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how design formulations and associated dual designs for linear systems may generalize to the
nonlinear setting.
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1. INTRODUCTION

Equations and inequalities with matrix variables arise fre-
quently in systems and control analysis and design prob-
lems. One of the simplest and most important examples is
the Sylvester equation, which is the linear matrix equation

AΠ−ΠB = C, (1)

where Π ∈ Rn×m is the unknown and A ∈ Rn×n,
B ∈ Rm×m, and C ∈ Rn×m are given matrices. Perhaps
the most well-known instance of (1) is as the Lyapunov
equation characterizing Hurwitz stability of a matrix A,
in which B = −A⊤, C is symmetric negative definite, and
Π is symmetric positive definite.

An incomplete list of system-theoretic applications of the
general equation (1) would include observer design [Lu-
enberger, 1964], output regulation [Francis and Wonham,
1975], pole assignment [Shafai and Bhattacharyya, 1988],
disturbance decoupling [Syrmos, 1994], cascade stabiliza-
tion [Astolfi et al., 2022], and model order reduction [Gal-
livan et al., 2004]. In these contexts, the solution Π of
(1) may be an intermediate variable, or may itself be a
gain within a feedback design. In the context of nonlinear
systems applications, (1) often generalizes into a (nonlin-
ear) partial differential equation in an unknown function
π : Rm → Rn, often expressing invariance of some mani-
fold within the state space, and we therefore refer to such
nonlinear Sylvester-like equations as invariance equations.

The research leading to these results is partially funded by ANR
via project ALLIGATOR, number ANR-22-CE48-0009-01, and by
NSERC Discovery Grant RGPIN-2017-04008.

As we will describe, in many of the above problem settings,
a closely related dual Sylvester equation of the form

ΥA−BΥ = D (2)

in the unknown Υ ∈ Rm×n occurs as an alternative
to (1), with D ∈ Rm×n given data. The dual equation
(2) may lead to a complementary design procedure, or
may be used alongside (1) as part of a joint procedure.
Again in the nonlinear setting, (2) would generalize into a
dual partial differential equation in an unknown function
υ : Rn → Rm.

Despite the widespread importance of (1), (2) and their
nonlinear generalizations, it is difficult to locate in the
literature a concise reference which describes and contrasts
the different design procedures arising from (1) and (2),
respectively, with a reasonably unified viewpoint across
application areas. Moreover, it appears that design proce-
dures for some problems based on (1) do not yet have cor-
responding dual design counterparts based on (2), in both
the linear and nonlinear settings. As such, our objective
in this paper is to provide such an overview from a unified
point of view, and to begin the process of identifying
possible gaps in generalization of design procedures across
several application areas.

Contributions. We provide a concise overview of the
applications of the Sylvester equations (1), (2) and their
nonlinear generalizations in the areas of output regula-
tion, cascade stabiliation, observer design, and model or-
der reduction. We outline a range of classical and recent
design procedures and dual design procedures for linear
systems based on Sylvester equations, before describing
corresponding extensions to nonlinear systems based on
invariance equations. No novelty is claimed in the technical



results; our contribution is organizational, highlighting the
parallels and distinctions between the linear and nonlin-
ear cases, and attempting to identify unexplored design
pathways in both settings for future research.

Notation. The symbol σ(A) denotes the spectrum of
the matrix A ∈ Rn×n. The superscripts ⊤ and ∗ denote
the transposition and conjugate transposition operators,
respectively. The real part of z ∈ C is Re(z), and j denotes
the imaginary unit. Given two mappings, f : Y → Z and
g : X → Y , with f ◦ g : X → Z we denote the composite
function that maps all x ∈ X to f(g(x)) ∈ Z. The Lie
derivative of the smooth scalar function h(x) along the
vector field f(x) is denoted by Lf h(x) =

∂h
∂x (x)f(x). We

use the recursive notation Lk
f h(x) = Lf Lk−1

f h(x), with

L0
f h(x) = h(x). The space of continuously differentiable

functions is indicated by C1.

2. LINEAR SYSTEMS

We begin by describing how (1) arises in the prob-
lems of output regulation, stabilization, observer design,
and model reduction for finite-dimensional linear time-
invariant systems. As a preliminary result of importance,
the left-hand side of (1) defines a linear mapping Π 7→
S(Π) := AΠ − ΠB from Rn×m into itself, and a funda-
mental result is that S is invertible – and thus, (1) possess a
unique solution for eachC – if and only if σ(A)∩σ(B) = ∅.
Further general theoretical insights into (1) relevant to
systems and control will be discussed in Section 2.5.

