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Abstract— We consider the problem of direct data-driven
predictive control for unknown stochastic linear time-invariant
(LTI) systems with partial state observation. Building upon our
previous research on data-driven stochastic control, this paper
(i) relaxes the assumption of Gaussian process and measurement
noise, and (ii) enables optimization of the gain matrix within the
affine feedback policy. Output safety constraints are modelled
using conditional value-at-risk, and enforced in a distributionally
robust sense. Under idealized assumptions, we prove that our
proposed data-driven control method yields control inputs
identical to those produced by an equivalent model-based
stochastic predictive controller. A simulation study illustrates the
enhanced performance of our approach over previous designs.

I. INTRODUCTION

Model predictive control (MPC) is a widely used technique
for multivariate control [1], adept at handling constraints
on inputs, states, and outputs while optimizing complex
performance objectives. Constraints typically model actu-
ator limits, or encode safety constraints in safety-critical
applications, and MPC employs a system model to predict
how inputs influence state evolution. Both deterministic and
stochastic frameworks have been developed to account for
plant uncertainty in MPC. While Robust MPC [2] approaches
model uncertainty in a worst-case deterministic sense, work
on Stochastic MPC (SMPC) [3] has focused on describing
model uncertainty probabilistically. SMPC methods optimize
over feedback control policies rather than control actions,
resulting in performance benefits when compared to the naı̈ve
use of deterministic MPC [4], and SMPC frameworks can
accommodate probabilistic and risk-aware constraints.

The system model required by MPC (and SMPC) must
be obtained either from first-principles modelling or from
identification, making MPC an indirect design method, since
one goes from data to a controller through an intermediate
modelling step [5]. In contrast, direct methods, or data-driven
methods, seek to compute controllers directly from input-
output data. Data-driven methods show promise for complex
or difficult-to-model systems [6]. Early work on data-driven
methods did not adequately account for constraints on inputs
and outputs (see examples in [6]), leading to the development
of Data-Driven Predictive Control (DDPC) as data-driven
control methods addressing such constraints. Two well-known
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DDPC methods are Data-Enabled Predictive Control (DeePC)
[7]–[9] and Subspace Predictive Control (SPC) [10], both of
which have been applied in multiple experiments [11]–[14].
On the theoretical side, for deterministic LTI systems, both
DeePC and SPC produce equivalent control actions to their
model-based MPC counterparts [7], [10].

Real-world systems often deviate from idealized determinis-
tic LTI models, exhibiting stochastic and non-linear behavior,
with noise-corrupted data. To address these challenges, data-
driven methods must account for noisy data and measurements.
For instance, in SPC applications, the required predictor
matrices are often computed using denoising techniques such
as prediction error methods [13], [14]. Variants of DeePC were
also developed for stochastic systems, including norm-based
regularized DeePC [7], [8] and distributionally robust DeePC
[8], [9]. Unlike in the deterministic case however, these
stochastic adaptations of DeePC and SPC lack theoretical
equivalence to any model-based MPC method.

Recognizing this gap, some recent advancements in DDPC
have aimed to establish equivalence with MPC methods for
stochastic systems. The work in [15], [16] proposed a data-
driven control framework for stochastic systems with full
state observation, and their method performs equivalently to
full-observation SMPC if stochastic signals can be exactly
represented by their Polynomial Chaos Expansion. In [17], a
stochastic data-driven control method was developed by esti-
mating the innovation sequence, yielding equivalent control
performance to deterministic MPC when the innovation data
is exact. This paper builds in particular on our previous work
[18], where we proposed a data-driven control method for
stochastic systems with partial state observation, and estab-
lished that the method has equivalent control performance to
partial-observation SMPC when offline data is noise-free.

Contribution: This paper contributes towards the continued
development of high-performance data-driven predictive
control methods for stochastic systems. Specifically, in this
paper we develop a data-driven stochastic predictive control
strategy utilizing distributionally robust conditional value-
at-risk constraints, providing an improved safety constraint
description when compared to our prior work in [18], and
providing robustness against non-Gaussian (i.e., possibly
heavy-tailed) process and measurement noise. Additionally,
in contrast with the fixed feedback gain in [18], we consider
control policies where feedback gains are decision variables
in the optimization, giving a more flexible parameterization
of control policies. As theoretical support for the approach,
under technical conditions, we establish equivalence between
our proposed design and a corresponding SMPC. Finally, a



simulation case study compares and contrasts our design with
other recent stochastic and data-driven control strategies.

Notation: Let M† be the pseudo-inverse of a matrix M .
Let ⊗ denote the Kronecker product. Let Sq+ and Sq++

be the sets of q × q positive semi-definite and positive
definite matrices, respectively. Let col(M1, . . . ,Mk) denote
the column concatenation, and Diag(M1, . . . ,Mk) the block
diagonal concatenation, of matrices/vectors M1, . . . ,Mk. Let
Z[a,b] := [a, b] ∩ Z denote a set of consecutive integers
from a to b; let Z[a,b) := Z[a,b−1]. For a Rq-valued
discrete-time signal zt with integer index t, let z[t1,t2]
denote either a sequence {zt}t2t=t1 or a concatenated vector
col(zt1 , . . . , zt2) ∈ Rq(t2−t1+1) where the usage is clear
from the context; similarly, let z[t1,t2) := z[t1,t2−1]. A matrix
sequence {Mt}t2t=t1 and a function sequence {πt(·)}t2t=t1 are
denoted by M[t1,t2] and π[t1,t2] respectively.

