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1. Introduction

• 1.1 administration
• 1.2 course contents
• 1.3 motivating examples
• 1.4 what is robust control?
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Administrative information

▶ Course website is the authoritative administrative source

https://www.control.utoronto.ca/~jwsimpson/robust/

Course requirements:

▶ Completion of assignments

▶ Completion of individual course project

▶ Participation in course Piazza

▶ There is no midterm or final exam
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What is in this course?

▶ Fundamental systems theory: H2/H∞ norms, dissipativity,
input-output stability theory, the Kalman-Yakubovich-Popov (KYP)
Lemma, . . .

▶ The generalized plant framework for analysis and control
▶ LMI-based system analysis and controller design methods
▶ Robustness analysis: stability and performance of uncertain systems,

leading to integral quadratic constraints

I will need to occasionally tell half-truths, jump over technical details,
and skip many robust control topics entirely. . .

Your job: prove things, do examples, and have fun with the material
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Why study robust control now?

▶ Increasing complexity and decentralization
▶ Data-driven control and optimization
▶ Autonomy and stacked control layers
▶ Civilization-critical applications: energy, synthetic biology, robotics,

aerospace, medicine, smart materials

Robust control ideas are already playing an essential role in . . .

▶ Data-driven feedback control
▶ Feedback-based optimizing controllers, game theory
▶ Analysis and design of new optimization algorithms
▶ Hybrid systems, risk-sensitive control

Many fresh topics to study for the class project
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Motivating example: actuator saturation

K
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▶ SISO LTI plant controlled with error-feedback PI controller

▶ Saturation block enforces control limits =⇒ nonlinear system

▶ Saturation degrades performance and may induce instability

How can we assess closed-loop stability and performance?
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Motivating example: fragility of LQG control

▶ Recall: optimal state-feedback controller design problem

ẋ = Ax+Bu, x(0) = x0, u = −Kx, (A, B) stabilizable

▶ Classical linear-quadratic design method (Q ⪰ 0, R ≻ 0)

J(x0) = minimize
K

∫ ∞

0
x(t)TQx(t) + u(t)TRu(t) dt

produces optimal controller K = R−1BTP where P ⪰ 0 solves ARE.

B (sI − A)−1 K
0 x(s) −u(s)

−
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Motivating example: fragility of LQG control

B (sI − A)−1 K
0 x(s) −u(s)

−

▶ One can check gain/phase margins of open-loop TF

GLQR(s) = K(sI − A)−1B

▶ By these metrics, LQR produces a very robust closed-loop system:
• Upper gain margin is +∞ (wow)

• Lower gain margin is 1
2 (pretty good)

• Phase margin of ±60◦ in each channel (fantastic)
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Motivating example: fragility of LQG control

What about output feedback? Do these robustness results hold when
we include an optimal state observer in the loop? No!

Need a joint theory of optimal and robust control.
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Motivating example: robust performance

▶ As we will see, we can model uncertain plants as

G(s) = Gnom(s)(1 + ∆(s)W (s))

where Gnom(s) is our nominal model, ∆(s)W (s) is uncertainty.

K
(

1 + 1
sTi

)
Gnom(s)

W (s) ∆(s)

Gd(s)

r e u y

d

−

Does our design achieve robust performance, i.e., good
performance despite the uncertainty described by ∆(s)?
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Course objectives

▶ Formulate and solve standard optimal control formulations

▶ Formulate models of uncertain systems

▶ Formulate tractable robust stability/performance tests

▶ Explore a new exciting topic in your project

Mqp Mqw

Mzp Mzw

∆

q p

wz
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Why use feedback?

Controller Actuator Process

Environment

Sensor

r e u y

d

−

Feedback allows us to:
1. stabilize (remove “asymptotic trajectory uncertainty”)
2. reduce/remove environmental effects (“exogenous uncertainty”)
3. reduce sensitivity to process uncertainty (“endogenous uncertainty”)

The whole point is uncertainty management!
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Exogenous vs. endogenous uncertainty

▶ Exogenous uncertainty = disturbances from the “environment”
• Certain important disturbance signals (constant, ramp, sinusoids) can

be asymptotically rejected using the internal model principle of
linear control theory

▶ Endogenous uncertainty = imperfections in our process model
• Much more subtle to model, analyze, and design for
• Ability to tolerate endogenous uncertainty = robustness
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Robustness in classical control