2.1 Output Regulation

In linear output regulation, see [Francis and Wonham,
1975, Davison, 1976], one studies systems of the form

ẇ = Sw, (3a)

ẋ = Ax+Bu+ Pw, (3b)

e = Cx+Qw, (3c)

where x(t) ∈ Rnx is the state of the plant, u(t) ∈ Rnu is
the control input, and e(t) ∈ Rne is the error output to
be regulated to zero. The triple (A,B,C) is assumed to
be stabilizable and detectable. The signal w, with w(t) ∈
Rnw , models disturbances to be rejected or references
to be tracked, and is generated by the exosystem (3a).
The eigenvalues of S are typically assumed to lie on
the imaginary axis, and hence w would consist of, e.g.,
polynomials and sinusoids of different frequencies. The
design objective is to construct a feedback control law
guaranteeing (i) asymptotic stability of the origin when
no disturbance is present (w ≡ 0), and (ii) asymptotic
convergence of e(t) to 0 when w ̸= 0, irrespective of the
particular w generated by (3a).

In the so-called full information design problem, both
signals x and w are available for feedback design, and a
feedback law of the form u = Kxx + Kww is proposed
with Kx chosen such that A+BKx is Hurwitz. This leads
to the block triangular closed-loop system[

ẇ
ẋ

]
=

[
S 0

P +BKw A+BKx

] [
w
x

]
, (4)

in which the w-subsystem drives the internally stable x-
subsystem. The system (4) has stable eigenspace Im [ 0I ]

and complementary center eigenspace Im
[

I
Πr

]
, where Πr

is the unique solution of the Sylvester equation

ΠrS = (A+BKx)Πr + (P +BKw).

It follows that any trajectory (w(t), x(t)) of (4) con-
verges exponentially towards a steady-state trajectory
(w(t), xss(t)) satisfying xss(t) = Πrw(t). Zeroing of the cor-
responding steady-state error ess(t) = Cxss(t) + Qw(t) =
(CΠr +Q)w(t) therefore requires additionally that CΠr +
Q = 0. The previous two requirements are commonly
expressed as the regulator equations

ΠrS = AΠr +BΨr + P , (5a)

0 = CΠr +Q, (5b)

where Ψr = Kw + KxΠr. The Sylvester equation (5a)
guarantees the existence of an invariant subspace, with
(5b) ensuring the error e is held at zero on that subspace.

Solvability of (5) is both necessary and sufficient for solv-
ability of the full-information regulation problem. Further-
more, the equations (5) are solvable for all possible (P,Q)
if and only if the so-called non-resonance condition

rank

(
A− λI B
C 0

)
= nx + ne, λ ∈ σ(S), (6)

holds. In fact, (6) is precisely the statement that the
transmission zeros of the plant are disjoint from the
eigenvalues of S, and when A is Hurwitz, it reduces to
rankW (λ) = ne for all λ ∈ σ(S), where

W (s) = C(sI −A)−1B (7)

is the transfer matrix from the input u to the output e.

The non-resonance condition (6) is intimately connected to
properties of solutions of two auxiliary Sylvester equations.
Indeed, let M,N be such that σ(A+MC)∩σ(S) = ∅ and
σ(A+BN) ∩ σ(S) = ∅, and consider the equations

ΠΦ = (A+MC)Π +BL (8a)

Υ(A+BN) = ΦΥ+RC (8b)

in the variables Π and Υ, with σ(Φ) = σ(S) and R,L given
matrices.

Theorem 1. Consider the Sylvester equations (8). If (Φ, R)
is a controllable pair then the following three statements
are equivalent:

(i) (5) is solvable in (Πr,Ψr) for all (P,Q);
(ii) the non-resonance condition (6) holds;
(iii) (Φ,ΥB) is controllable.

If furthermore ne = nu and (L,Φ) is an observable
pair, then a fourth equivalent statement is that (CΠ,Φ)
is observable.

The equivalence (i)⇔ (ii) is classical, see, e.g., [Trentelman
et al., 2001, Theorem 9.6]. The equivalence to (iii) is shown
in [Astolfi et al., 2022, Proposition 2], and equivalence to
(iv) can be proved by analogous arguments. The matrices
ΥB and CΠ will reappear several times in the sequel.