II. PROBLEM SETUP

We consider a stochastic linear time-invariant (LTI) system

xt+1 = Axt +But + wt (1a)
yt = Cxt + vt (1b)

with input ut ∈ Rm, state xt ∈ Rn, output yt ∈ Rp, process
noise wt ∈ Rn, and measurement noise vt ∈ Rp. The
system (A,B,C) is assumed to be a minimal realization,
but the matrices themselves are unknown and the state xt

is unmeasured; we have access only to the input ut and
output yt in (1). The probability distributions of wt and vt
are unknown, but we assume that wt and vt have zero mean
and zero auto-correlation (white noise), are uncorrelated, and
their variances Σw ∈ Sn+ and Σv ∈ Sp++ are known. The
initial state x0 has known mean µx

0 and variance Σx
0 and is

uncorrelated with the noise. We record these conditions as

E
[[wt

vt

]]
= 0, E

[[wt

vt

][
ws

vs

]T]
=

[
δtsΣw 0

0 δtsΣv

]
, (2)

E[x0] = µx
0, Var[x0] = Σx

0, E
[
x0

[
wt

vt

]T]
= 0, (3)

where δts denotes the Kronecker delta.
In a reference tracking control problem for (1), the objective

is for the output yt to follow a specified reference signal
rt ∈ Rp. The trade-off between tracking error and control
effort may be encoded in an instantaneous cost

J(ut, yt) := ∥yt − rt∥2Q + ∥ut∥2R (4)

to be minimized over a time horizon, with user-selected
parameters Q ∈ Sp+ and R ∈ Sm++. This tracking should be
achieved subject to constraints on the inputs and outputs. We
consider here polytopic constraints, which in a deterministic
setting would take the form E

[
ut
yt

]
≤ f for all t ∈ Z≥0, and

for some fixed matrix E ∈ Rq×(m+p) and vector f ∈ Rq.
We can equivalently express these constraints as the single
constraint h(ut, yt) ≤ 0, where

h(ut, yt) := max
i∈{1,...,q}

eTi

[
ut

yt

]
− fi, (5)

with ei ∈ Rm+p the transposed i-th row of E and fi ∈ R
the i-th entry of f . For the system (1) which is subject to

(possibly unbounded) stochastic disturbances, the determin-
istic constraint h(ut, yt) ≤ 0 must be relaxed. Beyond a
traditional chance constraint P[h(ut, yt) ≤ 0] ≥ 1− α with
a violation probability α ∈ (0, 1), a conditional value-at-
risk (CVaR) constraint is more conservative; the CVaR at
level α of h(ut, yt) is the expected value of h(ut, yt) in
the α· 100% worst cases, and takes extreme violations into
account. As the noise distributions are unknown, we must
further guarantee satisfaction of the CVaR constraint for all
possible distributions under consideration. Let D denote a
joint distribution of all random variables in (1) satisfying (2)
and (3), and let the ambiguity set D be the set of all such
distributions. The distributionally robust CVaR (DR-CVaR)
constraint [19], [20] is then

sup
D∈D

D-CVaRα

[
h(ut, yt)

]
≤ 0, (6)

where D-CVaRα[z] is the CVaR value of a random variable
z ∈ R at level α, given distribution D.

If the system matrices A,B,C were known, this con-
strained tracking control problem subject to (6) can be
approached using SMPC, as described in Section III-A. Our
objective is to develop a data-driven control method that
produces equivalent control inputs as produced by SMPC.

III. STOCHASTIC MODEL-BASED AND DATA-DRIVEN
PREDICTIVE CONTROL

We introduce a model-based SMPC framework in Section
III-A and propose a data-driven control method in Section
III-B, with their theoretical equivalence in Section III-C.

A. A framework of Stochastic Model Predictive Control

We focus here on output-feedback SMPC [21]–[23], which
is typically approached by enforcing a separation principle
which separates the steps of state estimation and feedback
control. The formulation here broadly follows our prior work
[18], but we now consider a DR-CVaR constraint in place of
chance constraints, and we will allow optimization over the
feedback gain in the affine policy. This SMPC scheme merges
the established works on DR constrained control [19], [20] and
output-error feedback [24], while the combined framework
is part of our contribution. The SMPC method integrates
state estimation, affine feedback-policy parameterization, and
reformulation of DR-CVaR constraint.

1) State Estimation: SMPC follows a receding-horizon
strategy and makes decisions for N upcoming steps at each
control step. At control step t = k, we begin with prior
information of the mean and variance of the state xk, namely

E[xk] = µx
k, Var[xk] = Σx

k, (7)

which is computed from a Kalman filter, to be described next;
at the initial time k = 0, µx

0 and Σx
0 are given parameters as

in (3). Estimates of the future states over the desired horizon
are computed through the Kalman filter,

x̂t := x̂-
t + Lt(yt − Cx̂-

t ), t ∈ Z[k,k+N) (8a)
x̂-
t+1 := Ax̂t +But, t ∈ Z[k,k+N) (8b)
x̂-
k := µx

k (8c)



where x̂t and x̂-
t denote the posterior and prior estimates of

xt, respectively, and the Kalman gain Lt ∈ Rn×p in (8a) is
obtained via the recursion

Lt := P -
t C

T(CP -
t C

T +Σv)−1, t ∈ Z[k,k+N) (9a)
Pt := (In − LtC)P -

t , t ∈ Z[k,k+N) (9b)

P -
t+1 := APtA

T +Σw, t ∈ Z[k,k+N) (9c)
P -
k := Σx

k. (9d)

While the noise here is potentially non-Gaussian, (8),(9) is
the best affine state estimator in the mean-squared-error sense,
regardless of the distributions of xk, wt, vt once their means
and variances are specified as in (2) and (7) [25, Sec. 3.1].

