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Abstract—Power system restoration following a black out
involves a sequence of actions to recover the network. Restoration
planning must be aware of the dynamic impacts of each restorative
action and ensure that they do not compromise the system’s
security. In this work, we construct a frequency-constrained
mixed-integer linear (MILP) to find fast and dynamically secure
restoration plans. We present a novel frequency nadir prediction
method that uses the unique knowledge of the magnitude
and timing of electrical disturbances during restoration. The
predictions are used to introduce frequency nadir constraints,
which are linearized through a receding-horizon solution approach
to the MILP. A case study simulated in MATLAB and PSS/E
illustrates the effectiveness of the proposed frequency prediction
and optimization methods.

Index Terms—Power System Restoration, Frequency Nadir
Estimation, Mixed-Integer Programming

I . I N T R O D U C T I O N

Widespread power outages impose significant financial bur-
dens, impact critical infrastructure, and result in economic
losses of up to billions of dollars per incident [1]. Historical
evidence shows that proactive planning and rapid restoration
efforts can significantly alleviate these impacts, reducing total
economic damages by up to 96% in prolonged outages [1]. In
traditional restoration practices, Independent System Operators
(ISOs) designate several Synchronous Generators (SGs)—often
hydro or gas turbine generators—as Black-Start Units (BSUs),
which can self-start without external power. These units supply
initial power to energize transmission lines, start Non-Black-
Start Units (NBSUs), and restore loads [2]–[5].

During restoration, the system must withstand dynamic
frequency effects from sequential actions, a growing concern
in reduced-inertia systems with inverter-based resources (IBRs)
and distributed energy resources (DERs) [6]–[8]. To prevent
large frequency drops that exceed safe thresholds (e.g. 59.5 Hz)
and cause under-frequency load shedding, operators impose
conservative rules on load pickup, e.g., limiting it to no more
than 5% of online generation [2]–[5], [9]. While these rules are
designed to ensure system stability, they may overly limit the
speed of load pickups and delay system recovery. To reduce
restoration time without compromising reliability, the frequency
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impacts of restorative actions must be considered during the
planning process.

Related Work: The IEEE task force reports [3], [4] present
foundational concepts for restoring generation, reconfiguring
transmission and incrementally picking up loads; however,
their main focus is on voltage and reactive power security.
Restoration approaches for distribution systems, including [7],
[10], emphasize structural recovery and feeder reconfiguration,
but do not explicitly address frequency-related constraints. A
heuristic recursive algorithm to compute restoration plans for
transmission lines is presented in [11] as a faster alternative
to computationally heavy optimization programs. The work
in [8] highlights opportunities for wind participation in the
early restoration stages, leveraging probabilistic constraints to
accommodate wind power variability. The restoration problem
is presented as a nonlinear system driven by feedback control
in [12], which allows for the use of real-time measurements.
The work in [13] incorporates transient stability into restoration
planning by refining generator set points to maintain synchro-
nism, but focuses primarily on line and load recovery and relies
on a separate optimization step to address dynamics. Related
efforts to model frequency response include [14], which fits
parabolic curves to estimate frequency nadirs after disturbances,
and [9], which applies parametric fitting to simplify aggregate
dynamics of SGs and renewables.

The aforementioned works consider various aspects of
restoration, including distribution networks, line energization,
NBSU startup properties, and renewable generation. To the
best of our knowledge however, no computationally tractable
approaches to frequency-constrained restoration planning can
be found in the literature.

Contributions: Here we develop and validate a novel
method for incorporating frequency nadir constraints into
optimal black-start restoration planning. First, based on the
large load pick-ups and generation set-point changes that
occur during restoration, we develop a novel approximation
of the IEEEG1 turbine-governor model, and leverage this
approximation to obtain a closed-form bound on the allowable
load pick-up for a given frequency nadir limit. The bound
is integrated into a mixed-integer linear program (MILP) for
black-start restoration planning. As the nadir limit constraint
is non-linear in the decision variables (generator statuses),



we introduce a receding-horizon methodology for computing
the restoration plan via a sequence of MILPs. The approach
produces secure black-start restoration plans that respect the
nadir constraints while quickly restoring load. The approach
is validated via a case study on a modified IEEE 9-bus system
in both MATLAB and PSS/E.