2.2 Cascade Stabilization

Feedback stabilization of cascade systems of the form

ẋ = Ax+Bu

ż = Φz +RCx
(9)

appears in many control problems. For example, in error-
feedback output regulation, the z-dynamics represents the



internal model regulator, in which Φ is designed to have
the same spectrum of S and (Φ, R) is a controllable
pair. In other contexts, the x-dynamics may represent
actuators, or the z-dynamics may represent sensors, e.g.,
[Kokotović et al., 1999]. State-feedback design for the
stabilization of the cascade system (9) can be approached
using either of the Sylvester equations in (8), e.g., [Syrmos
and Lewis, 1993], [Astolfi et al., 2022], [Chen and Simpson-
Porco, 2023]. For concreteness and to illustrate the ideas,
we describe here two design procedures arising in error-
feedback output regulation, wherein the x-dynamics is
stabilizable, Φ has eigenvalues on the imaginary axis,
(Φ, R) is controllable, and (6) holds.

The first design is based on the Sylvester equation (8b),
and is known in the literature as the forwarding approach,
e.g., [Astolfi et al., 2022, Section 3]. The main idea is to
pre-stabilize the x dynamics with a feedback u = Nx+ v,
with v as a new input, and then to look for an invariant
subspace arising from the stable x-dynamics driving the
z-dynamics. When v = 0, such an invariant subspace
{(x, z) | z = Υx} is determined by the solution Υ to (8b).
With this, setting u = Nx+ v and performing the change
of coordinates

z 7→ ζ := z −Υx

one obtains the system

ẋ = (A+BN)x+Bv,

ζ̇ = Φζ −ΥBv,
(10)

which is now decoupled. Since (Φ, R) is controllable, so
is (Φ,ΥB), and one may design a feedback of the form
v = Kζζ to obtain a system in block-triangular form.
Stability of A+BN and of Φ−ΥBKζ then implies stability
of the closed-loop system. In the case in which Φ is skew-
symmetric, one simple choice is given by Kζ = B⊤Υ⊤.

An alternative approach proposed in [Chen and Simpson-
Porco, 2023] is based instead on the Sylvester equation
(8a). Consider the state feedback design u = Nx+Lz, for
(9) with N such that A+BN is Hurwitz. If S(Π) = ΠΦ−
(A + BN)Π is the Sylvester operator, then the solution
Π may be expressed as Π = S−1(BL), which can now be
viewed as a linear function of the remaining design variable
L. With the change of coordinates

x 7→ ξ := x−Πz

one obtains the system

ξ̇ = (A+BN −ΠRC)ξ −ΠRCΠz,

ż = (Φ +RCΠ)z +RCξ.
(11)

Since (Φ, R) is controllable, one may design a matrix Z
and ϵ > 0 sufficiently small such that Φ+ ϵRZ is Hurwitz,
and then solve the linear operator equation ϵZ = CΠ =
CS−1(BL) to obtain the feedback gain L. Since Π will
also be 1 O(ϵ), one will have A + BN − ΠRC Hurwitz
and ΠRCΠ of order O(ϵ2), and straightforward arguments
then establish that (11) is stable for sufficiently small ϵ.

2.3 Observer Design

In the original work by Luenberger [Luenberger, 1964],
state observer design was based on the solution of a

1 We use O(ϵk) for standard big-O notation, namely f ∈ O(ϵk) if
limϵ→0 f(ϵk)/ϵk−1 = 0.

Sylvester equation. In particular, the idea was to look
for an invertible linear change of coordinates z = Υox
transforming the plant dynamics

ẋ = Ax , y = Cx (12)

with state x, where x(t) ∈ Rnx , and scalar output y, where
y ∈ R, into the form

ż = Fz +Gy, (13)

where F is Hurwitz and (F,G) is controllable. For this
stable transformed system, a trivial observer is obtained
by copying the dynamics as

˙̂z = F ẑ +Gy,

and x̂ is then obtained from ẑ by inverting the transfor-
mation. The existence of Υo transforming the dynamics
(12) into the form (13) is equivalent to solvability of the
Sylvester equation

ΥoA = FΥo +GC. (14)

It was established that if (A,C) is observable, then for
any Hurwitz F ∈ Rnx×nx satisfying σ(A) ∩ σ(F ) = ∅,
and for any vector G in Rnx such that the pair (F,G) is
controllable, the Sylvester equation (14) admits a unique
solution Υo ∈ Rnx×nx which is itself an invertible matrix.
The desired state estimate x̂ is then given by x̂ = Υ−1ẑ.

We conclude by noting that the problem of disturbance
observation is dual to the problem of output regulation
discussed in Section 2.1, and thus many of the results
described therein translate to the problem of estimating
external disturbances, although such results appear to be
difficult to locate in the literature. Moreover, we note that
a dual Sylvester approach to the observer design problem
appears to be absent in the literature.

