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Abstract— We propose a data-driven receding-horizon
control method dealing with the chance-constrained output-
tracking problem of unknown stochastic linear time-
invariant (LTI) systems with partial state observation. The
proposed method takes into account the statistics of the pro-
cess noise, the measurement noise and the uncertain initial
condition, following an analogous framework to Stochastic
Model Predictive Control (SMPC), but does not rely on the
use of a parametric system model. As such, our receding-
horizon algorithm produces a sequence of closed-loop
control policies for predicted time steps, as opposed to a
sequence of open-loop control actions. Under certain con-
ditions, we establish that our proposed data-driven control
method produces identical control inputs as that produced
by the associated model-based SMPC. Simulation results on
a grid-connected power converter are provided to illustrate
the performance benefits of our methodology.

I . I N T R O D U C T I O N

Model predictive control (MPC) is a widely used multi-
variable control technique [1], capable of handling hard con-
straints on inputs, states, and outputs, along with complex per-
formance criteria. Constraints can model actuator saturations or
encode safety constraints in safety-critical applications. As the
name suggests, MPC uses a system model, obtained either from
first-principles modelling or from identification, to predict how
inputs will influence the system evolution. MPC is therefore an
indirect design method, since one goes from data to a controller
through an intermediate modelling step [2]. In contrast, direct
methods, or data-driven methods, seek to compute controllers
directly from input-output data. Data-driven methods show
promise for systems that are complex or difficult to model [3].

For stochastic systems, work on Stochastic MPC (SMPC) [4]–
[6] has focused on modelling the uncertainty in systems prob-
abilistically. SMPC methods optimize over feedback control
policies rather than control actions, resulting in performance
benefits when compared to the naive use of deterministic
MPC [7]. Additionally, SMPC allows the use of probabilistic
constraints, useful for computing risk-aware controllers. An-
other MPC method dealing with uncertainty is Robust MPC
(RMPC) [8], which attempts to conservatively guard against
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the worst-case deterministic uncertainty; our focus here is on
the stochastic case.

For deterministic linear time-invariant (LTI) systems, recent
work has demonstrated that the data-driven control methods
can produce controls that are equivalent to their model-based
counterparts [9], [10]. However, for stochastic systems, equiv-
alence between a data-based and model-based method have
not been established, except in a few special cases which
will be discussed shortly. Thus, the focus of this work is to
develop a data-driven stochastic MPC framework with provable
equivalence to its model-based SMPC counterpart.

Related Work: Although data-driven control has been de-
veloped for decades, early work on data-driven methods did
not adequately account for constraints on input and output;
see examples in [3]. This observation led to the development
of Data-Driven Predictive Control (DDPC) as data-driven
control methods incorporating input and output constraints.
Two of the best known DDPC methods are Data-Enabled
Predictive Control (DeePC) [10]–[12] and Subspace Predictive
Control (SPC) [13], [14], both of which have been applied in
multiple experiments with reliable results [15]–[20]. On the
theoretical side, for deterministic LTI systems, both DeePC
and SPC produce equivalent control actions to model-based
MPC [10], [21]. This equivalence implies that for deterministic
systems, DeePC and SPC perform as well as their model-based
counterpart, namely MPC.

Beyond the idealized case with deterministic linear systems,
real-world systems are often stochastic and non-linear, and real-
life data typically are perturbed by noise. Hence, data-driven
methods in practice need to adapt to data that is subject to
these perturbations. Most classical data-driven control methods
are designed in robust ways [3], so their control performances
are not sensitive to noisy data. In application of SPC with
noisy data, a predictor matrix is often computed with denoising
methods, such as prediction error methods [18], [19] and
truncated singular value decomposition [16].

Robust versions of DeePC have also been developed with
stochastic systems in mind, such as norm-based regularized
DeePC [15]–[20] in which the regularization can be interpreted
as a result of worst-case robust optimization [22], [23], as
well as distributionally robust DeePC [11], [12]. Some other
variations of DeePC were designed in purpose of ensuring
closed-loop stability [24]–[26], robustness to nonlinear systems
[27] etc. Although the stochastic adaptations of DeePC and
SPC were validated through experiments, these stochastic
data-driven methods do not possess an analogous theoretical



equivalence to any Stochastic MPC or model-based method.
This disconnect between data-driven and model-based meth-

ods in the stochastic case has been noticed by some researchers,
and some recent DDPC methods were developed for stochastic
systems that have provable equivalence to model-based MPC
methods. The works in [28], [29] proposed a data-driven
control framework for stochastic systems with full-state ob-
servation, and their control method has equivalent performance
to full-state-observation SMPC [28, Thm. 1] [29, Cor. 1]. This
data-driven control method applied Polynomial Chaos Expan-
sion, so that arbitrary probability distributions of stochastic
signals can be considered. However, their formulation was
built with full-state observation, and the partial observation
case was left open.

In [30], a stochastic data-driven control method was devel-
oped by estimating the innovation sequence. This method has
equivalent control performance to deterministic MPC when
the innovation data is exact [30, Cor. 1]. However, their
control method did not utilize the noise distribution, and no
equivalence is established between their method and SMPC or
RMPC. A final related work is [31], which proposed a tube-
based data-driven Stochastic MPC framework with full-state
observation. Again, however, no equivalence in performance
is established between this method and model-based MPC
methods. Thus, the gap addressed in this paper is to develop
a data-driven control method for partially observed stochastic
systems that has provably equivalent performance to the model-
based SMPC.

Contributions: We develop a DDPC control method for
stochastic LTI systems with partial state observation. Our tech-
nical approach is based on the construction of an auxiliary state
model directly parameterized by input-output data. Building on
SMPC, we formulate a stochastic control problem using this
data-based auxiliary model, and establish equivalence between
the proposed data-driven approach and its model-based SMPC
counterpart. Our approach preserves three key features and
benefits of SMPC. First, our formulation includes both process
noise and measurement noise, so one can study the effect of
different noise magnitudes on the control performance. Second,
we produce a feedback control policy at each time step, so that
the control inputs are decided after real-time measurements in
a closed-loop manner. Third, our control method incorporates
safety chance constraints, which are consistent with the SMPC
framework that we investigate.

Organization: The rest of the paper is organized as follows.
Section II shows the formal problem statement, with a brief
overview of SMPC in Subsection II-A. Our control method
is introduced in Section III, where we show the formulation
and the theoretical performance guarantee, i.e., equivalence
to SMPC. Simulation results are displayed in Section IV,
comparing our proposed method and some benchmark control
methods, and Section V is the conclusion.

Notation: Let M† be the pseudo-inverse of a matrix M .
Let ⊗ denote the Kronecker product. Let Sq+ and Sq++ be
the sets of q × q positive semi-definite and positive definite
matrices respectively. Let col(M1, . . . ,Mk) denote the column
concatenation of matrices/vectors M1, . . . ,Mk. Let Z[a,b] :=
[a, b]∩Z denote a set of consecutive integers from a to b. Let

Z[a,b) := Z[a,b−1]. For a Rq-valued discrete-time signal zt with
integer index t, let z[t1,t2] denote either a sequence {zt}t2t=t1 or a
concatenated vector col(z1, . . . , z2) ∈ Rq(t2−t1+1). Similarly,
let z[t1,t2) := z[t1,t2−1]. A matrix sequence {Mt}t2t=t1 and
a function sequence {πt(·)}t2t=t1 are denoted by M[t1,t2] and
π[t1,t2] respectively.

I I . P R O B L E M S TAT E M E N T

We consider a stochastic linear time-invariant (LTI) system

xt+1 = Axt +But + wt (1a)
yt = Cxt + vt (1b)

with input ut ∈ Rm, state xt ∈ Rn, output yt ∈ Rp, process
noise wt ∈ Rn, and measurement noise vt ∈ Rp. The initial
state x0 is unknown. The system (A,B,C) is assumed to be a
minimal realization, but the matrices themselves are unknown
and the state xt is unmeasured; we have access only to the input
ut and output yt in (1). The disturbances wt and vt in (1) are
independent and follow i.i.d. zero-mean normal distributions,
with variances Σw ∈ Sn+ and Σv ∈ Sn++ respectively, i.e.,

wt
i.i.d∼ N (0n×1,Σ

w), vt
i.i.d∼ N (0p×1,Σ

v). (2)

In a reference tracking problem, the objective is for the output
yt to follow a specified reference signal rt ∈ Rp. The trade-off
between tracking error and control effort may be encoded in
the cost

J(ut, yt) := ∥yt − rt∥2Q + ∥ut∥2R (3)

to be minimized over a horizon, where Q ∈ Sp++ and R ∈ Sm++

are user-selected parameters. This tracking should be achieved
subject to constraints on the inputs and outputs. We consider
polytopic constraints, modelled in the stochastic setting as
probabilistic chance constraints for t ∈ N≥0,

P
[
Euut ≤ fu

]
≥ 1− pu (4a)

P
[
Eyyt ≤ f y

]
≥ 1− py (4b)

where Eu ∈ Rqu×m and Ey ∈ Rqy×m are fixed matrices with
some qu, qy ∈ N, fu ∈ Rqu and f y ∈ Rqy are fixed vectors,
and pu, py ∈ (0, 1) are probabilities of constraint violation.

In a model-based setting where A,B,C are known, the
general control problem above can be addressed by SMPC,
as will be reviewed in Section II-A. Our broad objective is
to construct a data-driven method that addresses the same
stochastic control problem and is equivalent, under certain
tuning conditions, to SMPC.

Remark 1 (Output Constraints and Output Tracking). State
constraints and state-tracking costs are commonly considered
in MPC and SMPC methods [1], [4]–[6], being used to
enforce safety conditions and quantify control performance,
respectively. Our problem setup focuses on output control,
with the internal state being unknown and unmeasured. For
this reason, we instead considered output constraint (4b) for
safety conditions and output-tracking cost (3) for performance
evaluation, which are both common in DDPC methods such
as [10].



A. Stochastic MPC: A Benchmark Model-Based Design
Our focus is on output-feedback SMPC [32]–[36], which

is typically approached by enforcing a separation principle
within the design, augmenting full-state-feedback SMPC (see
[4, Table 2]) with state estimation. Several formulations of
SMPC methods have been developed in the literature; our
formulation here is based on an affine policy parameterization,
following e.g., [34] and those listed in [4, Table 2], with the
changes that we consider output tracking and output constraint
satisfaction, as opposed to state objectives.