I I . R E V I E W : M I L P M O D E L F O R P O W E R S Y S T E M
R E S T O R AT I O N P L A N N I N G

We first develop an MILP to compute black-start restoration
sequences for transmission systems; the treatment is based
largely on the framework proposed in [8]. This section intro-
duces the power flow model, the NBSU start-up model, network
logic constraints, and the objective function.

Binary variables are used to model the on and off statuses
of network elements. We consider a power system with B
buses, L lines, D loads (demands), and G generators, and let
bb ∈ {0, 1}B×T , bl ∈ {0, 1}L×T , bd ∈ {0, 1}D×T , bg ∈
{0, 1}G×T denote matrices of binary variables that indicate the
on/off status of the respective components over T discrete time
steps. Accordingly, let b0b, b0l , b0d, and b0g be column vectors
that denote the initial values of the respective variables prior to
restoration. In a black-start scenario, only the BSU and the bus
it resides on are initially active, and we impose that network
elements cannot be turned off once restored.

Let P g ∈ RG×T and P l ∈ RL×T denote the generator
power outputs and network line flows over {1, . . . , T} time
steps, respectively, and let P d ∈ RD be a vector of load
magnitudes. We use the adjacency matrices Ag ∈ {0, 1}B×G

and Ad ∈ {0, 1}B×D to map network elements to their buses,
each defined element-wise as

An,ij =

{
1 jth element of n is connected to bus i

0 otherwise.

With this notation, the vectorized real power balance equation
at every bus and every time can be compactly written as

AgP g −Ad diag(P d)bd = AP l (1)

where A ∈ RB×L is the network incidence matrix [15]. Power
flow on the network is modeled via the DC power flow approx-
imation: all lines are purely reactive, all voltage magnitudes
are approximately 1 per unit, and all phase differences between
adjacent buses are small [16]. The DC power flow is applied to
energized lines, while inactive lines have zero flow. To impose
this condition through linear constraints, we adopt the big-M
method as in [8], and write the element-wise conditions

−M(1 − bl) ≤ P l −X−1A⊤θ ≤M(1 − bl) (2a)
−Mbl ≤ P l ≤Mbl (2b)

where M is a large constant, 1 is a matrix of all 1s, X ∈
RL×L is the diagonal matrix of line reactances, and θ ∈ RB×T

contain bus phases for all time steps. Inequality (2a) handles
energized lines, while (2b) handles those that are off.

The start-up procedure of NBSUs can be described by the
four phases shown in Fig. 1, which are referred to as the
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Fig. 1: Start-up behaviour of a NBSU

TABLE I: Logic Table of the NBSU Start-Up Phases

bg(k) bgc(k) bgr(k) bgo(k) Pg(k)
0 0 0 0 Pg(k) = 0
1 1 0 0 Pg(k) = −Pc

1 0 1 0 Pg(k) = Pr(k)

1 0 0 1 Pg ≤ Pg(k) ≤ Pg

for all k ∈ {1, . . . , T}, All other combinations impossible

offline (I), cranking (II), ramping (III), and online (IV) phases
respectively [17]. During the cranking phase, NBSUs draw
fixed power P c over a period T c; subsequently, they transition
to a ramping phase, increasing power output linearly at a rate
r over a period T r up to their minimum capacities P g. These
startup parameters are all column vectors of size RG.