2.4 Model Order Reduction

Consider a linear continuous-time system described by

ẋ = Ax+Bu, y = Cx, (15)

with x(t) ∈ Rnx , u(t) ∈ Rnu , y(t) ∈ Rny , and transfer
matrix W (s) as in (7). The idea behind the moment
matching approach to model order reduction is to deter-
mine a reduced-order model that interpolates the transfer
function of the full-order model (15) at special points of
interest [Antoulas, 2005]. We formalise this idea for the
case nu = 1 and ny = 1, but similar results holds for the
general case. For si ∈ C\σ(A), the 0-moment of (15) at si
is defined as the complex number η0(si) =W (si), and the
k-moment of (15) at si is defined as the complex number

ηk(si) =
(−1)k

k!

[
dk

dsk
W (s)

]
s=si

, with k ≥ 1 integer.

Given a set of interpolation points {sj} ⊂ C, the problem
of model order reduction is to construct a new model

ẋr = Arxr +Bru, yr = Crxr, (16)

with xr(t) ∈ Rnr , nr < nx, and yr(t) ∈ R such that
the moments of (16) match the moments of (15) at the
interpolation points. The idea is that if enough points are
matched, the transfer function of the reduced-order model
resembles that of the full-order model. In [Gallivan et al.,
2004, 2006], it is observed that the moment matching prob-
lem can be reformulated using dual Sylvester equations.



ω̇ = Sω
θ = Lω

ẋ = Ax+Bu
y = Cx

u = θ

ẋ = Ax+Bu
y = Cx

ż = Qz +Rϑ
d = z +Υqx

ϑ = y

y

u = δ0 d

ẋ = Ax+Bu
y = Cx

ω̇ = Sω
θ = Lω

ż = Qz +Rϑ
d = z +Υqx

u = θ ϑ = y d

Fig. 1. Diagrammatic illustration of the direct (top),
the swapped (middle), and the two-sided (bottom)
interconnections.

This is explained next following the formulation in [Scar-
ciotti and Astolfi, 2024]. Consider two sets of interpolation
points

I1 = {s1, s2, . . . , snr} ⊂ C \ σ(A)
I2 = {snr+1, snr+2, . . . , s2nr} ⊂ C \ σ(A)

with I1 ∩ I2 = ∅, and consider two matrices S ∈ Rnr×nr

and Q ∈ Rnr×nr such that σ(S) = I1 and σ(Q) = I2, and
two vectors L ∈ R1×nr and R ∈ Rnr×1 such that the pair
(S,L) is observable and the pair (Q,R) is controllable.
One can establish 2 that there exist invertible matrices
T and T̃ such that CΠs = [ η0(s1) . . . η0(snr

) ]T and

ΥqB = T̃ [ η0(snr+1) . . . η0(s2nr
) ]

⊤
, where Π ∈ Rn×nr

and Υ ∈ Rnr×n are the unique solutions of the Sylvester
equations

ΠsS = AΠs +BL, (17a)

QΥq = ΥqA+RC. (17b)

Since moments are coordinate invariant, [Astolfi, 2010]
noted that the quantities CΠs and ΥqB can be viewed
as equivalent definitions of moments. In particular, a
reduced-order model that preserves CΠs or ΥqB is a
reduced-order model by moment matching at I1 or at I2.
A family of reduced-order models that match the moments
CΠs of (15) at I1 is given by

ẋr = (S −BrL)xr +Bru, yr = CΠsxr, (18)

for any Br such that σ(S) ∩ σ(S −BrL) = ∅. Similarly, a
family of reduced-order models that match the moments
ΥqB of (15) at I2 is given by

ẋr = (Q−RCr)xr +ΥqBu, yr = Crxr, (19)

for any R such that σ(Q) ∩ σ(Q − RCr) = ∅. Finally,
for the family (18) ((19), respectively), we can select
Br (Cr, respectively) such that also the moments at I2
(I1, respectively) are matched. This is achieved for the
family (18) ((19), respectively) with the selection

Br = (ΥqΠs)
−1ΥqB, (Cr = CΠs(ΥqΠs)

−1, resp.) (20)

Furthermore, [Astolfi, 2010, Scarciotti and Astolfi, 2024]
observed that, under additional assumptions, the moments
are also in a one-to-one relation with the steady-state re-
sponses (provided they exist) of interconnections between
the system and certain “signal generators”. To see this,
first consider the signal generator

ẇ = Sw, θ = Lw, (21)

with w(t) ∈ Rnr and θ(t) ∈ R, and the interconnection
(with u = θ) between this generator and system (15),
namely

ẇ = Sw, ẋ = Ax+BLw, y = Cx. (22)

2 This result holds also for higher-order moments.

This interconnection (see Fig. 1, top diagram) is called
the direct interconnection. One can easily show that the
output of this interconnection is

y(t) = CΠsw(t) + CeAt(x(0)−Πsw(0)).