2) Feedback Control Policies: Stochastic feedback control
requires the determination of (causal) feedback policies πt

which map the observation history into control actions. Our
prior work [18] was based on an affine feedback policy
ut = unom

t +K(x̂t − xnom
t ) using the state estimate x̂t from

(8a), wherein the gain K was fixed, the nominal input unom
t

was a decision variable, and the nominal state xnom
t was

obtained through simulation of the noise-free system

xnom
t+1 := Axnom

t +Bunom
t , t ∈ Z[k,k+N) (10a)

ynomt := Cxnom
t , t ∈ Z[k,k+N) (10b)

xnom
k := µx

k (10c)

with nominal output ynomt . Here we investigate control policies
where the feedback gain K is also a time-varying decision
variable to be optimized. However, the naive parameterization

ut ← unom
t +Kt(x̂t − xnom

t ) (11)

leads to non-convex bilinear terms involving the decision
variables unom

t and Kt. Here, we instead leverage an output
error feedback control policy [24]

ut ← πt

(
x̂-
[k,t]

)
:= unom

t +
∑t

s=k M
s
t (ys − Cx̂-

s) (12)

with decision variables unom
t and Ms

t ∈ Rm×p; note that
ys −Cx̂-

s is the innovation. The policy parameterization (12)
contains within it the policy (11) as a special case: indeed, if
{Kτ}tτ=s is a sequence of gain matrices, then the selection

Ms
t ← Kt(A+BKt−1)(A+BKt−2) · · · (A+BKs)Ls

reduces (12) to (11). Crucially, (12) also leads to a jointly
convex optimization problem in the gains and nominal inputs.

With the state estimator (8) and control policy (12), both
the input ut and output yt of (1) can be written as affine
functions of the decision variables. Specifically, let

ηk := col(xk − µx
k, w[k,k+N), v[k,k+N)) ∈ Rnη ,

which is a vector of uncorrelated zero-mean random variables,
of dimension nη := n+ nN + pN , and of variance

Ση
k := Diag(Σx

k, IN ⊗ Σw, IN ⊗ Σv) (13)

considering (2) and (7). Through direct calculation using (1),
(8), and (12), one can now establish that[

ut

yt

]
=

[
unom
t

ynomt

]
+ Λt ηk, t ∈ Z[k,k+N), (14)

where ynomt is obtained by (10), and where Λt ∈ R(m+p)×nη

is dependent on the gains Ms
t through the relations

Λt :=

[
∆U

t−k

∆Y
t−k

]
M∆M

k +

[
0m×nη

∆A
t−k

]
, t ∈ Z[k,k+N), (15)

where M∈ RmN×pN is a concatenation of Ms
t as

M :=


Mk

k

Mk
k+1 Mk+1

k+1
...

...
. . .

Mk
k+N−1 Mk+1

k+N−1 · · · Mk+N−1
k+N−1

 , (16)

and where ∆U
t−k∈Rm×mN ,∆Y

t−k∈Rp×mN ,∆A
t−k∈Rp×nη

and ∆M
k ∈ RpN×nη are independent of both decision variables

unom and Ms
t , with expressions available in Appendix A.

3) Tractable Formulation of DR-CVaR Constraint: Given
(14) and the mean and variance of ηk, the DR-CVaR constraint
(6) can be equivalently written as a second-order cone (SOC)
constraint in terms of the decision variables unom and Ms

t .

Lemma 1 (SOC Expression of DR-CVaR Constraint). With
h(ut, yt) as in (5), for t ∈ Z[k,k+N), (6) holds if and only if

2
√

1−α
α

∥∥∥Ση
k

1
2ΛT

t ei

∥∥∥
2
≤ −eTi

[
unom
t

ynomt

]
+ fi, i ∈ Z[1,q]. (17)

Proof. Substituting (14) into (5), h(ut, yt) can be written as
h(ut, yt) = max

i∈{1,...,q}
eTi Λtηk + eTi col(u

nom
t , ynomt )− fi,

where the random variable ηk has zero mean and variance
Ση

k. According to [20, Thm. 3.3], (6) holds if and only if
there exist θt ∈ R and Θt ∈ Snη+1

+ satisfying the LMIs
0 ≥ αθt +Trace

[
Θt Diag(Ση

k, 1)
]

Θt ⪰
[
0nη×nη ΛT

t ei

eTi Λt eTi col(u
nom
t , ynom

t )− fi − θt

]
, i ∈ Z[1,q].

From [26, Thm. 1], these LMIs are feasible in (θt,Θt) if and
only if (17) holds, which completes the proof.

4) Optimization Problem: The SMPC optimization prob-
lem at control step t = k is formulated as follows, with an
expected cost summing (4) over N future steps as

minimize
unom,Ms

t

E
[∑k+N−1

t=k J(ut, yt)
]

subject to (1), (2), (6), (12) for t ∈ Z[k,k+N),
and (7), (8)

(18)

The expected quadratic cost in (18) can be computed to
be a deterministic quadratic function of unom and Ms

t .
In particular, since E[col(ut, yt)] = col(unom

t , ynomt ) and
Var[col(ut, yt)] = ΛtΣ

η
kΛ

T
t via (14) with Ση

k in (13), the
expected cost in (18) evaluates to∑k+N−1

t=k

[
J(unom

t , ynomt ) +
∥∥[R

Q

] 1
2Λt(Σ

η
k)

