 1 to 20 while κ(A) = 1.5.

Fig. 4: Convergence rate as κ(A) = 1.5 varies from 1 to 20

compared against (10), achieved in [21]. Notice for small
values of κ(f) and κ(A), the rate guaranteed in Theorem 3.3
provides generous bounds, surpassing those of (10); however,
it lags behind as the values increase. As future work, this
suggests that a careful combination of the Lyapunov approach
here and that in [21] may be extremely effective.

C. Inner-Loop Primal-Dual Algorithm

The rate of convergence of the inner-loop primal-dual
method (26) is a function of N . When N = 1, the rate equals
that of the SPD method, and as N increases, the rate improves
and asymptotically approaches the rate of the dual ascent
method. Moreover, one may show that when N = 2, the
inner-loop primal-dual method outperforms the extrapolated
primal-dual algorithm rate. Figure 5 and Figure 6 display the
rates achieved while setting N = 20 and varying κ(f) and
κ(A), respectively. Not surprisingly, the inner loop method
performs favourably, as it uses more primal gradient evalu-
ations per step than the other methods. Curiously however,
when κ(f) increases, the inner-loop falls behind (10); this
illustrates the importance of extrapolation, which is absent in
the inner-loop method studied here. Increasing N further can
improve these results and provide a rate that surpasses (10).



Fig. 5: Convergence rate as κ(f) varies from 1 to 20 with κ(A) =
1.5, τ = 1, N = 20

Fig. 6: Convergence rate as κ(A) varies from 1 to 20 with κ(f) =
1.5, τ = 1, N = 20

When κ(A) is varied, the inner-loop primal-dual algorithm
significantly outperforms the two other rates.

V I . C O N C L U S I O N

We have analyzed discrete-time primal-dual algorithms
using an interconnected systems lens, deriving new step size
selectio1ns and convergence rates for vanilla, extrapolated,
and inner-loop versions of the methods. The proof approach
broadly followed and expanded on the approach proposed by
[22], but with improved parameter selections and extensions
to the extrapolated and inner-loop algorithms. As directions
for future work, taking an interconnected systems lens for the
analysis of more sophisticated primal-dual algorithms appears
to be promising, as this could allow for the systematic study
of, e.g., accelerated primal-dual methods, and primal-dual
methods involving non-smooth regularizers [6], [15].
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[23] M. T. Hale, A. Nedić, and M. Egerstedt, “Asynchronous multiagent
primal-dual optimization,” IEEE Trans. Autom. Control, vol. 62, no. 9,
pp. 4421–4435, 2017.

[24] E. K. Ryu and S. Boyd, “A primer on monotone operator methods,”
Applied and Computational Mathematics, vol. 15, no. 1, pp. 3–43, 2016.

[25] A. Auslender and M. Teboulle, Asymptotic cones and functions in
optimization and variational inequalities. Springer, 2011.