Once they are online, generators may operate between
their maximum and minimum limits P g and P g while being
limited by their ramp rates r. This piecewise behaviour can be
expressed via linear constraints using auxiliary binary variables
bgc, bgr, bgo ∈ RG×T , which indicate when the generator is
cranking, ramping, or online respectively. Since the duration
of the cranking and ramping phases are known, these auxiliary
variables are in fact uniquely determined by when generators
turn on, i.e., by bg. The desired start-up behaviour for any single
NBSU is shown in Table I, where P r ∈ RG×T is a reference
that linearly increases at rate r following the cranking phase.
In Table I and going forward, we use the notation x(k) to
denote column k of variable x, representing values at the kth
time step. Similar to (2), the piecewise-linear behaviour of P g

in Table I can be represented by linear inequalities.
Additional network logic constraints are required to couple

the binary status variables. In particular, lines may be energized
only if an adjacent bus has been restored. Loads and generators
may be restored only if their buses are active. Details are
omitted due to space limitations; see [18].

The objective function z to be maximized is

z =

T∑
k=1

[
bg(k)

⊤wg + bd(k)
⊤diag(P d)wd + bl(k)

⊤wl

]
where wg ∈ RG, wd ∈ RD, wl ∈ RL are weight vectors
that specify the degree of importance given to each generator,
load, and line. This allows certain loads, such as critical
infrastructure, to be prioritized. To guide weight selection,



restoration sequences should first prioritize NBSU start-ups
for the additional power capacity and stabilizing inertia they
provide [2]. As restoration progresses, more power becomes
available to energize the remaining lines and loads. Following
these goals, the weights should be chosen such that wg ≫
wd ≫ wl. This encourages quickly starting the NBSUs and
shifts the focus to loads once all generators are activated.

In brief notation, and where some mathematical expressions
are omitted due to space limitations, the complete restoration
framework can be expressed as

maximize z (3)
subject to Power balance (1), Line flows (2a) (2b)

NBSU Startup, Network Logic

Our next goal is the integration of dynamic frequency
constraints into the baseline restoration planning problem (3).

I I I . F R E Q U E N C Y N A D I R C O M P U TAT I O N V I A
R A M P - A P P R O X I M AT E D G O V E R N O R M O D E L

A. Primary Frequency Response Model

During restoration, frequency must be maintained around
its nominal value to ensure operational security. We consider
primary frequency response (PFR) from BSUs, with optional
contributions from selected NBSUs, to maintain frequency
stability as new loads are incrementally energized. We are
interested in quantifying the frequency nadir, i.e., the lowest
frequency reached following a step electrical disturbance. To
prevent triggering under-frequency protection systems and
damaging network elements, the nadir must not deviate from
the nominal by more than a safe threshold |∆ωlim| to be defined
by the system operator.

We consider an Average System Frequency (ASF) model,
which captures the system-wide frequency dynamics using an
aggregated inertia and individual turbine-governor models for
each SG [19].1 The ASF dynamics are governed by the swing
equation

∆ω̇(t) =
1

2Hsys

(∑G

i=1
αi∆P i

m(t)−∆Pe(t)

)
, (4)

which relates power imbalance to the rate of frequency change,
where ∆ω(t) is the per unit frequency deviation, Hsys is the
lumped system inertia, ∆P i

m is the mechanical power of the
ith turbine, αi converts units from the machine base to the
system base, and ∆Pe is the electrical power imbalance. We
assume that ∆Pe takes positive values, which represents step
power shortages from load and generator pickup. The model
(4) holds between each discrete restoration step.

During restoration, generators (i) contribute to system inertia
at the start of their ramping phase, when they become syn-
chronized, and (ii) contribute to primary frequency response
once they are online. Thus the inertia Hsys and conversion
factors αi in (4) vary with the discrete restoration time step

1For systems incorporating IBRs, the Generic System Frequency Response
(G-SFR) model from [9] can alternatively be used.