1
2

∥∥2
F

]
, (19)

where we used that E
[
∥z∥2S

]
=

∥∥E[z]∥∥2
S
+
∥∥S 1

2Var[z]
1
2

∥∥2
F

for
any random vector z and fixed matrix S ⪰ 0; ∥·∥F denotes the
Frobenius norm. Using (19) and the reformulation (17) of (6),
the stochastic problem (18) is equivalent to the deterministic
second-order cone problem (SOCP)

minimize
unom,Ms

t

(19)

subject to (15), (17) for t ∈ Z[k,k+N), and (10)
(20)



Problem (20) has a unique optimal solution whenever feasible,
since (19) is jointly strongly convex1 in unom and Ms

t .
5) Online SMPC Algorithm: The nominal inputs unom

and the feedback gains Ms
t determined from (20) complete

the parameterization of the control policies π[k,k+N) in (12).
The upcoming Nc control inputs u[k,k+Nc) are decided by
the first Nc policies π[k,k+Nc) respectively, with parameter
Nc ∈ Z[1,N ]. Then, the next control step is set as t = k+Nc.
At the new control step, the initial condition (7) is iterated
as the prior mean and prior variance of the state xk+Nc ,

µx
k+Nc

= x̂-
k+Nc

, Σx
k+Nc

= P -
k+Nc

, (21)

obtained through the Kalman filter (8), (9). The entire SMPC
control process is shown in Algorithm 1.

Algorithm 1 Distributionally Robust Optimized-Gain SMPC
(DR/O-SMPC)
Input: horizon lengths N,Nc, system matrices A,B,C, noise

variances Σw,Σv, initial-state mean µx
0 and variance Σx

0,
cost matrices Q,R, constraint coefficients E and f , and
CVaR level α.

1: Compute ∆U
[0,N), ∆

Y
[0,N), ∆

A
[0,N) through Appendix A.

2: Initialize the control step k ← 0 and the initial condition
µx
k ← µx

0, Σx
k ← Σx

0.
3: while true do
4: Compute Kalman gains L[k,k+N) via (9).
5: Compute matrix ∆M

k through Appendix A.
6: Solve nominal inputs unom

[k,k+N) and feedback-gain
matrices Ms

t from problem (20), and thus formulate
control policies π[k,k+N) via (12).

7: for t from k to k +Nc − 1 do
8: Compute x̂-

t via (8).
9: Measure yt from the system (1).

10: Input ut ← πt

(
x̂-
[k,t]

)
to the system (1).

11: µx
k+Nc

← x̂-
k+Nc

and Σx
k+Nc

← P -
k+Nc

as in (21).
12: Set k ← k +Nc.

B. Stochastic Data-Driven Predictive Control (SDDPC)

We develop in this section a data-driven control method,
whose performance will be shown in Section III-C to be
equivalent to SMPC under certain tuning conditions. In the
spirit of DeePC and SPC, our proposed control method
consists of an offline process, where data is collected, and an
online process, in which the collected data is used to make
real-time control decisions.

1) Use of Offline Data: In data-driven control, sufficiently
rich offline data must be collected to capture the internal
dynamics of the system. We now describe how offline data is
to be collected, and use the collected data to compute some
quantities that are useful to formulate our control method in
the rest of the section. We first develop results with noise-free
data, then address the case of noisy data.

1Strong convexity in unom is clear from the first term; strong convexity in
Ms

t can be shown by noting that a sub-matrix of col(Jk, . . . ,Jk+N−1)
with Jt := Diag(R,Q)1/2Λt(Σ

η
k)

1/2 is J̄LMJ̄R, where J̄L := IN ⊗
R1/2 and J̄R := (IpN−∆̄R∆̄L)(IN⊗(Σv)1/2) are non-singular matrices.

Consider a deterministic version of the system (1), repro-
duced for convenience as

xt+1 = Axt +But, yt = Cxt. (22)

By assumption, (22) is minimal; let L ∈ N be such that the
extended observability matrix O := col(C,CA, . . . , CAL−1)
has full column rank and the extended (reversed) controllabil-
ity matrix C := [AL−1B, . . . , AB,B] has full row rank. Let
ud
[1,Td]

, yd[1,Td]
be a Td-length trajectory of input-output data

collected from (22). The input sequence ud
[1,Td]

is assumed
to be persistently exciting of order Kd := L+ 1+ n, i.e., its
associated Kd-depth block-Hankel matrix HKd

(
ud
[1,Td]

)
∈

RmKd×(Td−Kd+1), defined as

HKd
(ud

[1,Td]
) :=


ud
1 ud

2 · · · ud
Td−Kd+1

ud
2 ud

3 · · · ud
Td−Kd+2...

...
. . .

...
ud
Kd

ud
Kd+1 · · · ud

Td

 ,

has full row rank. We formulate data matrices U1 ∈ RmL×h,
U2 ∈ Rm×h, Y1 ∈ RpL×h and Y2 ∈ Rp×h of width h :=
Td − L by partitioning associated Hankel matrices as

col(U1, U2) := HL+1

(
ud
[1,Td]

)
,

col(Y1, Y2) := HL+1

(
yd[1,Td]

)
.

(23)

The data matrices in (23) will now be used to represent a
quantity Γ ∈ Rp×(mL+pL) related to the system (22),

Γ =
[
ΓU ΓY

]
:=

[
H CAL

] [ImL

G O

]†
, (24)

in which G ∈ RpL×mL and H ∈ Rp×mL are the impulse
response matrices.

[
G
H

]
:=


0p×m

CB 0p×m...
. . .

. . .
CAL−2B · · · CB 0p×m

CAL−1B · · · CAB CB


Lemma 2 (Data Representation of Γ). If (22) is controllable
and the input data ud

[1,Td]
is persistently exciting of order

L+ 1 + n, then, given the data matrices in (23), the matrix
Γ defined in (24) can be expressed as

[ΓU,ΓY, 0p×m] = Y2 col(U1, Y1, U2)
†.