If w is a bounded signal and A is Hurwitz, one has that
the moments at I1 are in a one-to-one relation with the
steady-state output response yss = CΠsw of (22).

A similar connection can be established also with the
Sylvester equation (17b). Consider the filter

ż = Qz +Rϑ, d = z +Υqx, (23)

with z(t) ∈ Rnr , ϑ(t) ∈ R, and d(t) ∈ Rnr , and the
interconnection (with ϑ = y) between this filter and
system (15), namely

ẋ = Ax+Bu, ż = Qz +RCx, d = z +Υqx, (24)

with u = δ0, where δ0 indicates the Dirac-delta generalised
function. This interconnection (see Fig. 1, middle diagram)
is called the swapped interconnection. If A is Hurwitz,
x(0) = 0 and z(0) = 0, one can show that

zss(t) = d(t) = eQtΥqB, (25)

that is, the moments at I2 are in a one-to-one relation
with the steady-state response zss in (24).

Finally, consider the signal generator (21), the filter (23),
and the interconnection between these and system (15),
yielding the system

ẇ = Sw, ẋ = Ax+BLw,

ż = Qz +RCx, d = z +Υqx.
(26)

This interconnection (see Fig. 1, bottom diagram) is called
the two-sided interconnection. One can easily show that
the signals in this interconnection satisfy the equation

d(t)− z(t) = ΥqΠsw(t) + Υqe
At(x(0)−Πsw(0)), (27)

and that if w is a bounded signal and A is Hurwitz

dss(t)− zss(t) = ΥqΠsw(t). (28)

This third key matrix ΥqΠs is defined by the Sylvester
equation

QΥqΠs −ΥqΠsS = RCΠs −ΥqBL, (29)

and also characterizes a steady-state response.

The significance of this series of observations is that the
matrices CΠs, ΥqB, and ΥqΠs, which can be used to
construct reduced-order models at I1, I2, and I1 ∪ I2,
respectively, are all uniquely characterized by steady-state
signals in the interconnections in Fig. 1. Since these steady
states exist even when the linear elements are replaced by
nonlinear elements, this interpretation allows for a natural
extension of the moment matching problem to nonlinear
systems.

2.5 Further Comments on Sylvester Equations

We have seen that the Sylvester equations (1), (2) play
crucial roles in several different control-theoretic con-
texts. As such, computing the solutions and understanding
their properties [de Souza and Bhattacharyya, 1981] is
of fundamental importance. Several solution approaches
are discussed in [Antoulas, 2005, Chapter 6]. Numeri-
cal methods include Kronecker vectorization, eigenvec-
tor/characteristic polynomial analysis, the matrix sign
function, and the Bartels-Stewart method. In contrast,



analytic solution methods enable further system-theoretic
insights, and pave the way for nonlinear extensions.

With the notation of equation (17a) and renaming Πs

simply as Π, consider the case in which the matrix A
is Hurwitz and the spectrum of S has the simple form
σ(S) = {ω0,±jω1, . . . ,±jωℓ) with 0 = ω0 < ω1 < · · · < ωℓ.
Manipulation of (17a) and routine complex analysis yields
the contour integral expression

Π =
1

2πj

∫
γ

(sI −A)−1BL(sI − S)−1 ds,

where γ is any Cauchy contour enclosing the eigenvalues
of S and excluding the eigenvalues of A, and thus

CΠ =
1

2πj

∫
γ

W (s)L(sI − S)−1 ds.

Application of the residue theorem then establishes that

CΠ = η0(0)LX0 +Re
∑ℓ

k=0
η0(jωk)LXk,

where X0, Xk depend only on the eigendecomposition of
S. This formula reveals that in some contexts, the quantity
CΠ does not depend densely on the triplet (A,B,C), but
only on the moments ηk (in this case, the 0-moments) at
the eigenvalues of S; similar arguments can be applied to
(17b) and the quantity ΥB. This opens the door to data-
driven design approaches based on frequency response
data, as exploited for stabilization in, e.g., [Paunonen,
2016, Theorem 11, 13], or [Chen and Simpson-Porco, 2023]
and for model order reduction in e.g. [Mayo and Antoulas,
2007], [Scarciotti and Astolfi, 2017a] and [Simard, 2023].
Alternatively, under the same assumptions the solution to
(17a) can be expressed as

Π =

∫ 0

−∞
e−AtBLeSt dt. (30)

The expression (30) can be interpreted as an integral
involving solutions of the underlying differential equations,
paving the way for nonlinear extensions.