SMPC follows a receding-horizon strategy and makes deci-
sions for N upcoming steps at each control step. At control step
t = k, the current state xk follows a normal prior distribution

xk ∼ N (µx
k,Σ

x
k) (5)

where the mean µx
k ∈ Rn and the variance Σx

k ∈ Sn+ are
parameters obtained through a Kalman filter to be described
next. At the initial time k = 0, the initial state x0 ∼ N (µx

0,Σ
x
0)

is assumed to follow a normal distribution with a given
mean µx

0 and a given variance Σx
0. The model-based SMPC

method under consideration combines state estimation, affine
feedback policy parameterization, and approximation of chance
constraints.

1) State Estimation: Estimates x̂[k,k+N) of the future states
over the desired horizon will be computed through the Kalman
filter [34]–[36],

x̂t := x̂-
t + Lt(yt − Cx̂-

t ), t ∈ Z[k,k+N) (6a)
x̂-
t+1 := Ax̂t +But, t ∈ Z[k,k+N) (6b)
x̂-
k := µx

k (6c)

where x̂t and x̂-
t denote the posterior and prior estimates of

xt, respectively, and the Kalman gain Lt ∈ Rn×p in (6a) is
obtained via the recursion

Lt := P -
t C

T(CP -
t C

T +Σv)−1, t ∈ Z[k,k+N) (7a)
Pt := (In − LtC)P -

t , t ∈ Z[k,k+N) (7b)

P -
t+1 := APtA

T +Σw, t ∈ Z[k,k+N) (7c)
P -
k := Σx

k. (7d)

Alternative approaches using Luenberger observers have also
been used [32], [33].

2) Feedback Control Policies: Stochastic state-feedback con-
trol requires the determination of (causal) feedback policies
πt which map the observation history into control actions. As
the space of policies is an infinite-dimensional function space,
a simple affine feedback parameterization is typically used in
SMPC to obtain a tractable finite-dimensional optimization
problem, written as [34]

ut = πt(x̂t) := unom
t +K(x̂t − xnom

t ), (8)

where unom
t ∈ Rm is the nominal input to be determined, K is

a fixed feedback gain such that A+BK is Schur stable, and
xnom
t ∈ Rn is the nominal state obtained from the noise-free

system, with associated nominal output ynomt ∈ Rp.

xnom
t+1 := Axnom

t +Bunom
t , ∀t ∈ Z[k,k+N) (9a)

ynomt := Cxnom
t , ∀t ∈ Z[k,k+N) (9b)

xnom
k := µx

k (9c)

Based on the cost (3), we select the gain matrix K as the
infinite-horizon LQR gain of system (1) with state weight
CTQC and input weight R,

K := −(R+BTPlqrB)−1BTPlqrA (10)

where Plqr ∈ Sn+ is the unique positive semidefinite solution
to the discrete-time Algebraic Riccati equation.

Plqr = CTQC +ATPlqr(A+BK) (11)

We remark that an equivalent form πt(x̂t) := ct + Kx̂t of
(8) with decision variable ct has been used in [32] and in
many SMPC examples surveyed in [4]. A time-varying-gain
version of (8) is adopted in [33]. Affine disturbance feedback
is sometimes considered in SMPC methods, and it is shown
that affine-disturbance feedback control policies and affine-state
feedback control policies lead to equivalent control inputs [37];
here we focus on the state feedback parameterization.
Remark 2 (Input Chance Constraints). Hard input constraints
are difficult to integrate with the affine policy (8), as under our
previous assumptions the resulting control input is normally
distributed and unbounded. The input chance constraint (4a) is
thus used in its place, as in [33]. Another option as in [36] is to
use (nonlinear) saturated policies in place of (8), but then the
resulting inputs and outputs are no longer normally distributed
and our further analysis would be much more complicated.

3) Optimization Problem and Approximation: The output-
feedback SMPC optimization problem at time step t is now
formulated as follows, with an expected cost summing (3) over
N future steps.

minimize
unom

E
[∑k+N−1

t=k J(ut, yt)
]

subject to (1), (2), (4), (8) for t ∈ Z[k,k+N),
and (5), (6), (9)

(12)

The random variables within problem (12) are Gaussian, and
thus characterized by their means and variances, which enables
a straightforward reduction of (12) into a deterministic form.
Indeed, analysis of (1), (2), (5), (6), (8) and (9) yields that the
inputs ut and outputs yt are distributed according to

ut ∼ N (unom
t ,Σu

t ), yt ∼ N (ynomt ,Σy
t) (13)

for t ∈ Z[t,t+N), with covariance matrices Σu
t ∈ Sm+ and Σy

t ∈
Sp++ given by (14),

Σu
t :=

[
K, 0m×n

]
Σx̂x

t

[
K, 0m×n

]T
(14a)

Σy
t :=

[
0p×n, C

]
Σx̂x

t

[
0p×n, C

]T
+Σv (14b)

where Σx̂x
t ∈ S2n+ is the covariance of col(x̂t, xt) and calculated

from recursion (15),

Σx̂x
t := Λt Σ

x̂x
t−1 Λ

T
t +∆t, t ∈ Z[k+1,k+N) (15a)

Σx̂x
k :=

[
Σx

k − Pk Σx
k − Pk

Σx
k − Pk Σx

k

]
(15b)

with Pk obtained from (7) and Λt,∆t ∈ S2n+ defined by

Λt :=
[
A+BK − LtCA LtCA

BK A

]
, t ∈ Z[k+1,k+N), (16a)

∆t :=
[
Lt(CΣwCT +Σv)LT

t 0
0 Σw

]
, t ∈ Z[k+1,k+N). (16b)



A derivation of (13) can be found in the extended version
[38, Appendix A]. Note that the covariances Σu

t ,Σ
y
t do not

depend on the decision variable unom. Given the distribution
(13), the expected quadratic cost in problem (12) is equal to
the following deterministic value,[∑k+N−1

t=k J(unom
t , ynomt )

]
+ Jconst (17)

where Jconst :=
∑k+N−1

t=k

[
Tr(RΣu

t )+Tr(QΣy
t)
]

is a constant
independent of unom; Tr denotes the trace operation.

An exact deterministic representation of the joint chance con-
straints (4) is difficult, as it requires integration of a multivariate
probability density function over a polytope and generally no
analytic representation is available [6, Sec. 2.2]. For this reason,
the joint constraints (4) are commonly approximated by, e.g.,
being split into individual chance constraints [39],

P
[
euTi ut ≤ fu

i

]
≥ 1− pui,t, ∀i ∈ Z[1,qu]

P
[
eyTi yt ≤ f y

i

]
≥ 1− pyi,t, ∀i ∈ Z[1,qy]∑qu

i=1p
u
i,t = pu,

∑qy

i=1p
y
i,t = py

(18)

where eui ∈ Rm is the transposed i-th row of Eu, and fu
i ∈ R

is the i-th entry of fu, similarly for eyi ∈ Rp and f y
i ∈ R. The

allocated risk probabilities pui,t > 0 and pyi,t > 0 are introduced
as additional decision variables, where pu1,t, p

u
2,t, . . . , p

u
qu,t sum

up to the total risk pu, and similarly for pyi,t. Note that (18) is
a conservative approximation (or a sufficient condition) of (4),
due to subadditivity of probabilities. Given distribution (13),
the chance constraints (18) are converted into an equivalent
deterministic form,

euTi unom
t ≤ fu

i +
√
euTi Σu

te
u
i icdfn(p

u
i,t), i ∈ Z[1,qu] (19a)

eyTi ynomt ≤ f y
i +

√
eyTi Σy

te
y
i icdfn(p

y
i,t), i ∈ Z[1,qy] (19b)∑qu

i=1p
u
i,t = pu, pui,t > 0, i ∈ Z[1,qu] (19c)∑qy

i=1p
y
i,t = py, pyi,t > 0, i ∈ Z[1,qy] (19d)

where icdfn(z) :=
√
2 erf−1(2z − 1) is the inverse c.d.f. or

z-quantile of the standard normal distribution, with erf−1 the
inverse error function. The constraints (19) are convex when
we require pu, py ∈ (0, 1

2 ] [39, Thm. 1].
Leveraging the equivalent cost (17) and the approximation

(19) of constraint (4), the probabilistic problem (12) is approx-
imated into the deterministic problem.

minimize
unom,pu

i,t,p
y
i,t

∑k+N−1
t=k J(unom

t , ynomt )

subject to (19) for t ∈ Z[k,k+N), and (9)
(20)

Since R ≻ 0, the cost in (20) is strongly convex in unom,
and thus problem (20) possesses a unique optimal unom

when feasible (although optimal pui,t, p
y
i,t may not be unique).

Problem (20) can be efficiently solved by the Iterative Risk
Allocation method [39]; see [38, Appendix B] for more details
of our implementation.

4) Online SMPC Implementation: The nominal inputs unom

determined from (20) complete the parameterization of the
control policies π[k,k+N) in (8). The upcoming Nc control
inputs u[k,k+Nc) are decided by the first Nc policies π[k,k+Nc)

respectively, with parameter Nc ∈ Z[1,N ]. Then, the next
control step is set as t = k + Nc. At the new control step,
the initial condition (5) is iterated as the prior distribution
N (µx

k+Nc
,Σx

k+Nc
) of the state xk+Nc

, where the mean and
variance are obtained through the Kalman filter (6), (7).

µx
k+Nc

= x̂-
k+Nc

, Σx
k+Nc

= P -
k+Nc

, (21)

The entire SMPC control process is shown in Algorithm 1.

Algorithm 1 Stochastic MPC (SMPC)
Input: horizon lengths N,Nc, system matrices A,B,C, noise

variances Σw,Σv, initial-state mean µx
0 and variance Σx

0,
cost matrices Q,R, constraint coefficients Eu, fu, Ey, f y,
probability bounds pu, py.

1: Compute the LQR gain K via (10).
2: Initialize the control step k ← 0 and the initial condition

µx
k ← µx

0, Σx
k ← Σx

0.
3: while true do
4: Compute Kalman gains L[k,k+N) via (7) together with

P -
[k,k+N ] and P[k,k+N).

5: Compute variances Σu
[k,k+N) and Σy

[k,k+N) via (14).
6: Solve nominal inputs unom

[k,k+N) from problem (20), and
thus obtain policies π[k,k+N) from (8).

7: x̂-
k ← µx

k as in (6c).
8: for t from k to k +Nc − 1 do
9: Measure yt from the system (1).

10: Compute x̂t via (6a).
11: Input ut ← πt(x̂t) to the system (1).
12: Compute x̂-

t+1 via (6b).

13: µx
k+Nc

← x̂-
k+Nc

and Σx
k+Nc

← P -
k+Nc

as in (21).
14: Set k ← k +Nc.