▶ 1890’s: Routh–Hurwitz allows simple parametric sensitivity studies

Π(s) = sn + an−1sn−1 + · · · + a1s + a0

▶ 1930’s: Bode’s plot (gain and phase margins)
▶ 1930’s: Nyquist plot ω 7→ (Re(Ĝ(jω)), Im(Ĝ(jω)))

Key features:

(i) graphical freq. domain tests

(ii) MIMO extensions difficult

Incredibly effective and practical tools, which highlight the
importance of frequency-domain analysis.
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Robustness in modern control

▶ 1960’s: Kalman’s state-space control revolution
• LQ theory =⇒ systematic computation of MIMO controllers
• LQR showed excellent gain/phase margins (Anderson, Safonov, etc.)
• Endogenous uncertainty had disappeared from the picture, and was

replaced with stochastic exogenous disturbances; this concerned some
(Horowitz, Athans, Rosenbrock, McMorran, . . . )

Indeed things were too good to be true . . .

▶ High-profile failures of LQG (see Trident, F-8C Crusader) when
implemented on nonlinear systems

▶ Doyle’s 1978 LQG counter-example showed zero robustness margins
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Absolute stability

▶ 1950’s/60’s: Soviet scientists (Lur’e, Postnikov, Popov, Yakubovich
. . . ) studied stability of SISO LTI loops with time-varying
sector-bounded nonlinearities Φ(t, q)

G(s)

Φ(t, q)

0 q

−

▶ Under certain conditions on frequency response G(jω), loop is
stable for all Φ within class of interest (“absolute” stability)

Extension of linear analyis tools to nonlinear settings!
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Input-output stability theory

▶ 1960’s: parallel to Kalman’s theory, others (Zames, Sandberg,
Willems, Vidyasagar, Desoer, Safonov, . . . ) tried to formalize and
extend classical Laplace-domain methods via functional analysis

▶ Model components as causal operators on signal spaces

G : {Space of signals} → {Space of signals}

▶ Stability: finite-norm inputs must produce finite-norm outputs

G1

G2

w q q̃

pp̃ v

Very general framework for
feedback analysis, leading to

many deep theoretical results
(small-gain theorem, passivity

theorem)
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The robust control revolution

▶ 1978: debut of singular values of the transfer matrix as key
robustness indicators (Stein, Laub, Doyle, Safonov . . . )

▶ 1981: Zames introduces the H∞ space to the field and solves the
first SISO H∞ control problem

▶ 1980’s: further developments of H∞ control based on analytic
transfer function methods, driven by Francis, Zames, Doyle, . . .

▶ 1989: DGKF Paper
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The computational classical-modern synthesis

▶ 1988: Nesterov and Nemirovskii develop efficient interior point
methods for numerically solving LMI problems

▶ 1988–Present: Explosion of activity on LMI analysis and design
methods for control (Boyd, Balakrishnan, Feron, El Ghaoui, Scherer,
Khargonekar, Poolla, Zhou, Glover, Chilali, Gahinet, Iwasaki, Dullerud,
Paganini, many more . . . ). Many problems convexified, including

(i) H∞ and H2 output feedback problems
(ii) Extensions: regional pole constraints, multiobjective designs
(iii) Mixed H2/H∞ design, robust H2 control
(iv) LPV analysis, gain-scheduled controller design, . . .

▶ 1997–Present: IQCs (Megretski, Rantzer, Jönsson, Scherer, . . . ): A
unifying analysis perspective, which connects frequency-domain
methods, absolute stability, nonlinear input-output theory, robust
control, and the more recent LMI revolution . . .
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2. Vector Spaces and Linear Operators

• 2.1 basic definitions
• 2.2 operators on vector spaces and the induced operator norm
• 2.3 linear operators on vector spaces
• 2.4 the singular value decomposition
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Definition of a vector space

Definition 2.1 (Vector space). A vector space over F ∈ {R,C} is a
set V of vectors equipped with the following two operations:

1. vector addition, which is a mapping + : V × V → V taking two
vectors v1, v2 ∈ V and producing a new vector v1 + v2 ∈ V s.t.