Fig. 2: IEEEG1 governor turbine model

(a) (b)

Fig. 3: (a) Closed-loop ASF model; (b) Broken feedback loop
using the ramp approximation.

k ∈ {1, . . . , T} over the horizon T . Denoting by Hsys ∈ R1×T

the time-vector of inertia, we have the relationship

Hsys(k) =
1

Ssys
P

⊤
g diag(H)(bgr(k) + bgo(k)) (5)

for all k ∈ {1, . . . , T}, where bgr and bgo are the previously
defined binary variables for ramping and online generators,
H ∈ RG is a vector that contains inertia constants of individual
generators, and Ssys is the system base. Similarly, letting α ∈
RG×T denote the matrix of unit conversion factors, we have
the relationship

α(k) = 1
Ssys

diag(P g)bgo(k), k ∈ {1, . . . , T}. (6)

In what follows, we examine the frequency dynamics at an
arbitrary restoration time step, and assume that frequency is
restored to its nominal value before the next restoration action
is taken. This is achieved by secondary frequency control, a
slower control process on the timescale of minutes, which can
therefore be neglected for the purposes of nadir prediction. For
notational simplicity, we use the unbolded variables Hsys ∈ R
and α ∈ RG to indicate their values at any single time step.

B. IEEEG1 Model and Ramp Approximation

We adopt the IEEEG1 turbine-governor model [20], shown
in Fig. 2. The model features two saturator blocks: SAT1,
which limits the output power rate of change, and SAT2,
which limits the output power magnitude. We neglect SAT2 by
assuming that a sufficient dynamic reserve is allocated such
that generators assigned with delivering PFR do not reach their
maximum capacities. The block diagram of the swing equation
(4) with the turbine-governors is shown in Fig. 3a. Our goal
is to obtain an approximate formula for the frequency nadir
that occurs due to a load pick-up during restoration.

During normal operating conditions, the set-points Pref

to the governors remain unchanged, and all PFR response



occurs through the frequency feedback loop. However, since
power imbalances introduced by restorative actions have known
magnitude and timing, generator set points can be actively
adjusted simultaneously during restoration to improve the speed
of PFR. In Fig. 2, a positive ∆Pref will accelerate the governor
response by feeding an initial value ∆Pref

T3
to SAT1. A natural

way to update the set points for each responding unit to adjust
its set point by the common per-unit amount

∆Pref =
∆Pe∑G
i=1 αi

. (7)

By sending the same per-unit set point to each generator,
each generator will contribute to the frequency response pro-
portional to its capacity, and the sum of the set point changes
following unit adjustment is equal to the load magnitude ∆Pe.

Note that for large disturbances, the initial value entering
SAT1, ∆Pref

T3
, where T3 is a small time constant, will exceed

the upper saturation limit Uo. The value entering SAT1 will
continue to rise as the system frequency declines from the
imbalance, and will decrease as frequency is restored. Impor-
tantly, this means that SAT1 will unsaturate only after the
nadir is reached. Therefore, to estimate the frequency nadir,
we may assume that the SAT1 output has a constant value of
Uo, resulting in the simplified block diagram in Fig. 3b where
GT(s) denote the turbine models from Fig. 2

We term the broken feedback system in Fig. 3b the ramp
approximation model. Under this assumption, all responding
generators increase their power output at a maximum rate upon
detecting a power imbalance. The approximation accuracy
improves with larger disturbances that cause lower frequency
nadirs, a fact which is aligned with the goal of finding the
maximum permissible imbalance for a given frequency nadir
limit. In this model, the mechanical power of any machine is
the turbine response to a linear ramp with slope Uo, given in
the Laplace domain by

∆P i
m(s) =

U i
o

s2
Gi

T(s), (8)

and the corresponding frequency response is given by

∆ω(s) =
1

2Hsys

(
1

s3

G∑
i=1

αiU
i
oG

i
T(s)−

∆Pe

s2

)
(9)

where the first term represents the combined PFR of the SGs,
and the second term represents the disturbance. The initial
frequency decline caused by the ∆Pe term is arrested by the
increasing PFR term, creating the frequency nadir.