B. Our Objective: An Equivalent Data-Driven Method
In direct data-driven control methods such as DeePC and

SPC for deterministic systems, a sufficiently long and suffi-
ciently rich set of noise-free input-output data is collected.
Under technical conditions, this data provides an equivalent
representation of the underlying system dynamics, and is
used to replace the parametric model in predictive control
schemes, yielding control algorithms which are equivalent
to model-based predictive control [10], [14]. Motivated by
this equivalence, our goal here is to develop a direct data-
driven control method that produces the same input-state-output
sequences as produced by Algorithm 1 when applied to the
same system (1) with same initial condition x0 and same
realizations of process and sensor noises wt, vt. Put simply,
we seek a direct data-driven counterpart to SMPC.

As in the described cases of equivalence for DeePC and
SPC, we will subsequently show equivalence of our data-driven
method to SMPC in the idealized case where we have access to
noise-free offline data. While this may initially seem peculiar
in an explicitly stochastic control setting, we view this as the
most reasonable theoretical result to aim for, given that the
prediction model must be replaced using only a finite amount
of recorded data. Moreover, remark that (i) noisy offline data
can be accommodated in a robust fashion through the use



of regularized least-squares (Section III-A), as supported by
simulation results in Section IV, and (ii) our stochastic control
approach will fully take into account process and sensor noise
during the online execution of the control process.

I I I . S T O C H A S T I C DATA - D R I V E N P R E D I C T I V E
C O N T R O L

This section develops a data-driven control method whose
performance will be shown to be equivalent to SMPC under
certain tuning conditions. In the spirit of DeePC and SPC, our
proposed control method consists of an offline process, where
data is collected and used for system representation, and an
online process which controls the system.

At a high level, our technical approach has three key steps.
First, we will collect offline input-output data (Section III-
A), and use this offline data to parameterize an auxiliary
model (Section III-B-1). This auxiliary model will take the
place of the original parametric system model (1) in the
design procedure. Second, we will formulate a stochastic
predictive control method using the auxiliary model (Section
III-B, Section III-C-1, Section III-D-1). Third and finally, we
will establish theoretical equivalences between the model-based
and data-based control methods (Section III-C-2, Section III-
D-2).

A. Use of Offline Data
In data-driven control, sufficiently rich offline data must be

collected to capture the internal dynamics of the system. In
this subsection, we demonstrate how offline data is collected,
and use the data to compute some quantities that are useful
to formulate our control method in the rest of the section. We
first develop results with data from deterministic LTI systems,
and then address the case of noisy data.

1) Deterministic Offline Data: Consider the deterministic
version of system (1), reproduced for convenience as

xt+1 = Axt +But (22a)
yt = Cxt. (22b)

By assumption, (22) is minimal; let L ∈ N be such that the
extended observability matrix O := col(C,CA, . . . , CAL−1)
has full column rank and the extended (reversed) controllability
matrix C := [AL−1B, . . . , AB,B] has full row rank. Let
ud
[1,Td]

, yd[1,Td]
be a Td-length trajectory of input-output data

collected from (22). The input sequence ud
[1,Td]

is assumed
to be persistently exciting of order Kd := 2L + n, i.e.,
its associated Kd-depth block-Hankel matrix HKd

(
ud
[1,Td]

)
,

defined as

HKd
(ud

[1,Td]
) :=


ud
1 ud

2 · · · ud
Td−Kd+1

ud
2 ud

3 · · · ud
Td−Kd+2...

...
. . .

...
ud
Kd

ud
Kd+1 · · · ud

Td

 ,

has full row rank. We formulate data matrices U1, U2 ∈
RmL×h and Y1, Y2 ∈ RpL×h of a common width h :=
Td − 2L+ 1 by partitioning associated Hankel matrices as

col(U1, U2) := H2L

(
ud
[1,Td]

)
col(Y1, Y2) := H2L

(
yd[1,Td]

) (23)

The data matrices in (23) will now be used to represent some
quantities related to the system (22). Before stating the result,
we introduce some additional notation. Define the impulse
response matrices G,H ∈ RpL×mL by

[
G
H

]
:=



0p×m

CB 0p×m...
. . . . . .

CAL−2B · · · CB 0p×m

CAL−1B · · · CAB CB...
. . .

...
...

CA2L−2B · · · CALB CAL−1B


, (24)

and let H1 := [CAL−1B, . . . , CAB,CB] ∈ Rp×mL denote
the first block row of H. Furthermore, define matrices Γ ∈
RpL×(m+p)L and Γ1 ∈ Rp×(m+p)L,

Γ =
[
ΓU ΓY

]
:=

[
H OAL

] [ImL

G O

]†
(25a)

Γ1 =
[
ΓU1 ΓY1

]
:=

[
H1 CAL

] [ImL

G O

]†
(25b)

where Γ1 (resp. ΓU1,ΓY1) is the first block row of Γ (resp.
ΓU,ΓY). The following result provides expressions for these
quantities in terms of raw data.

Lemma 3 (Data Representation of Model Quantities). Given
the data matrices in (23), let

P =
[
P1,P2,P3

]
:= Y2 col(U1, Y1, U2)

† ∈ RpL×(2m+p)L.

If (22) is controllable and the input data ud
[1,Td]

is persistently
exciting of order 2L + n, then the matrices G,H,Γ defined
in (24), (25) can be expressed as

[ΓU,ΓY,G] = [P1,P2,P3], H = P1 + P2P3.

Proof. See Appendix A for a proof. The relation G = P3 is
present in SPC literature [13, Sec. 2.3], [14, Sec. 3.4]. Our
contribution here is the data-representation of H and Γ.

With Lemma 3, the matrices G, H and Γ can be represented
using offline data collected from system (22), and these
matrices will be used as part of the construction for our data-
driven control method.

2) The Case of Stochastic Offline Data: Lemma 3 holds
for the case of noise-free data. When the measured data is
corrupted by noise, as will usually be the case, the pseu-
doinverse computations in Lemma 3 are fragile and do not
recover the desired matrices G, H, Γ. A standard technique
to robustify these computations is to replace the pseudoinverse
W † of W := col(U1, Y1, U2) in Lemma 3 with its Tikhonov
regularization W tik := (WTW + λIh)

−1WT where λ > 0
is the regularization parameter. To interpret this, recall that
P = Y2W

† is a least-square solution to argminP ∥Y2−PW∥2F.
Correspondingly, the regularization Y2W

tik is the solution to
a ridge-regression problem argminP ∥Y2 − PW∥2F + λ∥P∥2F,
which gives a maximum-likelihood or worst-case robust solu-
tion to the original least-square problem argminP ∥Yf−PW∥2F
whose multiplicative parameter W has uncertain entries; see
[2] sidebar “Roles of Regularization” for more details. Hence in
the stochastic case, we estimate matrices G,H,Γ by applying
Lemma 3 with P = Y2W

† replaced by P̂ := Y2W
tik.



B. Data-Driven State Estimation and Output Feedback

The SMPC approach of Section II-A uses as sub-components
a state estimator and an affine feedback law. We now leverage
the offline data as described in Section III-A to directly
design analogs of these components based on data, and without
knowledge of the system matrices.

1) Auxiliary State-Space Model: We begin by constructing an
auxiliary state-space model which has equivalent input-output
behavior to (1), but is parameterized only by the recorded data
sequences of Section III-A. Define auxiliary signals xt,wt ∈
Rnaux of dimension naux := mL+ pL+ pL2 for system (1) by

xt :=

u[t−L,t)

y◦[t−L,t)

ρ[t−L,t)

 , wt :=


0mL×1

0pL×1

0pL(L−1)×1

ρt

 (26)

where y◦t := yt−vt ∈ Rp is the output excluding measurement
noise, and ρt := Owt ∈ RpL stacks the system’s response to
process noise wt on time interval [t+1, t+L]. The construction
of the auxiliary state xt was inspired by [40]. The auxiliary
signals xt,wt together with ut, yt, vt then satisfy the relations
given by Lemma 4.

Lemma 4 (Auxiliary Model). For system (1), signals ut, yt, vt
and the auxiliary signals xt,wt in (26) satisfy

xt+1 = Axt +But +wt (27a)
yt = Cxt + vt (27b)

where A ∈ Rnaux×naux , B ∈ Rnaux×m and C ∈ Rp×naux are
given by

A :=


Im(L−1)

0m×m
0 0

0
ΓU1

0 Ip(L−1)
ΓY1

0
F− ΓY1E

0 0
IpL(L−1)

0pL×pL

 ,

B :=


0m(L−1)×m

Im
0pL×m

0pL2×m

 , C :=
[
ΓU1 ΓY1 F− ΓY1E

]
,

with matrices ΓU1,ΓY1 in (25b), and zero-one matrices E ∈
RpL×pL2

and F ∈ Rp×pL2

composed by selection matrices
Sj := [0p×(j−1)p, Ip, 0p×(L−j)p] ∈ Rp×pL for j ∈ Z[1,L].

[
E
F

]
:=


0p×pL
S1 0p×pL
...

. . .
. . .

SL−1 · · · S1 0p×pL

SL · · · S2 S1


Proof. See Appendix B.

The output noise signal vt in (27) is precisely the same as
in (1); the signal wt appears now as a new disturbance; wt

and vt are independent and follow the i.i.d. zero-mean normal
distributions

wt
i.i.d∼ N (0naux×1,Σ

w), vt
i.i.d∼ N (0p×1,Σ

v) (28)

with variances Σw ∈ Snaux
+ and Σv ∈ Sp++, where Σρ :=

OΣwOT ∈ SpL+ is the variance of ρt.

Σw :=

[
0(naux−pL)×(naux−pL)

Σρ

]
The matrices A,B,C are known given offline data described
in Section III-A, since they only depend on submatrices of Γ =
[ΓU,ΓY] by definition and matrix Γ is data-representable via
Lemma 3. Hence, the auxiliary model (27) can be interpreted as
a non-minimal data-representable (but non-minimal) realization
of system (1). Nonetheless, the model is indeed stabilizable
and detectable.

Lemma 5. In the auxiliary model (27), the pair (A,B) is
stabilizable and the pair (A,C) is detectable.

Proof. See Appendix C.

The auxiliary model (27) will now be used for both state
estimation and control purposes. Suppose we are at a control
step t = k in a receding-horizon process.