• commutativity: v1 + v2 = v2 + v1;
• associativity: v1 + (v2 + v3) = (v1 + v2) + v3;
• zero vector: there exists an element 0 ∈ V such that v + 0 = v;
• additive inverse: ∀v ∈ V ∃u ∈ V s.t. v + u = 0;

2. scalar multiplication, denoted by αv ∈ V for α ∈ F, s.t.
• associativity: α1(α2v) = (α1α2)v;
• vector distributivity: α(v1 + v2) = αv1 + αv2;
• scalar distributivity: (α1 + α2)v = α1v + α2v;
• multiplicative identity element: 1v = v.
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Examples of finite-dimensional vector spaces

▶ Our favourite vector space Fn over F

▶ The set Mm,n(F) of all m × n matrices A ∈ Fm×n over F

▶ The sets of all n × n Hermitian or symmetric matrices

Hn = {A ∈ Cn×n | A = A∗}

Sn = {A ∈ Rn×n | A = AT}

▶ The set of all discrete-time N0-periodic signals

cper(Z;Fn) = {f : Z → Fn | f(n + N0) = f(n) for all n ∈ Z}.
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Examples of infinite-dimensional vector spaces

▶ The set cfin(Z;F) of all finite-duration DT signals

cfin(Z;F) = {f : Z → F | ∃ N ∈ Z≥0 s.t. f(n) = 0 ∀|n| ≥ N}.

▶ The set C0
cpt(R;F) of all cont. compactly-supported CT signals

C0
cpt(R;F) = {f ∈ C0(R;F) | ∃ T ≥ 0 s.t. f(t) = 0 ∀|t| ≥ T}.
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Norms on vector spaces

Definition 2.2 (Seminorm). A seminorm on a F-vector space V is a
map ∥ · ∥V : V → R satisfying

(i) homogeneity: ∥αv∥V = |α| ∥v∥V for all α ∈ F, v ∈ V;

(ii) nonnegativity: ∥v∥V ≥ 0 for all v ∈ V;

(iii) triangle inequality: ∥v1 + v2∥V ≤ ∥v1∥V + ∥v2∥V for all v1, v2 ∈ V.

If additionally ∥ · ∥V satisfies

(iv) non-degeneracy: ∥v∥V = 0 if and only if v = 0V

then V is a norm on V. We call (V, ∥ · ∥V) a normed vector space.

▶ A norm allows us to measure the size of a vector, and helps us
identify two vectors: v = u if and only if ∥v − u∥V = 0
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Examples of norms

▶ Fn is a normed vector space with any of

∥v∥1= |v1| + |v2| + · · · + |vn|

∥v∥2=
√

|v1|2 + |v2|2 + · · · + |vn|2

∥v∥∞ = max
i∈{1,...,n}

|vi|

v1

v2

▶ For p ∈ [1, ∞), cfin(Z≥0;F) is a normed vector space with any of

∥f∥p =
(∑∞

n=0
|f(n)|p

)1/p

, ∥f∥∞ = sup
n≥0

|f(n)|

▶ For p ∈ [1, ∞), C0
cpt(R≥0;F) is a normed vector space with any of

∥f∥p =
(∫ ∞

0
|f(x)|p dx

)1/p

, ∥f∥∞ = sup
x≥0

|f(x)|
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Inner products on vector spaces

Definition 2.3 (Inner product). An inner product on V is a map
⟨·, ·⟩V : V × V → F satisfying

(i) conjugate symmetry: ⟨v1, v2⟩V = ⟨v2, v1⟩∗
V

(ii) partial linearity: ⟨v1, α2v2 + α3v3⟩V = α2⟨v1, v2⟩V + α3⟨v1, v3⟩V,

(iii) non-negativity: ⟨v, v⟩V ≥ 0 for all v ∈ V, and

(iv) non-degeneracy: ⟨v, v⟩V = 0 if and only if v = 0V.

We call the pair (V, ⟨·, ·⟩V) an inner product space.

▶ Inner products let us discuss orthogonality: u ⊥ v means ⟨u, v⟩V = 0
▶ Every inner product ⟨·, ·⟩V induces a norm ∥x∥V ≜

√
⟨x, x⟩V

▶ Cauchy-Schwarz Inequality: |⟨u, v⟩V| ≤ ∥u∥V∥v∥V.
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Examples of inner products (and associated norms)

▶ Fn is an inner product space with Euclidean i.p.

⟨x, y⟩2 ≜ x∗y = x∗
1y1 + · · · + x∗

nyn, ∥x∥2 =
√

⟨x, x⟩2

▶ Mm,n(F) is an inner product space with the Frobenius i.p.