Proof. This is a reduced version of [18, Lemma 4], where
U2, Y2,H,Γ were defined differently and had L block rows
instead. The result of this lemma can be obtained by extracting
the first block row of the result in [18, Lemma 4].

With Lemma 2, the matrix Γ is represented using offline
data collected from system (22), and the matrix will be used
as part of the construction for our data-driven control method.

In the case where the measured data is corrupted by noise,
as will usually be the case, the pseudo-inverse computation
in Lemma 2 is numerically fragile and does not recover
the desired matrix Γ. A standard technique to robustify this
computation is to replace the pseudo-inverse W † of W :=
col(U1, Y1, U2) in Lemma 2 with its Tikhonov regularization
(WTW + λIh)

−1WT with a regularization parameter λ > 0.



2) Auxiliary State-Space Model: The SMPC approach of
Section III-A uses as sub-components a state estimator, an
affine feedback law and a DR-CVaR constraint. We now
leverage the offline data as described in Section III-B-1 to
directly design analogs of these components based on data,
without knowledge of the system matrices.

We begin by constructing an auxiliary state-space model
which has equivalent input-output behavior to (1), but is
parameterized only by the recorded data sequences. Define
auxiliary signals xt,wt ∈ Rnaux of dimension naux := mL+
pL+ pL2 for system (1) by

xt :=

 u[t−L,t)

y◦[t−L,t)

ρ[t−L,t)

 , wt :=


0mL×1

0pL×1

0pL(L−1)×1

ρt

 (25)

where y◦t := yt − vt ∈ Rp is the output excluding mea-
surement noise, and ρt := Owt ∈ RpL stacks the system’s
response to process noise wt on time interval [t+1, t+L]. The
auxiliary signals xt,wt together with ut, yt, vt then satisfy
the relations given by Lemma 3.

Lemma 3 (Auxiliary Model [18]). For system (1), signals
ut, yt, vt and the auxiliary signals xt,wt in (25) satisfy

xt+1 = Axt +But +wt (26a)
yt = Cxt + vt (26b)

for A ∈ Rnaux×naux , B ∈ Rnaux×m and C ∈ Rp×naux given by

A :=


Im(L−1)

0m×m
0 0

0
ΓU

0 Ip(L−1)
ΓY

0
F− ΓYE

0 0
IpL(L−1)

0pL×pL

 ,

B :=

 0m(L−1)×m

Im
0pL×m

0pL2×m

 , C :=
[
ΓU ΓY F− ΓYE

]
,

with matrices ΓU and ΓY in (24), and zero-one matrices E ∈
RpL×pL2

and F ∈ Rp×pL2

composed by selection matrices
Sj := [0p×(j−1)p, Ip, 0p×(L−j)p] ∈ Rp×pL for j ∈ Z[1,L].

[
E
F

]
:=


0p×pL

S1 0p×pL...
. . .

. . .
SL−1 · · · S1 0p×pL

SL · · · S2 S1


The output noise signal vt in (26) is precisely the same as

in (1); the signal wt appears now as a new disturbance; wt

and vt are uncorrelated; wt has zero mean and the variance

Σw := Diag(0(naux−pL)×(naux−pL), Σ
ρ),

where Σρ := OΣwOT ∈ SpL+ is the variance of ρt. The
matrices A,B,C are known given offline data described
in Section III-B-1, since they only depend on matrix Γ =
[ΓU,ΓY] which is data-representable via Lemma 2. Hence,
the auxiliary model (26) can be interpreted as a non-minimal
data-representable realization of system (1).

3) Data-Driven State Estimation, Feedback Policy and
DR-CVaR Constraint: The auxiliary model (26) will now
be used for both state estimation and constrained feedback
control purposes. Suppose we are at a control step t = k in a
receding-horizon process. Similar to (7), we know the prior
mean and variance of the auxiliary state xk

E[xk] = µx
k, Var[xk] = Σx

k (27)

through a Kalman filter to be introduced next. At the initial
time k = 0, the initial auxiliary-state mean µx

0 and variance
Σx

0 are given as parameters. The Kalman filter for the auxiliary
model (26) is analogous to (8) and (9),

x̂t := x̂-
t + Lt(yt −Cx̂-

t ), t ∈ Z[k,k+N) (28a)
x̂-
t+1 := Ax̂t +But, t ∈ Z[k,k+N) (28b)
x̂-
k := µx

k (28c)

where x̂t and x̂-
t are the posterior and prior estimates of xt,

respectively, and the Kalman gain Lt ∈ Rnaux×p in (28a) is
calculated as

Lt := P-
tC

T(CP-
tC

T +Σv)−1, t ∈ Z[k,k+N) (29a)
Pt := (Inaux − LtC)P-

t , t ∈ Z[k,k+N) (29b)

P-
t+1 := APtA

T +Σw, t ∈ Z[k,k+N) (29c)
P-

k := Σx
k. (29d)

The affine output-error-feedback policy (12) from SMPC is
now extended as πt(·),

ut ← πt

(
x̂-
[k,t]