2.6 Infinite-Dimensional Linear Systems

The use of Sylvester equation (1) has been widely studied
also in the case in which A,B,C, and Π are infinite-
dimensional linear operators, see, e.g. [Phóng, 1991]. Sim-
ilar sufficient conditions (disjoint spectra of A,B) extends
the linear finite-dimensional case and similar applications
in output regulation, stabilization and model reduction
have been proposed. For instance, in the context of output
regulation, we refer to [Paunonen et al., 2008, Paunonen,
2016, Vanspranghe and Brivadis, 2023] for linear abstract
systems and [Astolfi et al., 2021] for the case of repeti-
tive control. In the context of stabilization, the Sylvester
equation has been used in [Natarajan, 2021] and in the
context of forwarding approach in [Marx et al., 2022,
2021, Vanspranghe and Brivadis, 2023], leading to very
similar results. Concerning the model reduction theory,
we refer to [Ionescu and Iftime, 2012] for linear systems
and [Scarciotti and Astolfi, 2016] for time-delay systems.
Due to space limitations, we omit further discussion of
infinite-dimensional linear systems and shift our focus to
the nonlinear (finite-dimensional) extension in the next
section.

3. NONLINEAR SYSTEMS

In the context of nonlinear systems the Sylvester equations
(1) and (2) generalize into nonlinear partial differential
equations (PDEs). Let us consider first the case of a
cascaded nonlinear system of the form

ẇ = s(w)

ẋ = f(w, x),
(31)

in which x(t) ∈ Rnx , w(t) ∈ Rnw , s and f are C1

functions, and the w-subsystem is Poisson stable. Steady-
state solutions to (31) can be described using ω-limit sets,
and are characterized (on compact sets) by the existence
of a compact set W ⊂ Rnw and an upper semicontinuous
set-valued map π : W ⇒ Rnx such that

A = {(x,w) ∈ Rnx ×W : x ∈ π(w)}
is compact and satisfies(

f(w, x)
s(w)

)
∈ TA(x,w),

where TA(x,w) is the contingent cone to A at (x,w), see
[Aubin, 1991]. The latter condition expresses invariance
of the set A. We refer to [Byrnes and Isidori, 2003, Isidori
and Byrnes, 2008, Petit et al., 2018, Bin et al., 2023] for
precise definitions, properties and statements on ω-limit
sets of solutions to (31).

To obtain a more recognizable generalization of (1), ad-
ditional assumptions are required. In particular, if π is a
single-valued C1 map, then invariance is equivalent to π
satisfying the invariance equation

Lsπ(w) = f(w, π(w)). (32)

To see that (32) genearlizes (1), note that if s and f in the
above are linear vector fields, that is, if s(w) := Bw and
f(w, x) := Ax−Cw, then we recover π(w) = Πw where Π
satisfies the Sylvester equation (1). An intermediate case of
interest occurs when s is nonlinear and f takes the quasi-
linear form

f(w, x) := Ax+Bl(w),

where A,B are matrices with A Hurwitz and l : Rnw →
Rnu is an integrable nonlinear map. In this case, the unique
solution to the invariance equation (32) can be explicitly
expressed as

π(w) =

∫ 0

−∞
e−AτBl(ϕw(τ, w)) dτ, (33)

where ϕw(t, w
◦) denotes the solution to ẇ = s(w) at time

t starting from w◦, see, e.g. [Isidori and Byrnes, 2008,
Section 4]. In the fully linear case in which s(w) = Sw
and l(w) = Lw, (33) reduces precisely to (30).

3.1 Output Regulation

As discussed in the linear case of Section 2, invariance
equations such as (32) play a a crucial role in many control-
theoretic problems. In the context of nonlinear output
regulation, one considers systems of the form

ẇ = s(w)

ẋ = f(w, x, u)

e = h(w, x),

generalizing (3), and the Byrnes-Isidori regulator equa-
tions [Byrnes and Isidori, 2003], given by



Lsπ(w) = f(w, π(w), ψ(w))

0 = h(w, π(w))

extend de facto the linear regulator equations (5). The
design of nonlinear internal model regulators leverages
observer theory, and relies again on the use of invariance-
like equations, see, e.g. [Byrnes and Isidori, 2003, 2004,
Marconi et al., 2007, Isidori and Byrnes, 2008, Bin et al.,
2023]. While some nonlinear versions of the non-resonance
condition (6) have appeared in the literature [Marconi
et al., 2004, Wang et al., 2020], there appears to be
no corresponding generalization of Theorem 1 to the
nonlinear case.