2) Auxiliary State Prior Distribution: Similar to (5), at time
step t = k the auxiliary state xk from (27) follows a normal
prior distribution,

xk ∼ N (µx
k,Σ

x
k) (29)

where the mean µx
k ∈ Rnaux and the variance Σx

k ∈ Snaux
+ are

parameters obtained by applying a Kalman filter to the auxiliary
model (27). At the initial time k = 0, the initial auxiliary state
x0 is assumed to be normally distributed as x0 ∼ N (µx

0,Σ
x
0)

with given mean µx
0 and given variance Σx

0. Not surprisingly,
there is a close relationship between the distributions of xk

and xk, as described in the next technical result, the results of
which will be leveraged in establishing equivalence between
SMPC and our proposed method.

Lemma 6 (Related Distributions of xk and xk). Let

Φorig :=
[
C, AL, CW

]
, Φaux :=

[
ImL
G O GW

IL ⊗O

]
,

wherein CW := [AL−1, . . . , A, In] and

GW :=

 0p×n

C 0p×n...
. . .

. . .
CAL−2 · · · C 0p×n

 .

If the prior distributions of xk and xk at time t = k are (5)
and (29) respectively, then

µx
k = Φorig µ

ξ
k, µx

k = Φaux µ
ξ
k, (30a)

Σx
k = Φorig Σ

ξ
k Φ

T
orig, Σx

k = Φaux Σ
ξ
k Φ

T
aux, (30b)

for some µξ
k ∈ RmL+n(L+1) and some Σξ

k ∈ SmL+n(L+1)
+ .

Proof. Let ξt := col(u[t−L,t), xt−L, w[t−L,t)) ∈ RmL+n(L+1).
According to (48a), (48b) in Appendix B and the definition of
xt in (26), we have the following relations.

xk = Φorig ξk, xk = Φaux ξk

Select µξ
k as the mean and Σξ

k as the variance of the prior
distribution of ξk. Then, the above relations imply (30).



3) Auxiliary State Estimation: The Kalman filter of system
(1) was given in (6) and (7). Here, we analogously formulate
a Kalman filter for the auxiliary model (27) as

x̂t := x̂-
t + Lt(yt −Cx̂-

t ), t ∈ Z[k,k+N) (31a)
x̂-
t+1 := Ax̂t +But, t ∈ Z[k,k+N) (31b)
x̂-
k := µx

k (31c)

where x̂t and x̂-
t are the posterior and prior estimates of xt,

respectively, and the Kalman gain Lt ∈ Rnaux×p in (31a) is
calculated as

Lt := P-
tC

T(CP-
tC

T +Σv)−1, t ∈ Z[k,k+N) (32a)
Pt := (Inaux − LtC)P-

t , t ∈ Z[k,k+N) (32b)

P-
t+1 := APtA

T +Σw, t ∈ Z[k,k+N) (32c)
P-

k := Σx
k. (32d)

4) Auxiliary State Feedback Policy: The affine state-feedback
policy from SMPC is now extended as πt(·),

ut ← πt(x̂t) := unom
t +K(x̂t − xnom

t ) (33)

where the nominal input unom
t ∈ Rm is a decision variable,

and the nominal auxiliary state xnom
t ∈ Rnaux is obtained via

xnom
t+1 := Axnom

t +Bunom
t , t ∈ Z[k,k+N) (34a)

ynom
t := Cxnom

t , t ∈ Z[k,k+N) (34b)
xnom
k := µx

k, (34c)

with associated nominal output ynom
t ∈ Rp. As in (10), the

feedback gain K ∈ Rm×naux must be selected such that A +
BK is Schur stable. Given the stabilizability and detectability
of (A,B,C) by Lemma 5, we may again use an LQR-based
design with state weight CTQC and input weight R, yielding

K := −(R+BTPlqrB)−1BTPlqrA, (35)

where Plqr ∈ Snaux
+ is the unique positive semidefinite solution

of the following Algebraic Riccati equation.

Plqr = CTQC+ATPlqr(A+BK). (36)

C. Optimization Problem

1) SDDPC Optimization Problem: With results of Section
III-B, we are now ready to mirror the steps of getting (20)
and we formulate a Stochastic Data-Driven Predictive Control
(SDDPC) optimization problem. First, following a similar
process of getting (13), the distributions of input and output are
ut ∼ N (unom

t ,Σu
t ) and yt ∼ N (ynom

t ,Σy
t) for t ∈ Z[k,k+N),

given conditions (27), (28), (29), (31), (33) and (34), with
variances Σu

t ∈ Sm+ and Σy
t ∈ Sp++ defined in (37),

Σu
t :=

[
K, 0m×naux

]
Σx̂x

t

[
K, 0m×naux

]T
(37a)

Σy
t :=

[
0p×naux ,C

]
Σx̂x

t

[
0p×naux ,C

]T
+Σv (37b)

where Σx̂x
t ∈ S2naux

+ as the covariance of col(x̂t,xt) is obtained
as follows, with Pk,Lt obtained from (32).

Σx̂x
t := ΛtΣ

x̂x
t−1Λ

T
t +∆t, t ∈ Z[k+1,k+N)

Σx̂x
k :=

[
Σx

k −Pk Σx
k −Pk

Σx
k −Pk Σx

k

]
Λt :=

[
A+BK− LtCA LtCA

BK A

]
, t ∈ Z[k+1,k+N)

∆t :=
[
Lt(Σv +CΣwCT)LT

t
Σw

]
, t ∈ Z[k+1,k+N)

Then, the SDDPC problem for computing unom
[k,k+N) at control

step t = k is written as

minimize
unom,pu

i,t,p
y
i,t

∑k+N−1
t=k J(unom

t ,ynom
t )

subject to (39) for t ∈ Z[k,k+N), and (34),
(38)

with safety constraints (39).

euTi unom
t ≤ fu

i +
√

euTi Σu
te

u
i icdfn(p

u
i,t), i ∈ Z[1,qu]

eyTi ynom
t ≤ f y

i +

√
eyTi Σy

ie
y
i icdfn(p

y
i,t), i ∈ Z[1,qy]∑qu

i=1p
u
i,t = pu, pui,t > 0, i ∈ Z[1,qu]∑qy

i=1p
y
i,t = py, pyi,t > 0, i ∈ Z[1,qy]

(39)

2) Equivalence to SMPC Optimization Problem: We now
establish that the SDDPC problem (38) and the SMPC problem
(20) have equal feasible and optimal sets, when the respective
state means and variances are related as in (30) of Lemma 6.

Proposition 7 (Equivalence of Optimization Problems). If the
parameters µx

k,Σ
x
k,µ

x
k,Σ

x
k satisfy (30), then the optimal (resp.

feasible) solution set of the SDDPC problem (38) is equal to
the optimal (resp. feasible) solution set of the SMPC problem
(20).

Proof. We first claim that for any unom
[k,k+N), it holds for all

t ∈ Z[k,k+N) that

ynomt = ynom
t , Σu

t = Σu
t , Σy

t = Σy
t . (40)

The proof of (40) can be found in Appendix D. Given (40),
the objective functions of problems (20) and (38) are equal,
and the constraint (19) in problem (20) and the constraint (39)
in problem (38) are equivalent. Thus problems (20) and (38)
have the same objective function and constraints, and the result
follows.

We conclude by noting that problem (38) produces a unique
optimal unom when it is feasible, following from Proposition
7 and the fact that problem (20) gives a unique optimal unom

when feasible, as mentioned in Section II-A.

D. Online Control Algorithm

1) SDDPC Control Algorithm: We now describe the online
implementation of our SDDPC. At time t = k, the nominal
input sequence unom

[k,k+N) is computed from (38). We then
construct the policies π[k,k+N) via (33), and apply the first
Nc policies to the system. Then, t = k+Nc is set as the next
control step. The initial condition (29) at the new control step
is iterated as the prior distribution N (µx

k+Nc
,Σx

k+Nc
) of the



auxiliary state xk+Nc
, where the mean and the variance are

obtained from the Kalman filter (31), (32).

µx
k+Nc

= x̂-
k+Nc

, Σx
k+Nc

= P-
k+Nc

. (41)

The method is formally summarized in Algorithm 2.

Algorithm 2 Stochastic Data-Driven Predictive Control (SD-
DPC)
Input: horizon lengths L,N,Nc, offline data ud

[1,Td]
, yd[1,Td]

,
noise variances Σρ,Σv, initial-state mean µx

0 and vari-
ance Σx

0, cost matrices Q,R, constraint coefficients
Eu, Ey, fu, f y, probability bounds pu, py.

1: Compute the LQR gain K via (35).
2: Compute matrix Γ as in Section III-A using data ud, yd,

and formulate matrices A,B,C as in Section III-B.
3: Initialize the control step k ← 0 and the initial condition

µx
k ← µx

0, Σx
k ← Σx

0.
4: while true do
5: Compute via (32) Kalman gains L[k,k+N) together

with P-
[t,t+N ] and P[t,t+N).

6: Compute via (37) variances Σu
[t,t+N) and Σy

[t,t+N).
7: Solve nominal inputs unom

[k,k+N) from problem (38), and
thus obtain policies π[k,k+N) from (33).

8: x̂-
k ← µx

k as in (31c).
9: for t from k to k +Nc − 1 do

10: Measure yt from the system (1).
11: Compute x̂t via (31a).
12: Input ut ← πt(x̂t) to the system (1).
13: Compute x̂-

t+1 via (31b).

14: µx
k+Nc

← x̂-
k+Nc

and Σx
k+Nc

← P-
k+Nc

as in (41).
15: Set k ← k +Nc.

2) Equivalence to SMPC Algorithm: We present in Theorem
9 our main result, which says that under idealized conditions,
our proposed SDDPC control method and the benchmark
SMPC method will result in identical control actions.

Assumption 8 (SDDPC Parameter Choice w.r.t. SMPC). Given
the parameters in Algorithm 1, we assume the parameters in
Algorithm 2 satisfy the following.

(a) L is sufficiently large so that O has full column rank and
C has full row rank.

(b) Data ud, yd comes from the deterministic system (22), and
the input data ud is persistently exciting of order 2L+ n.

(c) Given Σw in Algorithm 1, parameter Σρ in Algorithm 2
is set equal to OΣwOT.

(d) Given µx
0,Σ

x
0 in Algorithm 1, for some µξ

0, Σξ
0 satisfying

(30) at k = 0, the parameters µx
0,Σ

x
0 in Algorithm 2 are

selected as in (30) at k = 0. (Such µξ
0, Σξ

0 always exist
because Φorig has full row rank.)