)
:= unom

t +
∑t

s=k M
s
t (ys −Cx̂-

s) (30)

where the nominal input unom
t ∈ Rm and the gain matrices

Ms
t ∈ Rm×p are the decision variables. The SOC formulation

of the DR-CVaR constraint (6) is similar to (17),

2
√

1−α
α

∥∥∥Ση
k

1
2ΛT

t ei

∥∥∥
2
≤ −eTi

[
unom
t

ynom
t

]
+ fi, i ∈ Z[1,q] (31)

for t ∈ Z[k,k+N), with the auxiliary nominal output ynom
t

produced by the noise-free auxiliary model,

xnom
t+1 := Axnom

t +Bunom
t , t ∈ Z[k,k+N) (32a)

ynom
t := Cxnom

t , t ∈ Z[k,k+N) (32b)
xnom
k := µx

k (32c)

and matrices Ση
k := Diag(Σx

k, IN ⊗Σw, IN ⊗ Σv) ∈ Snη-aux
+

and Λt ∈ R(m+p)×nη-aux with nη-aux := naux + nauxN + pN ,

Λt :=

[
∆U

t−k

∆Y
t−k

]
M∆M

k +

[
0m×nη-aux

∆A
t−k

]
(33)

where ∆U
i ∈ Rm×mN , ∆Y

i ∈ Rp×mN , ∆A
i ∈ Rp×nη-aux and

∆M
k ∈ RpN×nη-aux can be found in Appendix A, and where
M∈ RmN×pN is a concatenation of Ms

t as in (16).

4) SDDPC Optimization Problem and Control Algorithm:
With the results above, we are now ready to mirror the
steps of getting (20) and formulate a distributionally robust
optimized-gain Stochastic Data-Driven Predictive Control
(SDDPC) optimization problem,

minimize
unom,Ms

t

(35)

subject to (33), (31) for t ∈ Z[k,k+N), and (32)
(34)



where the cost function is analogous to (19).∑k+N−1
t=k

[
J(unom

t ,ynom
t ) +

∥∥[R
Q

] 1
2Λt(Σ

η
k)

1
2

∥∥2
F

]
(35)

Problem (34) has a unique optimal solution if feasible, similar
as problem (20); the solution (unom,Ms

t ) to (34) finishes
parameterization of the control policies π[k,k+N) via (30).
We apply the first Nc control policies to the system, and
then t = k +Nc is set as the next control step. The initial
condition (27) at the new control step is iterated as the prior
mean and prior variance of the auxiliary state xk+Nc

µx
k+Nc

= x̂-
k+Nc

, Σx
k+Nc

= P-
k+Nc

, (36)

obtained from the Kalman filter (28) and (29). The method
is formally summarized in Algorithm 2.

Algorithm 2 Distributionally Robust Optimized-Gain Stochas-
tic Data-Driven Predictive Control (DR/O-SDDPC)
Input: horizon lengths L,N,Nc, offline data ud

[1,Td]
, yd[1,Td]

,
noise variances Σρ,Σv, initial-state mean µx

0 and variance
Σx

0, cost matrices Q,R, constraint coefficients E and f ,
and CVaR level α.

1: Compute matrix Γ as in Section III-B-1 using data ud, yd,
and formulate matrices A,B,C as in Section III-B-2.

2: Compute ∆U
[0,N), ∆

Y
[0,N), ∆

A
[0,N) through Appendix A.

3: Initialize the control step k ← 0 and the initial condition
µx

k ← µx
0, Σx

k ← Σx
0.

4: while true do
5: Compute Kalman gains L[k,k+N) via (29).
6: Compute matrix ∆M

k through Appendix A.
7: Solve nominal inputs unom

[k,k+N) and feedback-gain
matrices Ms

t from problem (34), and thus formulate
control policies π[k,k+N) as in (30).

8: for t from k to k +Nc − 1 do
9: Compute x̂-

t via (28).
10: Measure yt from the system (1).
11: Input ut ← πt

(
x̂-
[k,t]

)
to the system (1).

12: µx
k+Nc

← x̂-
k+Nc

and Σx
k+Nc

← P-
k+Nc

as in (36).
13: Set k ← k +Nc.

C. Theoretical Equivalence of SMPC and SDDPC

We show in this section that under idealized tuning
conditions, our proposed SDDPC method produces the same
control actions as produced by model-based SMPC. In other
words, our proposal is a genuine data-driven version of SMPC.

1) Relation of State Means and Variances: We start by
noting an underlying relation between the means and between
the variances of xk and xk, at each control step t = k. This
result will be leveraged in establishing equivalence between
SMPC and our proposed SDDPC.

Lemma 4 (Mean-Variance Relation of xk and xk [18]). Let

Φorig :=
[
C, AL, CW

]
, Φaux :=

[
ImL

G O GW

IL ⊗O

]
,

with the matrices C, O, G defined in Section III-B-1 and

CW := [AL−1, . . . , A, In], GW :=

 0p×n

C 0p×n...
. . .

. . .
CAL−2 ··· C 0p×n

.

If the prior means and variances of xk and xk at time t = k
are (7) and (27) respectively, then they satisfy

µx
k = Φorig µ

ξ
k, Σx

k = Φorig Σ
ξ
k Φ

T
orig, (37a)

µx
k = Φaux µ

ξ
k, Σx

k = Φaux Σ
ξ
k Φ

T
aux, (37b)

for some µξ
k ∈ RmL+n(L+1) and some Σξ

k ∈ SmL+n(L+1)
+ .

2) Equivalence of Optimization Problems: We now estab-
lish that the SDDPC problem (34) and the SMPC problem
(20) have equal feasible and optimal sets, when the respective
state means and variances are related as in (37) of Lemma 4.

Proposition 5 (Equivalence of Optimization Problems). If
the parameters µx

k,Σ
x
k,µ

x
k,Σ

x
k satisfy (37), then the optimal

(resp. feasible) solution set of the SDDPC problem (34) is
equal to the optimal (resp. feasible) solution set of the SMPC
problem (20).