⟨X, Y ⟩F ≜ trace(X∗Y ), ∥X∥F =
√

trace(X∗X)

▶ cfin(Z≥0;F) is an inner product space with

⟨f, g⟩2 ≜
∑∞

n=0
f(n)∗g(n), ∥f∥2 =

√∑∞

n=0
|f(n)|22

▶ C0
cpt(R≥0;F) is an inner product space with

⟨f, g⟩2 ≜
∫ ∞

0
f(x)∗g(x) dx, ∥f∥2 =

√∫ ∞

0
|f(x)|22 dx
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Convergence and completeness in vector spaces

Definition 2.4 (Convergence, Cauchy, Completeness). Let
(V, ∥ · ∥V) be a normed vector space. A sequence (vk)k∈Z≥0 in V

(i) converges to v ∈ V if limk→∞ ∥vk − v∥V = 0;

(ii) is Cauchy if limk,j→∞ ∥vk − vj∥V = 0.

If all Cauchy sequences in (V, ∥ · ∥V) converge, then (V, ∥ · ∥V) is a
complete normed vector space or Banach space.

▶ Why care about completeness?
1. We can check convergence by checking Cauchy-ness
2. Sensible limits will always exist “within” the space

▶ All finite-dimensional normed vector spaces are complete in all
possible norms; infinite-dimensional spaces are often not complete
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(cfin(Z≥0;F), ∥ · ∥2) is not complete

▶ Consider the sequence (fj)j∈Z≥0 in cfin(Z≥0;F) given by

fj(n) =

 1
n+1 , n ≤ j

0, n > j.

▶ For k, ℓ ∈ Z≥0 with k > ℓ we have that

∥fℓ − fk∥2
2 =

k∑
n=ℓ+1

1
(n + 1)2 → 0 as k, ℓ → ∞

so the sequence is Cauchy.

▶ The sequence does not converge though, since the “obvious” limiting
signal f(n) = 1

n+1 for n ≥ 0 does not belong to cfin(Z≥0;F).
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Completions (and not) of cfin(Z≥0;F)

▶ If a normed vector space is incomplete, one can complete it. The
resulting complete space depends on the norm you use.

Theorem 2.1 (Complete sequence spaces).
(i) The completion of cfin(Z≥0;F) in the norm ∥ · ∥p for p ∈ [1, ∞) is

ℓp(Z≥0;F) =
{

f : Z≥0 → F
∣∣ ∥f∥p < ∞

}
.

(ii) The completion of cfin(Z≥0;F) in the norm ∥ · ∥∞ is

c0(Z≥0;F) =
{

f : Z≥0 → F
∣∣ lim

n→∞
f(n) = 0

}
.

(iii) The space ℓ∞(Z≥0;F) =
{

f : Z≥0 → F
∣∣ supn≥0 |f(n)| < ∞

}
with

norm ∥ · ∥∞ is a Banach space.
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Operators on vector spaces

▶ An operator is a fancy name for a mapping A : U → Y between
vector spaces U and Y. We will assume that A(0) = 0; if this doesn’t
hold, just subtract off A(0) and redefine A.

▶ If U and Y are Banach spaces, we can measure the “size” of A by
comparing the relative size of inputs u and outputs A(u)

Definition 2.5 (Boundedness of operators). An operator
A : U → Y is bounded if there exists L ≥ 0 such that ∥A(u)∥Y ≤ L∥u∥U

for all u ∈ U. In this case, the least upper bound on this ratio, given by

∥A∥U→Y ≜ sup
u∈U\{0}

∥A(u)∥Y
∥u∥U

is called the induced norm or gain of A.
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Bounded operators

▶ With the induced norm ∥ · ∥U→Y, the set of all bounded operators
between two Banach spaces is itself a Banach space!

▶ Even more, it is an algebra, because we can compose two operators
A, B : V → V via the formula (A ◦ B)(v) = A(B(v))

▶ Crucial in robust control: A, B bounded =⇒ A ◦ B bounded!

Lemma 2.1 (Induced norms are submultiplicative). If A, B are
bounded operators on V, then ∥A ◦ B∥V→V ≤ ∥A∥V→V · ∥B∥V→V.

“Norm of the product is less than the product of the norms”
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Linear operators on vector spaces

As is always the case, linearity is of special importance.