Theorem 9 (Equivalence of SMPC and SDDPC). Consider
the stochastic system (1) with initial state x0, and consider the
following two control processes:

a) decide control actions {ut}∞t=0 by executing Algorithm 1;
b) decide control actions {ut}∞t=0 by executing Algorithm 2,

where the parameters satisfy Assumption 8.

Let the noise realizations {wt, vt}∞t=0 be the same in process
a) and in process b). Then the state-input-output trajectories
{xt, ut, yt}∞t=0 resulting from process a) and from process b)
are the same.

Proof. Let {xa
t , u

a
t , y

a
t} denote the trajectory produced by

process a), and {xb
t , u

b
t , y

b
t } the trajectory from process b).

We make the following claim, whose proof can be found in
Appendix E.

Claim 9.1. At control step t = κ in processes a) and b), if
i) the states xa

κ = xb
κ are equal in processes a) and b), and

ii) parameters µx
κ,Σ

x
κ in process a) and parameters µx

κ,Σ
x
κ

in process b) satisfy (30) at k = κ,
then
1) the states xa

t = xb
t are equal for time t ∈ Z[κ,κ+Nc], and

the inputs ua
t = ub

t and outputs yat = ybt are equal for time
t ∈ Z[κ,κ+Nc), and

2) parameters µx
κ+Nc

,Σx
κ+Nc

in process a) and parameters
µx

κ+Nc
,Σx

κ+Nc
in process b) satisfy (30) at k = κ+Nc.

We finish the proof by showing that result 1) in Claim 9.1 is
true for all control steps κ ∈ {0, Nc, 2Nc, . . .}. By induction,
we can show results 1) and 2) in Claim 9.1 altogether for all
κ. Base Case. For κ = 0, condition i) is true given that both
processes start with a common initial state x0, and condition
ii) holds due to Assumption 8. Through Claim 9.1, the results
1) and 2) are true for κ = 0. Inductive Step. For κ = κ′,
assume results 1) and 2), which imply the conditions i) and
ii) respectively for κ = κ′ +Nc. Thus, through Claim 9.1, the
results 1) and 2) are true for κ = κ′+Nc. By induction on κ, we
have results 1) and 2) for all control steps κ ∈ {0, Nc, 2Nc, . . .}.
The result 1) for all κ suffices to prove the theorem.

Theorem 9 should be interpreted as equivalence between
SMPC and SDDPC in the idealized setting. Specifically, it
establishes that if the proposed SDDPC algorithm is provided
with noise-free offline data, if the initial conditions set within
SMPC and SDDPC match, and if the process noise variance
Σρ in the algorithm is set in a specific idealized fashion relative
to the original process noise variance Σw, then the method will
produce identical results to those obtained by applying SMPC.
While in practice these assumptions will not hold, noisy offline
data can be accommodated as discussed in Section III-A, and
Σρ becomes a tuning parameter of our SDDPC method.

I V. N U M E R I C A L C A S E S T U DY

In this section, we numerically test our proposed method
on the nonlinear grid-connected power converter system from
[22], shown in Fig. 1, and we compare the results with those
of several benchmark model-based and data-based techniques.

The AC grid in the power part of Fig. 1 is modeled as an
infinite bus with fixed voltage (1 p.u.) and fixed frequency
(1 p.u.). This model has n = 6 states, m = 3 inputs and
p = 3 outputs. The inputs are the angular frequency correction
∆ω and current references Irefd and Irefq of d- and q-axes,
respectively. The outputs to be controlled are the q-axis voltage
Vq, the active power PE and the reactive power QE. The LCL-
filter parameters and the PI parameters in Fig. 1 are consistent
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Fig. 1. The one-line diagram of a grid-connected power converter [22,
Fig. 1].

with [22], whereas the load resistance Rload is chosen as a
Gaussian signal with mean 4 p.u. and noise power 10−3 p.u.,
which introduces process noise. The measurement noise on
each output is normally distributed with variance 10−8 p.u..

A. Benchmark Control Methods
In this subsection, we review several existing receding-

horizon control methods which are performed in our simu-
lations and compared to our proposed SDDPC.

1) Stochastic MPC and (Deterministic) MPC: We investigate
two model-based methods, namely Stochastic MPC (SMPC)
(Subsection II-A) and deterministic MPC (or MPC). For both
SMPC and MPC, a system model (A,B,C) is obtained
through the N4SID system identification method [41], using
offline data ud, yd collected from the system. MPC follows
a similar receding-horizon control process as SMPC, whereas
the optimization problem solves for control actions with no
feedback policy, and considers deterministic safety constraints

Euut ≤ fu, Eyyt ≤ f y. (42)

The MPC optimization problem at control step t = k is

minimize
u,y

∑k+N−1
t=k J(ut, yt)

subject to (22), (42) for t ∈ Z[k,k+N), and xk = µx
k,

where the state estimate µx
k ← x̂-

k is obtained by applying
Kalman filter (6).

2) DeePC and SPC: We investigate L2-regularized DeePC
[22] and regularized SPC [14] as benchmark data-driven meth-
ods. In DeePC and SPC, the optimization problems directly
compute control actions while accounting for deterministic
safety constraints (42). Using offline data ud, yd, we formulate
data Hankel matrices Up, Uf , Yp, Yf similar to U1, U2, Y1, Y2 in
(23), but matrices Up, Uf , Yp, Yf have mL,mN, pL, pN rows
respectively. The regularized DeePC optimization problem at
control step t = k,

minimize
g,uf ,yf ,σy

[∑k+N−1
t=k J(ut, yt)

]
+ λy∥σy∥22 + λg∥g∥22

subject to col(Up, Yp, Uf , Yf) g = col(uini, yini+σy, uf , yf)

(42) for t ∈ Z[k,k+N)

TABLE I
C O N T R O L PA R A M E T E R S

Time Horizon Lengths

Initial-condition horizon length L = 10
Prediction horizon length N = 30
Control horizon length Nc = 10

Problem Setup Parameters

Sampling Period Ts = 1ms
Cost matrices Q = 104Ip, R = Im
Input constraint coefficients Eu = Im ⊗

[
1
−1

]
fu = 0.6× 12m×1

Output constraint coefficients Ey = Ip ⊗
[

1
−1

]
f y = 0.4× 12p×1

Risk probability bounds pu = 0.2, py = 0.2
Variance of vt for SMPC/SDDPC Σv = 10−8Ip
Variance of ρt for SDDPC Σρ = 10−4IpL
Variance of wt for SMPCa Σw = O†ΣρO†T

Regularization Parameters

DeePC regularization λy = 106, λg = 103

Regularization of P in SDDPC λ = 10−3

Regularization of Pspc in SPC λ = 10−3

aIn computation of Σw, matrix O is obtained given the
identified system (A,B,C) in SMPC.

where uini := u[k−L,k), uf := u[k,k+N) and similarly for yini
and yf ; λy > 0 and λg > 0 are regularization parameters. The
SPC optimization problem at control step t = k,

minimize
uf ,yf

∑k+N−1
t=k J(ut, yt)

subject to yf = P̂spc col(uini, yini, uf)

(42) for t ∈ Z[k,k+N)

where P̂spc is the Tikhonov regularization of the prediction
matrix Pspc := Yf col(Up, Yp, Uf)

†, obtained similarly as P̂ in
Subsection III-A, with a regularization parameter λ > 0.

B. Offline Data Collection

Offline data is required in all our investigated control
methods, for use in either data matrices (SDDPC, DeePC and
SPC) or for system identification (MPC and SMPC). In our
simulation, the data collection process lasted for 1 second and
produced a data trajectory of length Td = 1000 with a sampling
period of 1ms. The input data was generated as follows: ∆ω
(input 1) was set as the phase-locked loop (PLL) control action
(see e.g. [18]) plus a white-noise signal, Irefd (input 2) was set
as 0.4 p.u. plus a white-noise signal, and Irefq (input 3) was
set at 0 p.u. plus a white-noise signal. Each white noise signal
had noise power of 10−6 p.u..

C. Results

All controller parameters are reported in Table I. Our
simulation consists of two parts. In the first part, we compare
the tracking performances of the different controllers. In the
second part, we examine the ability of the controllers to
maintain safety constraints.
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Fig. 2. Cumulative stage cost with different controllers, Nc = 10.
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Fig. 3. Cumulative stage cost with different controllers, Nc = 1.

1) Tracking Performance: For each controller, we perform
the following control process. From time 0s to time 0.2s, the
controller is switched off, and the inputs Irefd and Irefq are
set to zero, with ∆ω generated from the PLL. After time
0.2s, the controller is switched on, and the output reference
signal is rt = [0, 0, 0]T before time 0.5s and rt = [0, 0.3, 0]T

after time 0.5s. To quantitatively compare the results, Fig. 2
shows the stage cost accumulated over the first two seconds
for each controller. The result shows that the stochastic control
methods (SMPC and SDDPC) outperformed the deterministic
control methods (DeePC, SPC and MPC) in terms of their
cumulative costs. This observation aligns with our expectation
that stochastic control performs better with stochastic systems,
since the stochastic control methods receive feedback at each
time step – more frequently than the deterministic control
methods which receive feedback only at each control step, i.e.,
every Nc = 10 time steps. However, this benefit of stochastic
control vanishes when we select shorter control horizons. Fig. 3
shows the cumulative stage costs when the control horizon has
length Nc = 1, where we no longer observe a performance gap
between all stochastic methods and all deterministic methods.
SDDPC and SPC outperformed other controllers. Although we
showed the results with different Nc, we emphasize significance
of the Nc = 10 setting, which requires less computation since
the optimization problems are solved less frequently.
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Fig. 4. The second output signals with SPC (light blue) and SDDPC
(red) in the constraint satisfaction test.

TABLE II
S TAT I S T I C S O F C O N S T R A I N T V I O L AT I O N

O F T H E S E C O N D O U T P U T C H A N N E L F R O M 0.5S T O 2.0S

Controller Violation Rate Total Violation
Amount

SDDPC (py = 0.2) 0.15 1.10
SDDPC (py = 0.05) 0.03 0.05

SysID+SMPC (py = 0.2) 0.19 1.55
SysID+SMPC (py = 0.05) 0.11 0.52
SysID+MPC 0.57 6.79
DeePC 0.20 1.46
SPC 0.49 8.42

2) Output Constraint Satisfaction: We next evaluate for each
controller its ability to meet the output safety constraints.
We repeat the control process above, but the reference signal
becomes rt = [0, 0, 0]T before time 0.5s and rt = [0, 0.5, 0]T

after time 0.5s. Note that the reference value 0.5 for the second
output channel after time 0.5s is beyond the range of output
safety constraint (with Ey, f y in TABLE I), which restricts all
output channels within the range of [−0.4, 0.4]. As a result, in
our simulations, the second output channel remained close to
the upper safety bound of 0.4 after time 0.5s for all controllers;
for example, the trace of the second output under SPC and
SDDPC is displayed in Fig. 4.