To avoid the complexities of the 4th-order transfer functions
Gi

T(s), we further assume that the turbine time constants
T4, T5, T6, T7 are all small, i.e., Tmax = max{T4, T5, T6, T7}
much faster than 1s. We decompose Gi

T(s) by approximating
each 1

sτ+1 block with a second-order polynomial as

1

sτ + 1
≈ 1− sτ + s2τ2. (10)

The approximation accurately represents the original expres-
sion in the frequency range R = [0, 1

Tmax
]. Since Gi

T(s)

has unity DC-gain and is composed of a series of low-pass
filters with cutoff frequencies { 1

T4
, 1
T5
, 1
T6
, 1
T7
}, its gain remains

roughly constant in the range R and decreases by around
−20dB/dec above the range. As such, the gain of the PFR
term is primarily driven by 1

s3 , which decreases by −60dB/dec
at all frequencies. This causes low frequency components to
have much greater gains than high frequency components (i.e.
10−1rad/s has a magnitude ∼ 120dB greater than 101rad/s).
At frequencies above the range R, the gain is much lower than
that of the dominant low frequency components, and since (10)
produces approximation errors at high frequencies, the errors
have low magnitudes.

By substituting (10) into Gi
T(s) in (9), expanding the

expression, and neglecting terms higher than second-order, we
find that

∆ω(s) =
1

2Hsys

(
1

s3
(c1 − c2s+ c3s

2))− ∆Pe

s2

)
(11)

where c1, c2, c3 are coefficients which depend on the turbine
parameters and on α1, . . . , αG. Taking inverse Laplace trans-
form of (11), the frequency nadir can be computed in closed
form to be

∆ωnadir =
1

2Hsys

(
− (c2 +∆Pe)

2

2c1
+ c3

)
(12)

and imposing the bound ∆ωnadir ≥ −|∆ωlim| leads to the
final inequality

∆Pe ≤
√

4Hsysc1 |∆ωlim|+ 2c1c3 − c2︸ ︷︷ ︸
∆Pe,max

(13)

for the maximum permissible power disturbance.

I V. I T E R AT I V E R E S T O R AT I O N S E Q U E N C E
C O M P U TAT I O N

We now describe how the frequency nadir constraint (13) is
integrated into the restoration planning problem (3). During the
restoration window {1, . . . , T}, step power imbalances ∆P e ∈
R1×T occur due to load pickup and generator cranking, which
can be expressed as

∆P e(k) = P⊤
d (bd(k)− bd(k − 1))

+ P⊤
c (bgc(k)− bgc(k − 1)) . (14)

The parameters c1, c2, c3, and Hsys in (13) are defined for
each time step of the MILP (3), and depend on the statuses
of the generators bg. Inserting (14) as the left-hand side
of (13) yields a nonlinear mixed-integer constraint, which is
incompatible with the MILP. To address this limitation, we
introduce a receding-horizon computation, where successive
MILPs are solved with a user-defined time horizon T .

As notation, define the stacked binary status matrix b =
col(bb, bl, bd, bg) that defines the restoration sequence, and
the stacked initial values vector b0 = col(b0b, b

0
l , b

0
d, b

0
g). Our

proposed method is shown in Algorithm 1, where terms with
“ˆ” denote predicted values of the variables.

The algorithm begins with the initial status b0 of all elements.
The key idea in Steps 4–7 is to construct forward predictions



Algorithm 1 Iterative Restoration Sequence Computation

1: Initialize b0

2: Initialize plan = [b0]
3: while b0 ̸= 1 do
4: Using plan, construct predictions b̂gr, b̂go ∈ {0, 1}G×T

5: Evaluate Hsys and α in (5), (6), using b̂gr and b̂go
6: Evaluate c1, c2, c3 in (11) using Hsys and α
7: Evaluate ∆P e,max using (13)
8: Solve the MILP (3),(13) for T steps
9: Update initialization b0 = b(1)

10: [plan]← [plan, b(1)]
11: end while

of the variables bgr and bgo; this can be done since ramping
occurs after a fixed amount of time following activation of a
generator. Based on these predictions, the right-hand side of
(13) can be evaluated over a T -step horizon into the future.
This renders the constraint (13), (14) linear in the decision
variables bd and bgc. The restoration plan is then computed
for T steps. The next immediate restoration action b(1) is saved
as part of the final plan, and the remaining actions computed
in this iteration are discarded. The process proceeds forward
recursively, and terminates once all network elements have
been restored.