Definition 2.6 (Linear operators). Let U and Y be Banach spaces
over F. A mapping A : U → Y is a linear operator if it is

1. distributive: A(u1 + u2) = A(u1) + A(u2) for all u1, u2 ∈ U, and

2. homogeneous: A(αu) = αA(u) for all u ∈ U and α ∈ F.

Properties of linear operators:
▶ subspaces are mapped to subspaces
▶ boundedness is equivalent to Lipschitz continuity
▶ linear operators are always bounded when U, Y are finite-dimensional
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Examples of linear operators

▶ A matrix A ∈ Cm×n defines a (bounded) linear operator
fA : Cn → Cm via matrix-vector mult. fA(x) = Ax

▶ For a fixed A ∈ Rn×n the (continuous-time) Lyapunov operator
Lyap : Sn → Sn by defined by Lyap(X) = ATX + XA is a
(bounded) linear operator

▶ With the norm ∥ · ∥∞ on the domain/codomain

I : C0([0, T ];R) → C1([0, T ];R), I(f)(x) ≜
∫ x

0
f(ξ) dξ

defines a bounded linear operator. The derivative mapping

D : C1([0, T ];R) → C0([0, T ];R), D(f)(x) ≜ df

dx
(x)

is also a linear operator, but is not bounded.
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The singular value decomposition

Every matrix A ∈ Cm×n admits a singular value decomposition

A = UΣV ∗, U∗U = Im, V ∗V = In

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices and Σ ∈ Rm×n is the matrix of
singular values, which depending on the relative sizes of m and n has the form

Σ =



σ1 0 · · · 0

0 σ2 · · ·
...

...
. . . 0

0 · · · 0 σn

0 · · · · · · 0
...

...

0 · · · · · · 0


, Σ =


σ1 0 · · · 0 0 · · · 0

0 σ2 · · ·
... 0 · · · 0

...
. . .

... 0 · · · 0
0 · · · 0 σm 0 · · · 0



Observations:
▶ AA∗ = UΣΣTU∗ =⇒ U are the eigenvectors of AA∗

▶ A∗A = V ΣTΣV ∗ =⇒ V are the eigenvectors of A∗A

▶ σ2
i are the eigenvalues of AA∗ (or A∗A).
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The singular value decomposition

Proposition 2.1 (Properties of singular values). Let A ∈ Fm×n

and let p = min{m, n}.

(i) The singular values of A are real, nonnegative, and ordered as
σ1(A) ≥ σ2(A) ≥ · · · ≥ σp(A) ≥ 0 = · · · = 0

(ii) σi(A) = σi(A∗) for i ∈ {1, . . . , p}.

(iii) the number of non-zero singular values is equal to rank(A).

Warning: Singular values are not eigenvalues.

A =
[

1 106

0 1

]
, eig(A) = {1, 1}, σ1(A) ≈ 106 . . .
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The singular value decomposition

The SVD yields “input directions” and “output directions”

A = UΣV
∗ =
[

u1 u2 · · · um

]︸ ︷︷ ︸
output directions


σ1 0 · · · 0 0 · · · 0

0 σ2 · · ·
... 0 · · · 0

...
. . .

... 0 · · · 0
0 · · · 0 σm 0 · · · 0


v∗

1
v∗

2
...

v∗
n


︸ ︷︷ ︸

input directions

▶ If x = vk, then Ax = σkuk, so ∥Ax∥2 = σk!
▶ Singular values σk measure “gain” on the vk–uk axis

A x
∑

k σkuk(V ∗x)k
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Induced norms and singular values

For A ∈ Cm×n, consider the following two ways of measuring its size

∥A∥F ≜
√

trace(A∗A), ∥A∥2 ≜ ∥fA∥2→2 = sup
x∈Cn\{0}

∥Ax∥2

∥x∥2
.

Are ∥A∥F and ∥A∥2 related? Yes, using singular values.

Theorem 2.2 (2-norm and Frobenius norm). For A ∈ Fm×n

∥A∥F =
√∑min{m,n}

k=1
σ2

k(A), ∥A∥2 = σ1(A) = σmax(A).