3.2 Cascade Stabilization

For stabilization of nonlinear cascade systems, the for-
warding approach described in Section 2.2 was first de-
veloped in the nonlinear context, see [Mazenc and Praly,
1996, Astolfi and Praly, 2017, Giaccagli et al., 2022]. Con-
sider first the simple cascaded nonlinear system

ẋ = f(x) + g(x)u

ż = h(x)
(34)

in which the z-subsystem has no internal dynamics. The
construction of a stabilizing feedback control law is based
on the solution to the invariance equation

Lfυ(x) = h(x),

the unique solution of which is given by

υ(x) =

∫ ∞

0

h(ϕx(s, x)) ds, (35)

where ϕx(t, x
◦) denotes the solution to ẋ = f(x) at time t

starting from x◦, see [Mazenc and Praly, 1996, Lemma
IV.2]. Such a solution is indeed well-defined whenever
the origin of the autonomous system ẋ = f(x) is glob-
ally asympotically stable and locally exponentially stable.
With υ(x) in hand, a stabilizing feedback is then u =
ℓ(x)Lgυ(x)z, where ℓ(x) is an additional design parameter;
see [Astolfi and Praly, 2017] for further details.

In cases where υ(x) cannot be exactly computed, stabiliz-
ing feedbacks have also been developed based on first-order
approximation of υ(x) at the origin. Specifically, the local
approximation of the invariance equation (35) at the origin
reduces to the simple Sylvester-like equation

ΥA = C, where A =
∂f

∂x
(0), C =

∂h

∂x
(0), (36)

with Υ = ∂υ
∂x (0); see [Mazenc and Praly, 1996, Astolfi and

Praly, 2017] for further discussion. Thus, aspects of the
linear theory may be leveraged for design in the nonlinear
case. Forwarding has been also extended to more complex
cascade forms, such as

ẋ = f(x) + g(x)u

ż = Φz +Rh(x)

in which Φ is a matrix with simple imaginary eigenvalues,
see, e.g., [Astolfi et al., 2022] and references therein.
Nonlinear forwarding design based on dual invariance
equations does not appear to have been explored.

3.3 Observer Design

In the context of observer design, the Luenberger approach
of Section 2.3 has been generalized as the so-called KKL

(Kazantis-Kravaris-Luenberger) observer, see, e.g., [An-
drieu and Praly, 2006, Brivadis et al., 2023]. Given the
nonlinear system

ẋ = f(x), y = h(x), (37)

with x(t) ∈ Rnx and y(t) ∈ R, the idea is to obtain an
injective state transformation z = υo(x) which evolves
according to ż = Fz + Gy with F Hurwitz, for which
again a trivial observer is

˙̂z = F ẑ +Gy, (38)

with ẑ(t) ∈ Rnz . This is achieved if υo : Rnx → Rnz is a
C1 mapping satisfying the invariance equation

Lfυo(x) = Fυo(x) +Gh(x) . (39)

Under so-called backward indistinguishability of solutions
of the system (37), it can be shown that if nz ≥ 2nx + 1,
then for almost any controllable pair (F,G) with F being
Hurwitz, the invariance equation (39) admits an injective
solution υo(x), which can be expressed as

υo(x) =

∫ 0

−∞
e−FsGh(ϕx(s, x)) ds,

where again ϕx(t, x
◦) denotes the solution to ẋ = f(x) at

time t starting from x◦. Thus, there exists a left-inverse ψ
of υo, allowing one to recover a state estimate via x̂ = ψ(ẑ)
with ẑ being the solution to (38). One can then show
that x̂ converges asymptotically to the solution x of the
observed plant (37). We refer to [Andrieu and Praly, 2006,
Brivadis et al., 2023] for more details. It appears that
KKL observers based on dual invariance equations have
not been examined in the literature. Finally, we remark
that the use of these type of invariance equations has
also been employed for studying the asymptotic sensitivity
properties to measurement noise of high-gain observers,
see, e.g. [Astolfi et al., 2016].

3.4 Model Order Reduction

The generalization of moment-matching model order re-
duction methods to nonlinear systems is based on the sys-
tem interconnection interpretation in Figure 1. Consider a
nonlinear, minimal 3 , single-input, single-output, system
described by the equation

ẋ = f(x) + g(x)u,
y = h(x),

(40)

where f , g and h are smooth mappings such that f(0) = 0,
g(0) = 0, h(0) = 0. Next, define the signal generator

ẇ = s(w), θ = l(w), (41)

with s and l smooth mappings such that s(0) = 0 and
l(0) = 0, and the interconnection (with u = θ) between
this generator and system (40), namely

ẇ = s(w),
ẋ = f(x) + g(x)l(w),
y = h(x).