V. S I M U L AT I O N A N D C A S E S T U D Y

A. Test System

A modified IEEE 9-bus system shown in Fig. 4 is used
to verify the effect of frequency constraints on the optimal
restoration sequence. Parameters of the generators and their
IEEEG1 turbine-governors use values referenced from [21]
and [22]. Cranking time and ramp rates are chosen within
the ranges reported in [23]. Loads in the system are located
on buses 4-9 and split into blocks sized between 3-16 MW.
Generator 1 is designated as the BSU and generators 2-3 as
NBSUs. For details about the implementation and parameters,
refer to [18].

B. Frequency Nadir Prediction

To verify the accuracy of the ramp approximation, frequency
nadir prediction errors are shown in Fig.5 for the 9-bus system
with all generators online.

For smaller imbalances, SAT1 remains inactive or saturates
briefly, leading to higher prediction errors. As the imbalance
increases, the corresponding change in ∆Pref triggers SAT1
more consistently, resulting in lower prediction errors. Predic-
tion accuracy is highest near the maximum imbalance permitted
by the nadir constraint, though estimates remain optimistic due
to the assumption of maximum generator ramping. In the 9-bus
system, the smallest load—3 MW—yields a negligible nadir
error on the order of 10−4 Hz. These results confirm that
the nadir is predicted with high accuracy and that the MILP
effectively enforces the frequency limit ∆ωlim in (13).
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Fig. 4: Modified IEEE 9-bus system. Number in brackets
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C. Restoration Sequences

Two optimal restoration sequences are found by following
the iterative method described in Algorithm 1. The first
sequence ignores frequency constraints, while the second
enforces a 1 Hz nadir limit. Fig. 6 illustrates the system’s
frequency when actions from the sequences are carried out
every two minutes to allow transient dynamics to settle.
Simulations are conducted in MATLAB using the ASF swing
equation and the IEEEG1 governor-turbine model.

In the unconstrained case, all generators and loads are
energized in rapid succession. Restoration completes in 40
steps as NBSUs become online, but frequency dips exceed 4 Hz,
rendering the plan infeasible. Such violations risk triggering
protection systems and damaging equipment.

In contrast, enforcing a 1 Hz nadir constraint results in a
more gradual sequence. Early stages involve only small load
pickups due to low system inertia. After each NBSU turns
on, the system is able to withstand a great electrical power
imbalance. With each generator start-up, the plan selects loads
that would not cause any frequency violations. Although this
sequence takes longer to complete, it satisfies all constraints
and offers a practical and safe implementation path.

To validate the MILP-generated plan under realistic condi-
tions, the frequency-constrained sequence is re-evaluated in
PSSE. Unlike MATLAB, PSSE includes full nonlinear power
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flow and detailed generator dynamics. Fig. 7 shows that all
restoration actions meet the frequency nadir limit of 1 Hz, with
minor deviations attributable to regional governor responses.
These results demonstrate that the proposed method produces
frequency-constrained restoration plans that remain valid under
high-fidelity dynamic simulations.

V I . C O N C L U S I O N

We have provided a new approach to compute frequency-
constrained optimal restoration sequences. Our approach lever-
ages a novel approximation of the frequency nadir experienced
after a restoration action is taken, along with a receding-horizon
iterative computational approach to solve the resulting nadir-
constrained MILP. The method is validated with a case study in
both MATLAB and PSS/E, and will assist ISOs in developing
fast and safe restoration plans. Future work will extend this
framework to account for voltage stability, and the participation
of IBRs in the restoration process.
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