As an immediate consequence, it always holds that ∥A∥2 ≤ ∥A∥F.
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Proof of Theorem 2.2
The Frobenius norm formula is immediate. For the 2-norm, we compute that

∥A∥2
2 = ∥fA∥2

2→2 = sup
v∈Fm\{0}

∥Av∥2
2

∥v∥2
2

= sup
∥v∥2=1

∥Av∥2
2 = sup

v∗v=1
v∗A∗Av

Since A∗A is symmetric, there exists a unitary matrix U ∈ Cn×n such that A∗A = UΓU∗

where Γ = diag(σ1(A)2, . . . , σn(A)2). Therefore

∥A∥2
2 = sup

v∗v=1
v∗UΓU∗v = sup

u∗u=1
u∗Γu = sup

u∗u=1

n∑
k=1

Γkk|uk|2 ≤ max
k

Γkk

= σmax(A)2

where we have used the fact that since U is unitary, ∥U∗v∥2 = ∥u∥2 = 1. Therefore,
∥A∥2 ≤ σmax(A). To show that this is the least upper bound, note that by selecting
u = e1 = (1, 0, . . . , 0) we obtain

u∗Γu = σmax(A)2

and therefore v ≜ Ue1 is the (unique) maximizer of the original problem. •
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3. Mathematical Optimization and Linear
Matrix Inequalities (LMIs)

• 3.1 mathematical optimization problems
• 3.2 convexity and affine mappings
• 3.3 symmetric and definite matrices
• 3.4 linear matrix inequalities (LMIs)
• 3.5 duality theory for SDPs
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Mathematical optimization

▶ A mathematical optimization problem is generally notated as

minimize
x∈X

f(x) subject to x ∈ C.

The ingredients are:

1. an ambient vector space X of all candidate decisions for x

2. a set C ⊆ X of feasible decisions

3. a cost function f : C → R quantifying the cost f(x) of each
feasible decision x ∈ C

▶ Sometimes we do not care about cost, and simply want to find any
feasible decision. Then one often writes

find x subject to x ∈ C.
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Examples of mathematical optimization problems

▶ General nonlinear program

minimize
x∈Rn

f(x) subject to g(x) ≤ 0, h(x) = 0.

▶ Quadratic program (e.g., least squares, regression, MPC)

minimize
x∈Rn

1
2 xTQx + cTx subject to A1x ≤ b1, A2x = b2.

▶ Semidefinite program (SDP)

minimize
x∈Rn

cTx subject to A0 +
∑n

i=1
Aixi ⪰ 0︸ ︷︷ ︸

Matrix is positive semidefinite

We will study SDPs in detail shortly.
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Basic questions for mathematical optimization

minimize
x∈X

f(x) subject to x ∈ C.

(i) Does there exist any x ∈ C? (feasibility)

(ii) What is the least possible cost fopt = infx∈C f(x)?
• if C = ∅, then we define fopt = +∞
• if f is not bounded below on C, then fopt = −∞

(iii) Does there exist x ∈ C such that f(x) = fopt? If so, x is a
minimizer and the minimum is attained, so fopt = minx∈C f(x).

(iv) If the minimum is attained, can we characterize the optimal set

Xopt ≜ {x ∈ X | x is a minimizer} = argmin
x∈C

f(x).
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When can we answer these questions?

▶ In general, answering any of the questions (i)–(iv) is computationally
intractable – optimization problems are not typically solvable!

▶ In order to obtain tractable classes of problems, additional
assumptions must be placed on the cost f and the feasible set C

A broad and practical property to impose on
both f and C is convexity.

▶ Convexity will provide us with theoretical guarantees, and powerful
algorithms have been developed for solving convex optimization
problems (we will exploit these, but not study them).
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Convex sets

Definition 3.1 (Convex set). A subset C ⊆ V of a vector space V is
convex if αv1 + (1 − α)v2 ∈ C for all v1, v2 ∈ C and α ∈ [0, 1].

“The line segment between any two points is contained in the set”

Examples of convex sets:
▶ Linear equalities {x | Ax = b} and inequalities {x | Ax ≤ b}
▶ ϵ-norm ball centered at x0: Bϵ(x0) ≜ {x ∈ V | ∥x − x0∥ ≤ ϵ}

Obvious, but very important! The intersection of convex sets is a
convex set, and the interior of a convex set is a convex set.
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Affine mappings

▶ We will often want to express sets as mappings of other sets

▶ What kind of mappings play nice with convexity?

Definition 3.2 (Affine map). A map f : V → W between vector
spaces V, W over F is affine if for all v1, v2 ∈ V and all α ∈ F

f(αv1 + (1 − α)v2) = αf(v1) + (1 − α)f(v2).