To quantify the constraint satisfaction with each controller,
from time 0.5s to time 2.0s (1500 time steps), we count
the number and compute the rate of time steps where the
measurement of the second output channel violates the safety
constraint. As a second metric, we sum the amount of constraint
violation that occurs between 0.5s to 2.0s for each controller.
The results are displayed in TABLE II, where we also displayed
the results of SMPC and SDDPC with parameter py changed
from 0.2 (as in TABLE I) to 0.05. As the result shows, both
violation rates of SMPC and SDDPC declined as we decrease
py, while the violation rate of SDDPC shrank more effectively
than that of SMPC. The total violation amounts of SMPC
and SDDPC also reduced when we decrease py. Among the
methods using deterministic safety constraint, DeePC had a
lower violation rate and a smaller violation amount than MPC
and SPC.



V. C O N C L U S I O N S

We introduced a novel direct data-driven control framework
named Stochastic Data-Driven Predictive Control (SDDPC).
Analogous to Stochastic MPC (SMPC), SDDPC accounts for
process and measurement noise in the control design, and
produces closed-loop control policies through optimization.
On the theoretical front, we proved that SDDPC can produce
control inputs equivalent to those of SMPC under specific con-
ditions. Simulation results indicate that the proposed approach
provides benefits in terms of both cumulative stage cost and
output constraint violation. Future work will explore recursive
feasibility and closed-loops stability of the control scheme, and
seek to improve the computational efficiency of the approach.
Other important directions include extension to non-Gaussian
noise, optimization over the feedback gain K, and restriction
of violation amount through, e.g., CVaR safety constraints.
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Proof. Let (xd, ud, yd) be the state-input-output trajectory of
(22), and define X1, X2 ∈ Rn×h as

X1 :=
[
xd
1 , x

d
2 , . . . , x

d
h

]
, X2 :=

[
xd
1+L, x

d
2+L, . . . , x

d
h+L

]
.

It follows by straightforward algebra that data matrices satisfy
[14, eq. 3.20-3.22]

X2 = ALX1 + CU1 (43a)
Y1 = OX1 +GU1 (43b)
Y2 = OX2 +GU2. (43c)

Under our assumptions of controllability and persistency of
excitation, it follows from [42, Corollary 2(iii)] that the matrix
col(X1, U1, U2) has full row rank. Moreover,

[
ImL

G O
]

and[
ImL

G O
ImL

]
have full column rank, as they are block lower

triangular and their diagonal blocks each has full column rank
(Section III-A).

First we show that [P1,P2,P3] = [ΓU,ΓY,G]. Recall that
[P1,P2,P3] is defined as Y2 col(U1, Y1, U2)

†. First, the matrix
Y2 can be represented in terms of X1, U1, U2 by combining
(43a) and (43c) and eliminating X2,

Y2 =
[
OC︸︷︷︸
=H

, OAL , G
] [U1

X1

U2

]
, (44)

where we have H = OC in (44) according to the definition
of H,O, C. We can also represent col(U1, Y1, U2) in terms of
X1, U1, U2 using (43b) as[

U1

Y1

U2

]
=

[
ImL

G O
ImL

][
U1

X1

U2

]
.

As we know that
[
ImL

G O
ImL

]
has full column rank and

[
U1

X1

U2

]
has full row rank, the pseudo-inverse of above is [43][

U1

Y1

U2

]†

=

[
U1

X1

U2

]† [
ImL

G O
ImL

]†

. (45)

Thus, by multiplying (44) and (45), we find that

[P1,P2,P3] = Y2 col(U1, Y1, U2)
†

=
[
H,OAL,G

] [ImL

G O
ImL

]†

=

[[
H,OAL

] [ImL

G O

]†
G

]
via (25a)
= [ΓU,ΓY,G].

(46)

Finally, given (25a) with
[
ImL

G O
]

of full column rank, we
have

[H,OAL] = [ΓU,ΓY]
[
ImL

G O

]
= [ΓU + ΓYG, ΓYO]

via (46)
= [P1 + P2P3, ΓYO],

(47)

which shows that H = P1+P2P3 and completes the proof.
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Proof. We first show that we can construct a matrix Φ ∈
Rn×naux such that xt = Φxt. Given the system model (1),
the state xt and noise-free output y◦[t−L,t) can be expressed in
terms of a previous state xt−L, previous inputs u[t−L,t) and
previous disturbances w[t−L,t) via

xt = AL xt−L + C u[t−L,t) + CW w[t−L,t) (48a)
y◦[t−L,t) = O xt−L +Gu[t−L,t) +GW w[t−L,t), (48b)

where CW := [AL−1, . . . , A, In] ∈ Rn×nL, and GW ∈
RpL×nL is defined as

GW :=

 0p×n

C 0p×n...
. . .

. . .
CAL−2 · · · C 0p×n

 .

Define [ΦU,ΦY] := [C, AL]
[
ImL

G O
]† ∈ Rn×(m+p)L. Since O

has full column rank, so does
[
ImL

G O
]
, and therefore

[C, AL] = [ΦU,ΦY]

[
ImL
G O

]
= [ΦU +ΦYG,ΦYO]. (49)

Left-multiply (48b) by ΦY, and we have

ΦY(−Gu[t−L,t) + y◦[t−L,t) −GWw[t−L,t))

= ΦYOxt−L
via (49)
= ALxt−L.

(50)

Substituting (50) into (48a), we eliminate ALxt−L and express
xt in terms of u, y◦ and w as

xt = (C − ΦYG)︸ ︷︷ ︸
=ΦU via (49)

u[t−L,t) +ΦY y◦[t−L,t)

+ (CW − ΦYGW)︸ ︷︷ ︸
=:ΦW

w[t−L,t).

Define Φρ := ΦW (IL⊗O†). Then, we write the last term above
as ΦW w[t−L,t) = ΦW (IL⊗O†) ρ[t−L,t) = Φρ ρ[t−L,t), where
the first equality used the fact w[t−L,t) = (IL ⊗ O†) ρ[t−L,t)

given the definition ρt := Owt with O of full column rank.
Hence, the above equation can be written as xt = Φxt with
Φ := [ΦU,ΦY,Φρ], given the definition of xt in (26).

Next, we show the relation (27b). Given (25b), the definition
of ΦU,ΦY and the fact that CC = H1 (which can be verified
given the definition of C and H1), we know that

C[ΦU,ΦY] = [ΓU1,ΓY1]. (51)

Given the definition ΦW := CW − ΦYGW, we have

CΦW = CCW − CΦYGW
via (51)
= CCW − ΓY1GW

= F(IL ⊗O)− ΓY1E(IL ⊗O)
(52)

where the last equality used the facts that CCW = F(IL ⊗
O) and GW = E(IL ⊗ O) which both can be verified from
the definition of E,F, CW,GW. Given the definition Φρ :=
ΦW(IL ⊗O†), it follows from (52) that

CΦρ = (F− ΓY1E)(IL ⊗OO†). (53)

Recall C := [ΓU1,ΓY1,F − ΓY1E] and Φ := [ΦU,ΦY,Φρ],
so the horizontal stack of (51) and (53) can be written as

C Φ = C

[
ImL

IpL

IL⊗OO†

]
︸ ︷︷ ︸

=: J

. (54)

Notice that Jxt = xt because (IL ⊗OO†)ρ[t−L,t) = ρ[t−L,t),
which follows from the fact that OO†ρt = OO†Owt =
Owt = ρt. Thus, we obtain (27b).

yt
via (1b)
= Cxt + vt = CΦxt + vt

via (54)
= CJxt + vt

= Cxt + vt

Last, we prove (27a). Using the definitions of xt,wt in (26)
and the definitions of A,B, by direct matrix multiplication,
we have the following.

Axt =


u[t−L+1,t)

0m×1

y◦[t−L+1,t)

Cxt

ρ[t−L+1,t)

0pL×1


via (27b)

=


u[t−L+1,t)

0m×1

y◦[t−L+1,t)

y◦t
ρ[t−L+1,t)

0pL×1

 ,

But =


0m(L−1)×1

ut
0pL×1

0pL2×1

 , wt =


0mL×1
0pL×1

0pL(L−1)×1

ρt

 .

Adding the above equalities together, the left-hand side yields
Axt+But+wt, and the right-hand side is xt+1 by definition,
so (27a) is obtained.
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Proof. The pair (A,C) is detectable by definition since there
exists a matrix L′ := col(0mL×p, 0p(L−1)×p, Ip, 0pL2×p) such
that A− L′C equal to

Im(L−1)

0m×m
0 0

0
Ip(L−1)

0p×p
0

0 0
IpL(L−1)

0pL×pL


is Schur stable. We prove that (A,B) is stabilizable by con-
structing a stabilizing gain. Recall the definition [ΦU,ΦY] :=

[C, AL]
[
ImL

G O
]† ∈ Rn×(m+p)L in Appendix B, and let

K′ := [KΦU,KΦY, 0m×pL2 ] ∈ Rm×naux where K is the LQR
gain in (10). Given the definition of A,B and the relation
[ΓU1,ΓY1] = [CΦU, CΦY] from (51), the closed-loop state
matrix Acl := A+BK′ under the feedback ut = K′xt is

Acl =


0 Im(L−1)

KΦU

0
KΦY

0

0
CΦU

0 Ip(L−1)

CΦY

0
F− ΓY1E

0 0
IpL(L−1)

0pL×pL

 .