Proof. We first claim that, for all unom and Ms
t , we have

ynomt = ynom
t , ΛtΣ

η
kΛ

T
t = ΛtΣ

η
kΛ

T
t (38)

for t ∈ Z[k,k+N), which is explained in Appendix B. Given
(38), the objective function (19) of problem (20) and objective
function (35) of problem (34) are equal, and the constraint
(17) in problem (20) and constraint (31) in problem (34) are
equivalent. Thus the problems (20) and (34) have the same
objective function and constraints, and the result follows.

3) Equivalence of SMPC and SDDPC Control Methods:
We present in Theorem 7 our main theoretical result, saying
that under idealized conditions our proposed SDDPC control
method and the benchmark SMPC method will result in
identical control actions.

Assumption 6 (SDDPC Parameter Choice w.r.t. SMPC).
Given the parameters in Algorithm 1, we assume the pa-
rameters in Algorithm 2 satisfy the following.
(a) L is sufficiently large so that O has full column rank

and C has full row rank.
(b) Data ud, yd comes from the deterministic system (22); the

input data ud is persistently exciting of order L+ 1+ n.
(c) Given Σw in Algorithm 1, parameter Σρ in Algorithm 2

is set equal to OΣwOT.
(d) Given µx

0,Σ
x
0 in Algorithm 1, for some µξ

0, Σξ
0 satisfying

(37a) at k = 0, the parameters µx
0,Σ

x
0 in Algorithm 2

are selected as in (37b) at k = 0. (Such µξ
0, Σξ

0 always
exist because Φorig has full row rank.)

Theorem 7 (Equivalence of SMPC and SDDPC). Consider
the stochastic system (1) with initial state x0, and consider
the following two control processes:

a) decide control actions {ut}∞t=0 by executing Algorithm 1;
b) decide control actions {ut}∞t=0 by executing Algorithm 2,

where the parameters satisfy Assumption 6.
Let the noise realizations {wt, vt}∞t=0 be the same in process
a) and in process b). Then the state-input-output trajectories



{xt, ut, yt}∞t=0 resulting from process a) and from process b)
are the same.

Proof. The proof is similar to the proof of [18, Thm. 9] and
is omitted here. The proof requires Proposition 5 and the
fact that both problems (20) and (34) have unique optimal
solutions if feasible.

The equivalence between SMPC and SDDPC is built in
an idealized setting as stated in Assumption 6. While in
practice these assumptions may not hold, noisy offline data
can be accommodated as discussed in Section III-B-1, and
Σρ becomes a tuning parameter of our SDDPC method.

IV. NUMERICAL CASE STUDY

In this section, we numerically test our proposed method
on a batch reactor system introduced in [27] and applied in
[16], [28]. The system has n = 4 states, m = 2 inputs and
p = 2 outputs, and the discrete-time system matrices with
sampling period 0.1s are as follows:

[
A B
C

]
=


1.178 .001 .511 -.403 .004 -.087
-.051 .661 -.011 .061 .467 .001
.076 .335 .560 .382 .213 -.235
0 .335 .089 .849 .213 -.016
1 0 1 -1
0 1 0 0

 .

The process/sensor noise on each state/output follows the
t-distribution of 2 DOFs scaled by 10−4, which is a heavy-
tailed distribution. Control parameters are reported in TABLE
I. We collected offline data of length Td = 600 from the
noisy system, where the input data was the outcome of a
PI controller U(s) =

[
0 −1/s

2+1/s 0

]
Y (s) plus a white-noise

signal of noise power 10−2. In the online control process,
the reference signal is rt = [0, 0]T from time 0s to time 30s,
alternates between [0, 0]T and [0.3, 0]T from 30s to 60s, and
is rt = [0.5, 0]T from 60s to 90s. With our proposed SDDPC
method, the first output signal is in Fig. 1; the signal remains
around 0.4 from 60s to 90s because of the safety constraint
specified in TABLE I.

For comparison purposes, we implemented the simulation
with different controllers. In addition to distributionally robust
optimized-gain (DR/O) SMPC and SDDPC in this paper, we
applied the SMPC and SDDPC frameworks from [18], which
use chance constraints and a fixed feedback gain (CC/F).
To observe separate impacts of using the DR constraint and
optimized gains, we also implement SMPC and SDDPC
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Fig. 1. The system’s first output signal with DR/O-SDDPC.

TABLE I
CONTROL PARAMETERS

Time horizon lengths L = 5, N = 15, Nc = 5
Cost matrices Q = 103Ip, R = Im
Safety constraint coefficients E = Im+p ⊗

[
1
−1

]
f = [.1 .1 .5 .1 .4 .4 .4 .4]T

CVaR levela α = 0.3
Variance of vt for SMPC/SDDPC Σv = 5× 10−7Ip
Variance of ρt for SDDPC Σρ = 10−7IpL
Variance of wt for SMPCb Σw = O†ΣρO†T

aα is used as the risk bound for chance constrained controllers.
bO is obtained given the identified model (A,B,C) in SMPC.

TABLE II
SIMULATION RESULT STATISTICS

Controller Total Tracking Cost Cumulative Violation
0s to 30s 30s to 60s from 60s to 90s

DR/O-SDDPCa 0.02 64.2 0
DR/F-SDDPC 0.02 68.9 0
CC/F-SDDPC 0.02 64.9 0.03

DR/O-SMPC 0.02 64.2 0
DR/F-SMPC 0.02 68.0 0
CC/F-SMPC 0.02 64.9 0.01

deterministic MPC 0.09 64.6 0.20
SPC 0.18 65.5 2.23
DeePC 0.18 64.7 0.19
aDR – distributionally robust constrained, CC – chance constrained,

O – with optimized feedback gain, F – with fixed feedback gain.

with DR constraints and a fixed feedback gain (DR/F). We
also compare to DeePC, SPC and deterministic MPC as
benchmarks. The model used in MPC methods is identified
from the same offline data in the data-driven controllers.