(42)

Analogous to the linear interconnection described in (22),
we can define the (direct) moment of the system (40) at
(s, l) as the function h ◦πs, where π is the unique solution
of the invariance equation

Lsπs(w) = f(πs(w)) + g(πs(w))l(w), (43)

which is a generalization of (17a). The signal generator
(41) captures the requirement that one is interested in

3 See [Scarciotti and Astolfi, 2017b, Definition 2.12].



studying the behaviour of system (40) only in specific
circumstances, in particular, that a reduced-order model
by moment matching is a model that matches the steady-
state output response of the system for the same class of
inputs of interest.

It is also possible to develop a dual theory of moment
matching in the nonlinear case [Ionescu and Astolfi, 2016,
Scarciotti and Astolfi, 2024]. Consider the nonlinear filter

ż = q(z) + r(z)ϑ, (44)

with q and r smooth mappings such that q(0) = 0 and
r(0) = 0, and the interconnection (with ϑ = y) between
this filter and system (40), namely

ẋ = f(x) + g(x)u, ż = q(z) + r(z)h(x). (45)

Analogous to the swapped linear interconnection in (24),
we can define the (swapped) moment of system (40) at
(q, r) as Lgvq, where υq is the unique solution of the
invariance equation

Lfυq(x) = −r(−υq(x))h(x)− q(−υq(x)), (46)

which is a generalization of (17b).

Consider now a candidate reduced-order model, described
by

ẋr = fr(xr) + gr(xr)u, yr = hr(xr). (47)

where xr(t) ∈ Rnr , nr < nx, yr(t) ∈ R, fr(0) = 0,
gr(0) = 0, and hr(0) = 0. The system (47) matches the
moment h ◦ πs at (s, l), if fr, gr and hr satisfy

Lsp(w) = fr(p(w)) + gr(p(w))l(w) (48)

and

hr(p(w)) = h(πs(w)) (49)

for all w and some mapping p. These equations are satisfied
by the selection fr(xr) = s(xr) − gr(xr)l(xr), hr(xr) =
h(πs(xr)), where gr is free 4 , for the mapping p(w) = w.
Thus, the model

ẋr = s(xr)− gr(xr)l(xr) + gr(xr)u,
yr = h(πs(xr)),

(50)

is a reduced-order model that matches the moment of
system (40) at (s, l). In the fully linear case, this family
reduces precisely to (18).

Similarly, regarding the two-sided interconnection, the
model (50) matches also the moment Lgυq at (q, r) if gr is
such that

Lfrχ(xr) = −q(−χ(xr))− r(−χ(xr))hr(xr) (51)

and

[Lgrχ(xr)]xr=w = [Lgυq(x)]x=πs(w) , (52)

for all w and some mapping χ. This is achieved with the
selection

gr(xr) =

[(
∂v

∂x

∂π

∂ξ

)−1

Lgυq(x)

]
x=πs(xr)

(53)

which gives χ(xr) = vq(πs(xr)). Thus, system (50) with
(53) is a reduced-order model of system (40) matching the
moments at (s, l) and (q, r), simultaneously. An analogous
nonlinear enhancement of the family (19) can be obtained.
This is omitted for reasons of space.

4 As long as the solution of (48) is unique.

4. CONCLUSIONS AND PERSPECTIVES

We have provided here a unified perspective on the use of
Sylvester equations, invariance equations, and associated
dual equations in a selection of linear and nonlinear control
problems. Perhaps our key observation is that across a
variety of problem settings, design procedures based on
both direct and dual Sylvester-like equations are natural,
but that dual designs procedures have not been explored
in a number of settings. In particular, future research will
seek to provide a nonlinear counterpart to Theorem 1,
and to examine the feasibility of dual design formulations
for both linear and nonlinear observer design, linear and
nonlinear disturbance observation, and nonlinear cascade
stabilization.
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infinite-dimensional sylvester equation and the internal
model principle. Proceedings of the Mathematical The-
ory of Networks and Systems, Blacksburg, VA, 2008.

Q. Petit, M. Bin, and L. Marconi. Necessary conditions
for output regulation with exosystem modelled by dif-
ferential inclusions. IFAC-PapersOnLine, 51(13):25–30,
2018.
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