Since Acl is a block upper triangular matrix, with the block[
IpL(L−1)

0pL×pL

]
being Schur stable, Acl is Schur stable if



and only if the sub-matrix

Asub :=

 0 Im(L−1)

KΦU

0
KΦY

0
CΦU

0 Ip(L−1)

CΦY

 ∈ R(m+p)L×(m+p)L

is Schur stable.
As an intermediate step, we first show that At

sub

[
ImL

G O
]
→

0 as t → ∞. Consider the deterministic system (22) from
initial time t = −L, where the initial state x−L is arbitrary,
the inputs u[−L,0) are arbitrary, and the inputs ut for t ≥ 0
are generated by state feedback

ut = Kxt. (55)

with K the LQR gain. Combining (22a) and (55), we have
xt+1 = (A+BK)xt for t ≥ 0, and thus xt = (A+BK)t x0

for t ≥ 0. Since A + BK Schur stable, it of course follows
that xt, yt, ut → 0 as t → ∞, given (55) and yt = Cxt

via (22b). Now define the noise-free auxiliary state x◦
t :=

col(u[t−L,t), y[t−L,t)) ∈ R(m+p)L, which correspondingly sat-
isfies

x◦
t → 0 as t→∞. (56)

Recall the relationship xt = Φxt from Appendix B developed
for the stochastic system (1); setting wt and vt as zero in
system (1), this relationship reduces to xt = [ΦU,ΦY]x

◦
t for

the deterministic system (22). It follows from (22b), (55) and
xt = [ΦU,ΦY]x

◦
t that

ut = [KΦU,KΦY]x
◦
t , yt = [CΦU, CΦY]x

◦
t ,

for t ≥ 0. With above relations and the definition of Asub and
x◦
t , we see that x◦

t+1 = Asub x
◦
t for t ≥ 0 and therefore

x◦
t = At

sub x
◦
0, t ≥ 0. (57)

Combining (56) and (57), we conclude that At
sub x

◦
0 → 0

as t → ∞. Since x◦
0 =

[
ImL

G O
]
col(u[−L,0), x−L) where

x−L and u[−L,0) were arbitrarily chosen, we conclude that
At

sub

[
ImL

G O
]
→ 0 as t → ∞ which shows our intermediate

result.
We now show that At

sub → 0 as t → ∞. Let I :=
limt→∞ At

sub denote the limiting value. Notice that Asub can
be expressed as Asub = D + E[ΦU,ΦY] where

D :=

[ Im(L−1)

0m×m
0

0
Ip(L−1)

0p×p

]
, E :=

 0m(L−1)×n

K
0p(L−1)×n

C

 .

From [ΦU,ΦY] := [C, AL]
[
ImL

G O
]†

, it follows by substitution
that [ΦU,ΦY]

[
ImL

G O
][

ImL

G O
]†

= [ΦU,ΦY], and thus

Asub

[
ImL

G O
][

ImL

G O
]†

= Asub +Asub

([
ImL

G O
][

ImL

G O
]† − I

)
= Asub + (D + E[ΦU,ΦY])

([
ImL

G O
][

ImL

G O
]† − I

)
= Asub +

(
D
[
ImL

G O
][

ImL

G O
]† −D

)
+ E

(
[ΦU,ΦY]

[
ImL

G O
][

ImL

G O
]† − [ΦU,ΦY]

)︸ ︷︷ ︸
=0

.

Left-multiplying the above by At−1
sub and taking the limit as

t→∞, we find that

lim
t→∞

At
sub

[
ImL

G O
][

ImL

G O
]†

= lim
t→∞

At
sub︸ ︷︷ ︸

=I

+ lim
t→∞

At−1
sub︸ ︷︷ ︸

=I

(
D
[
ImL

G O
][

ImL

G O
]† −D

)
. (58)

Since we proved that limt→∞ At
sub

[
ImL

G O
]
= 0, the left-hand-

side of (58) is zero, so (58) further reduces to

0 = I
(
I +D

[
ImL

G O
][

ImL

G O
]† −D

)︸ ︷︷ ︸
=:Q

. (59)

We next show that the matrix Q in (59) is non-singular.
Suppose there exists some vector z ̸= 0 that is in Null(Q), and
thus Qz = 0. Note that Q can be written as I−DP , where we
let P := I −

[
ImL

G O
][

ImL

G O
]†

which is a projection matrix.
Substituting Q = I −DP into Qz = 0, we have z = DPz.
If z /∈ Range(P ), then ∥Pz∥2 < ∥z∥2 for a projection matrix
P , and therefore we have

∥z∥2 = ∥DPz∥2 ≤ ∥D∥2︸ ︷︷ ︸
=1

∥Pz∥2︸ ︷︷ ︸
<∥z∥2

< ∥z∥2,

which is a contradiction. Hence, we know that z ∈ Range(P ),
which implies that Pz = z because P is a projection matrix.
Combining z = DPz and Pz = z, we have (I − D)z = 0,
which implies that z = 0 since I −D is non-singular, and this
contradicts with z ̸= 0. Therefore, we conclude that Null(Q) =
{0} and Q is non-singular. Right-multiplying (59) by Q−1,
we have I = 0 which by definition means that At

sub → 0 as
t→∞. Thus, Asub is Schur stable and the proof is done .

A P P E N D I X D. P R O O F O F (40)
Here, we prove (40) which is a critical result supporting

the proof of Proposition 7. We will show ynomt = ynom
t in

Subsection B and show Σu
t = Σu

t , Σy
t = Σy

t in Subsection D.
Due to the page limit, we omit the proofs of some claims in
this section, which can be found in the extended version [38].

A. Preliminary Results
We begin by establishing some useful identities in Claim 7.1–

7.4 that will be leveraged in the remainder of the proof. Recall
the matrix Φ = [ΦU,ΦY,Φρ] ∈ Rn×naux used in Appendix B,
defined as

[ΦU,ΦY] := [C, AL]

[
ImL
G O

]†
Φρ := (CW − ΦYGW) (IL ⊗O†),

and the matrices Φorig ∈ Rn×naux and Φaux ∈ Rnaux×nξ

described in Lemma 6, with nξ := mL+n(L+1), defined as

Φorig := [C, AL, CW], Φaux :=

[
ImL

G O GW

IL ⊗O

]
.

Claim 7.1. For the system (1) and auxiliary model (27), it
holds for all t ∈ N≥0 that

xt = Φxt AΦΦaux = ΦAΦaux B = ΦB

wt = Φwt CΦΦaux = CΦaux Σw = ΦΣwΦT.



Moreover, if µx
k,Σ

x
k,µ

x
k,Σ

x
k satisfy (30), then

µx
k = Φµx

k Σx
k = ΦΣx

kΦ
T.

Proof. The relation xt = Φxt has been proved in Appendix
B, and B = ΦB can be verified by simple direct calculation,
as B is a zero-one matrix. The relation CΦΦaux = CJΦaux =
CΦaux follows from (54) and the fact that JΦaux = Φaux, which
can be checked from the definition of Φaux. To show wt = Φwt

and Σw = ΦΣwΦT, recall from the definition that wt = J0wt

and Σw = J0Σ
wJT

0 where J0 := col(0(naux−pL)×n,O). By
direct calculation one can verify that ΦJ0 = In, using which we
obtain wt = Φwt given wt = J0wt and obtain Σw = ΦΣwΦT

given Σw = J0Σ
wJT

0 . To show AΦΦaux = ΦAΦaux, we first
note that

AΦxt = Axt
via (1a)
= xt+1 −But − wt

= Φxt+1 − ΦBut − Φwt
via (27a)
= ΦAxt.

Note that xt = Φauxξt with ξt := col(u[t−L,t), xt−L, w[t−L,t)),
through (48b) and the definition of xt in (26), and thus the
above equality is written as AΦΦauxξt = ΦAΦauxξt. Since
the relation holds for all possible ξt and the entries of ξt are
independent, we have AΦΦaux = ΦAΦaux. The final relations
µx
k = Φµx

k, Σx
k = ΦΣx

kΦ
T follow from (30), given the relation

Φorig = ΦΦaux which can be verified given the definition of
Φ,Φorig,Φaux. ♦

Moreover, as said in the following claim, both AΦaux and
B have columns in the range of Φaux, and Σw has rows and
columns in the range of Φaux.

Claim 7.2. For the auxiliary system (27), there exist matrices
Ã ∈ Rnξ×nξ , B̃ ∈ Rnξ×m and Σ̃w ∈ Snξ

+ such that

AΦaux = ΦauxÃ B = ΦauxB̃ Σw = ΦauxΣ̃
wΦT

aux.

Proof. Direct calculation, by selecting

Ã :=


Im(L−1)

0m×m

B 0n×m(L−1) A In 0n×n(L−1)

In(L−1)

0n×n

 ,

B̃ :=

 0m(L−1)×m

Im
0n×m

0nL×m

 , Σ̃w :=
[
0(nξ−n)×(nξ−n)

Σw

]
.

(61)

♦

We also establish a relation between the feedback gains K
and K produced by LQR.

Claim 7.3 ( [38, Claim 7.3]). For the system (1) and auxiliary
model (27), it holds that KΦΦaux = KΦaux.

We mention some useful identities in Claim 7.4 which follow
after Claim 7.1–7.3 and will be used multiple times in the rest
of the proof.

Claim 7.4 ( [38, Claim 7.4]). If v ∈ Rn, v ∈ Rnaux and
ṽ ∈ Rnξ are such that v = Φv and v = Φauxṽ, then

Cv = Cv, Kv = Kv.

If M ∈ Sn+, M ∈ Snaux
+ and M̃ ∈ Snξ

+ are such that M =

ΦMΦT and M = ΦauxM̃ΦT
aux, then

CMCT = CMCT, KMKT = KMKT.

B. Proving the Equivalence on Nominal Output
We first prove ynomt = ynom

t in (40) for t ∈ Z[k,k+N), which
is a corollary after the following claim.

Claim 7.5 ( [38, Claim 7.5]). If µx
k and µx

k satisfy (30a), then
for t ∈ Z[k,k+N) we have
(a) xnom

t = Φxnom
t , and

(b) xnom
t = Φaux x̃

nom
t for some vector x̃nom

t ∈ Rnξ .

Given xnom
t = Φxnom

t and xnom
t = Φauxx̃

nom
t from Claim

7.5, we can apply Claim 7.4 with selection (v,v, ṽ) ←
(xnom

t ,xnom
t , x̃nom

t ), and hence obtain Cxnom
t = Cxnom

t . With
definitions ynomt := Cxnom

t via (9b) and ynom
t := Cxnom

t via
(34b), we therefore have that

ynomt = Cxnom
t = Cxnom

t = ynom
t ,

which shows the desired result.

C. Relation of Kalman Gains
We illustrate in Claim 7.6 a relation between the Kalman

gains Lt and Lt. This result will be utilized to prove Claim
7.7 in the next subsection.

Claim 7.6 ( [38, Claim 7.6]). If Σx
k and Σx

k satisfy (30b), then
for t ∈ Z[k,k+N ] we have
(a) P -

t = ΦP-
t Φ

T and
(b) P-

t = Φaux P̃
-
t ΦT

aux for some matrix P̃ -
t ∈ Snξ

+ ,
and for t ∈ Z[k,k+N) we have
(c) Lt = ΦLt and Pt = ΦPt Φ

T and
(d) Lt = Φaux L̃t and Pt = Φaux P̃t Φ

T
aux for some matrices

L̃t ∈ Rnξ×p and P̃t ∈ Snξ

+ .