The simulation results are summarized in TABLE II. We
(i) evaluate the controllers’ tracking performance through
the tracking cost from 0s to 60s, and (ii) evaluate the
controllers’ ability to satisfy constraints according to the
cumulative amount of constraint violation between 60s and
90s, when the first output signal hits the constraint margin.
When the reference signal is constant (0s–30s), SMPC and
SDDPC tracked better than other methods, aligning with the
observation in [18]. Comparing DR/F and CC/F methods, the
controllers with DR constraints achieved lower amounts of
constraint violation (60s–90s), while the tracking performance
is slightly worse during 30s–60s when the reference signal has
frequent step changes. Comparing DR/O and DR/F methods,
we observe that the methods with optimized feedback gain
achieved better tracking performances when the reference
signal changes frequently (30s–60s).

V. CONCLUSIONS

We proposed a Stochastic Data-Driven Predictive Control
(SDDPC) framework that accommodates distributionally
robust (DR) probability constraints and produces closed-
loop control policies with feedback gains determined from
optimization. In theory, our SDDPC method can produce
equivalent control inputs with associated Stochastic MPC,
under specific conditions. Simulation results indicated sepa-



rate benefits of using DR constraints and optimized feedback
gains. Looking forward, our future work will explore recursive
feasibility and closed-loop stability of the control scheme.

APPENDIX A. DEFINITION OF ∆U
i , ∆Y

i , ∆A
i , ∆M

k

The matrices ∆U
i ∈ Rm×mN , ∆Y

i ∈ Rp×mN , ∆A
i ∈

Rp×nη and ∆M
k ∈ RpN×nη for i ∈ Z[0,N) in (15) are defined

as follows, with nη := n+ nN + pN ,
col

(
∆U

0 , . . . ,∆
U
N−1

)
:= ImN

col
(
∆Y

0 , . . . ,∆
Y
N−1

)
:= ∆̄P(IN ⊗B)

col
(
∆A

0 , . . . ,∆
A
N−1

)
:= [∆̄O, ∆̄P, IpN ]

∆M
k := [∆̄Q, ∆̄R, IpN − ∆̄R∆̄L]

where we define ∆̄L := Diag(ALk, ALk+1, . . . , ALk+N−1)
∈ RnN×pN and [∆̄O, ∆̄P], [∆̄Q, ∆̄R] ∈ RpN×(n+nN),

[
∆̄O

∣∣∆̄P
]
:=

 C 0p×n

CA C 0p×n...
...

. . .
. . .

CAN−1 CAN−2 · · · C 0p×n


[
∆̄Q

∣∣∆̄R
]
:=


Ψk

k 0p×n

Ψk
k+1 Ψk+1

k+1 0p×n...
...

. . .
. . .

Ψk
k+N−1 Ψk+1

k+N−1 · · · Ψk+N−1
k+N−1 0p×n


with Ψs

t := C(A−ALt−1C)(A−ALt−2C) · · · (A−ALsC)
∈ Rp×n for s < t and Ψs

t := C for s = t.
Similarly, the matrices ∆U

i , ∆Y
i , ∆A

i and ∆M
k in (33)

are computed (with underlying ∆̄L, ∆̄O, ∆̄P, ∆̄Q, ∆̄R,Ψs
t )

in the same way as above, with A,B,C, Lt, n replaced by
A,B,C,Lt, naux, respectively.

APPENDIX B. PROOF OF (38)

Proof. The relation ynomt = ynom
t in (38) was established in

[18, Claim 7.5]. The other relation in (38) is equivalent to
∆U

t−k = ∆U
t−k, ∆M

k Σ
η
k(∆

M
k )

T = ∆M
k Σ

η
k(∆

M
k )

T,

∆Y
t−k = ∆Y

t−k, ∆A
t−kΣ

η
k(∆

A
t−k)

T = ∆A
t−kΣ

η
k(∆

A
t−k)

T,

via the definitions of Λt and Λt in (15) and (33). Given the
definitions in Appendix A, the above relations are implied by
1) CAqB = CAqB for q ∈ Z[0,N),
2) CAqΣx

k(CAr)T = CAqΣx
k(CAr)T for q, r ∈ Z[0,N),

3) CAqΣw(CAr)T = CAqΣw(CAr)T for q, r ∈ Z[0,N−2],
4) Ψk

qΣ
x
kΨ

kT
r = Ψk

qΣ
x
kΨ

kT
r for q, r ∈ Z[k,k+N),

5) Ψq
rΣ

wΨqT
s = Ψq

rΣ
wΨqT

s for integers q, r, s that satisfy
k < q ≤ z < k +N for z ∈ {r, s}, and

6) Ψq
rALq−1 = Ψq

rALq−1 for integers q, r that satisfy k <
q ≤ r < k +N ,

where the relations 1)–6) can be shown given the equalities
AΦΦaux = ΦAΦaux, B = ΦB, Lt = ΦLt,

AΦaux = ΦauxÃ, B = ΦauxB̃, Lt = ΦauxL̃t,

CΦΦaux = CΦaux, Σw = ΦΣwΦT, Σx
k = ΦΣx

kΦ
T,

established with some matrices Φ, Ã, B̃, L̃t according to [18,
Claim 7.1, Claim 7.2, Claim 7.6].
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