D. Proving the Equivalence on Variance Matrices
Finally, we prove Σu

t = Σu
t and Σy

t = Σy
t in (40) for t ∈

Z[k,k+N), which are obtained after Claim 7.7.

Claim 7.7 ( [38, Claim 7.8]). If Σx
k and Σx

k satisfy (30b), then
for t ∈ Z[k,k+N) we have

Σx̂x
t =

[
Φ

Φ

]
Σx̂x

t

[
ΦT

ΦT

]
, (62a)

Σx̂x
t =

[
Φaux

Φaux

]
Σ̃x̂x

t

[
ΦT

aux

ΦT
aux

]
, (62b)

for some matrix Σ̃x̂x
t ∈ S2nξ

+ .

Let Σx̂x1
t ,Σx̂x2

t ∈ Sn+ denote the diagonal blocks of Σx̂x
t , let

Σx̂x2
t ,Σx̂x2

t ∈ Snaux
+ denote the diagonal blocks of Σx̂x

t , and let
Σ̃x̂x1

t , Σ̃x̂x2
t ∈ Snξ

+ denote the diagonal blocks of Σ̃x̂x
t ,

Σx̂x
t =:

[
Σx̂x1

t ∗
∗ Σx̂x2

t

]
, Σx̂x

t =:
[
Σx̂x1

t ∗
∗ Σx̂x2

t

]
, Σ̃x̂x

t =:
[
Σ̃x̂x1

t ∗
∗ Σ̃x̂x2

t

]
so the definitions (14) and (37) can be written as

Σu
t = KΣx̂x1

t KT, Σu
t = KΣx̂x1

t KT, (63a)

Σy
t = CΣx̂x2

t CT, Σy
t = CΣx̂x2

t CT. (63b)



Recall (62a) and (62b) from Claim 7.7, and take the diagonal
blocks on both sides of each relation, yielding

Σx̂x1
t = ΦΣx̂x1

t ΦT, Σx̂x1
t = ΦauxΣ̃

x̂x1
t ΦT

aux, (64a)

Σx̂x2
t = ΦΣx̂x2

t ΦT, Σx̂x2
t = ΦauxΣ̃

x̂x2
t ΦT

aux. (64b)

Given (64), we are able to apply Claim 7.4 with (M,M, M̃)
chosen as (Σx̂x1

t ,Σx̂x1
t , Σ̃x̂x1

t ) and (Σx̂x2
t ,Σx̂x2

t , Σ̃x̂x2
t ) respec-

tively, yielding

KΣx̂x1
t KT = KΣx̂x1

t KT, CΣx̂x2
t CT = CΣx̂x2

t CT. (65)

Hence we obtain Σu
t = Σu

t and Σy
t = Σy

t by combining (63)
and (65). In conclusion of the entire section, all equalities in
(40) have been proved.
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Proof. We first show an extended result Claim 9.2 which
implies Claim 9.1. Recall the matrices Φ ∈ Rn×naux , Φorig ∈
Rn×naux and Φaux ∈ Rnaux×nξ used in Appendix D.

Claim 9.2. At control step κ in processes a) and b), if
i) the states xa

κ = xb
κ are equal in processes a) and b), and

ii) the parameters µx
κ,Σ

x
κ in process a) and parameters

µx
κ,Σ

x
κ in process b) satisfy (30) at k = κ,

then, for t ∈ Z[κ,κ+Nc],
(a) the states are equal xa

t = xb
t in processes a) and b),

(b) the variable x̂-
t in process a) and the variable x̂-

t in process
b) satisfy x̂-

t = Φx̂-
t and x̂-

t = Φaux
˜̂x-
t for some ˜̂x-

t ∈ Rnξ ,
and, for t ∈ Z[κ,κ+Nc),
(c) the outputs yat = ybt are equal in processes a) and b),
(d) the variable x̂t in process a) and the variable x̂t in process

b) satisfy x̂t = Φx̂t and x̂t = Φaux
˜̂xt for some ˜̂xt ∈ Rnξ ,

(e) the inputs ua
t = ub

t are equal in processes a) and b).

Proof. We prove results (a)-(e) altogether by induction on time
t. Base Case. We show (a) and (b) for t = k. Result (a) of
t = κ follows from condition i). Recall definitions x̂-

κ := µx
κ

via (6c) and x̂-
κ := µx

κ via (31c). Given condition ii), we also
have µx

κ = Φµx
κ via Claim 7.1 and µx

κ = Φauxµ
ξ
κ via (30a).

Thus, we obtain (b) of t = κ by choosing ˜̂x-
κ := µξ

κ.

x̂-
κ = µx

κ = Φµx
κ = Φx̂-

κ,

x̂-
κ = µx

κ = Φauxµ
ξ
κ = Φaux

˜̂x-
κ

Inductive Step. We assume (a) and (b) for t = τ ∈ Z[k,k+Nc),
and then prove (c), (d), (e) for t = τ and (a), (b) for t = τ +1.
Result (c) of t = τ follows directly from (a) of t = τ , given
yat = Cxa

t +vt and ybt = Cxb
t +vt via (1b). Then, we are able

to show (d) for t = τ with selection ˜̂xτ := ˜̂x-
τ +L̃τ (y

b
τ−Cx̂-

τ ),

x̂τ
via (6a)
= x̂-

τ + Lτ (y
a
τ − Cx̂-

τ )

= Φx̂-
τ +ΦLτ (y

b
τ −Cx̂-

τ )
via (31a)
= Φx̂τ

x̂τ
via (31a)
= x̂-

τ + Lτ (y
b
τ −Cx̂-

τ )

= Φaux
˜̂x-
τ +ΦauxL̃τ (y

b
τ −Cx̂-

τ ) = Φaux
˜̂xτ

where we used yaτ = ybτ from (c) of t = τ , x̂-
τ = Φx̂-

τ and
x̂-
τ = Φaux

˜̂x-
τ from (b) of t = τ , Lτ = ΦLτ and Lτ =

ΦauxL̃τ from Claim 7.6, and Cx̂-
τ = Cx̂-

τ by applying Claim
7.4 with selection (v,v, ṽ) ← (x̂-

τ , x̂
-
τ ,
˜̂x-
τ ) given (b) of t =

τ . The control inputs ua
τ , ub

τ are obtained through (8) and
(33) respectively, where the nominal inputs unom

τ are the same
according to Proposition 7 and the fact that both problems (20),
(38) produce a unique optimal unom.

ua
τ

via (8)
= unom

τ +Kx̂τ −Kxnom
τ

ub
τ

via (33)
= unom

τ +Kx̂τ −Kxnom
τ

Thus we obtain (e) for t = τ , provided that Kx̂τ = Kx̂τ

by applying Claim 7.4 with (v,v, ṽ) ← (x̂-
τ , x̂

-
τ ,
˜̂x-
τ ) given

(b) of t = τ , and Kxnom
τ = Kxnom

τ by applying Claim 7.4
with (v,v, ṽ)← (xnom

τ ,xnom
τ , x̃nom

τ ) given xnom
τ = Φxnom

τ and
xnom
τ = Φauxx̃

nom
τ via Claim 7.5. As a result of (a) and (e) of

t = τ , we immediately have (a) of t = τ + 1, since xa
τ+1 =

Axa
τ+Bua

τ+wτ and xb
τ+1 = Axb

τ+Bub
τ+wτ via (1a). Finally,

we prove (b) for t = τ+1, with selection ˜̂x-
τ+1 := Ã ˜̂xτ+B̃ub

τ ,

x̂-
τ+1

via (6b)
= Ax̂τ +Bua

τ

= ΦAx̂τ +ΦBub
τ

via (31b)
= Φx̂-

τ+1

x̂-
τ+1

via (31b)
= Ax̂τ +Bub

τ

= ΦauxÃ ˜̂xτ +ΦauxB̃ub
τ = Φaux

˜̂x-
τ+1

where we used ua
τ = ub

τ from (e) of t = τ , B = ΦB from
Claim 7.1, B = ΦauxB̃ from Claim 7.2, and relations Ax̂τ =
ΦAx̂τ and Ax̂τ = ΦauxÃ ˜̂xτ obtained from Claim 7.4 with
selection (v,v, ṽ) ← (x̂τ , x̂τ , ˜̂xτ ) given (d) of t = τ . Hence,
we proved (c), (d), (e) for t = τ and (a), (b) for t = τ + 1.

By induction on t, we have (a), (b) for all t ∈ Z[κ,κ+Nc]

and (c), (d), (e) for all t ∈ Z[κ,κ+Nc), showing the result. ♦

The result 1) in Claim 9.1 is covered by (a), (c), (e) of Claim
9.2. The rest of the proof shows the result 2) in Claim 9.1.
From (b) of Claim 9.2 with t = κ+Nc and (a), (b) of Claim
7.6 with t = κ+Nc, we have

x̂-
κ+Nc

= Φx̂-
κ+Nc

, P -
κ+Nc

= ΦP-
κ+Nc

ΦT

x̂-
κ+Nc

= Φaux
˜̂x-
κ+Nc

, P-
κ+Nc

= ΦauxP̃ -
κ+Nc

ΦT
aux

Recall that µx
k+Nc

, Σx
k+Nc

in Algorithm 1 and µx
k+Nc

, Σx
k+Nc

in Algorithm 2 are obtained through (21) and (41) respectively.
Combine the above relations with (21) and (41) at k = κ, and
then we have the relations below, where we select µξ

κ+Nc
:=˜̂x-

κ+Nc
and Σξ

κ+Nc
:= P̃ -

κ+Nc
.

µx
κ+Nc

= Φµx
κ+Nc

, Σx
κ+Nc

= ΦΣx
κ+Nc

ΦT (66a)

µx
κ+Nc

= Φauxµ
ξ
κ+Nc

, Σx
κ+Nc

= ΦauxΣ
ξ
κ+Nc

ΦT
aux (66b)

Combining (66a) and (66b), we eliminate µx
κ+Nc

, Σx
κ+Nc

and
obtain what follows,

µx
κ+Nc

= ΦΦaux

=Φorig

µξ
κ+Nc

, Σx
κ+Nc

= ΦΦaux

=Φorig

Σξ
κ+Nc

ΦT
auxΦ

T

=ΦT
orig

(67)

in which we used a relation Φorig = ΦΦaux which can be
verified from the definition of Φ,Φorig,Φaux. Notice that (67)
and (66b) are same as (30) at k = κ+Nc, and thus the result
2) of Claim 9.1 is proved.