Properties of affine maps:
▶ Affine maps are almost linear; every affine mapping is of the form

f(v) = A(v) + b for some linear operator A : V → W and b ∈ W.
▶ if C ⊂ V is cvx, then the image f(C) = {f(v) | v ∈ C} is cvx
▶ if C ⊂ W is cvx, then the preimage f−1(C) = {v | f(v) ∈ C} is cvx
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Convex optimization problems

▶ A convex optimization problem with affine cost is

minimize
x∈X

f(x) subject to x ∈ C.

where C is a convex set and f : C → R is an affine mapping.

Key fact: Any locally optimal solution x⋆ ∈ C is globally optimal.

▶ Warning: convexity alone does not guarantee feasibility, a finite
optimal cost, the existence or uniqueness of an optimal solution, or
the existence of an efficient algorithm for solving the problem!

▶ Luckily, our problems of interest will generally be “nice enough”, and
will not unduly suffer from these issues.
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The vector space of symmetric matrices

▶ Recall: The vector spaces Hn and Sn of Hermitian and symmetric
matrices are both Hilbert spaces with inner product

⟨X, Y ⟩F = trace(X∗Y ) = trace(XY )

▶ You probably already know the following result.

Lemma 3.1 (Properties of Hermitian Matrices). If A ∈ Hn then

(i) the eigenvalues of A are real, i.e., eig(A) ⊂ R;
(ii) the eigenvectors of A are orthogonal with respect to the inner

product ⟨·, ·⟩2 on Cn;
(iii) there exists a unitary matrix U ∈ Cn×n such that A = UΛU∗ where

Λ = diag(λ1, . . . , λn).
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Definite matrices

Definition 3.3 (Definite matrices). A matrix A ∈ Hn is

(i) positive semidefinite (A ⪰ 0)) if x∗Ax ≥ 0 for all x ∈ Cn;
(ii) positive definite (A ≻ 0)) if x∗Ax > 0 for all x ∈ Cn \ {0};
(iii) negative semidefinite (A ⪯ 0)) if −A is positive semidefinite;
(iv) negative definite (A ≺ 0)) if −A is positive definite;
(v) indefinite othwerwise.

In the real symmetric case, we let Sn
≥0,Sn

>0,Sn
≤0,Sn

<0 ⊂ Sn denote the
sets of positive semidefinite, positive definite, negative semidefinite, and
negative definite matrices.

▶ Note that we are only considering symmetric matrices. You could
define the same properties for non-symmetric matrices, but there is
apparently little use in doing so.

Section 3: Mathematical Optimization and Linear Matrix Inequalities (LMIs) 3-48

Positive definiteness and eigenvalues

Definiteness is intimately related to eigenvalues.

Proposition 3.1 (Definite matrices). All eigenvalues of A ∈ Hn are
nonnegative (resp. positive) if and only if A ⪰ 0 (resp. A ≻ 0).

▶ Proof is very simple; use eigenvalue decomposition of A

▶ Equivalently, we can talk in terms of minimum/maximum eigenvalues:

A ⪰ 0 ⇐⇒ λmin(A) ≥ 0

A ⪯ 0 ⇐⇒ λmax(A) ≤ 0

A ≻ 0 ⇐⇒ λmin(A) > 0

A ≺ 0 ⇐⇒ λmax(A) < 0.
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Positive definiteness and matrix decomposition

Proposition 3.2 (PSD Decomposition). Let A ∈ Hn. Then A ⪰ 0 if
and only if there exists B such that A = B∗B

▶ When A ∈ Sn, one can of course take B to be real
▶ While there is no unique choice of B, there is a special choice called

the square root of A

Proposition 3.3 (Square Root of a PSD Matrix). Let A ∈ Hn.
Then A ⪰ 0 if and only if there exists a unique matrix A1/2 ⪰ 0 such that
A = A1/2A1/2.
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Operations which preserve definiteness

You can perform certain transformations on definite
matrices which preserve definiteness; very useful

▶ Conic combination: If A1, A2 ⪰ 0 and α1, α2 ≥ 0, then
α1A1 + α2A2 ⪰ 0.

▶ Inversion: A ≻ 0 if and only if A−1 ≻ 0

▶ Similarity Transform: Given a nonsingular T ∈ Rn×n, A is positive
(semi)definite if and only if T −1AT is positive (semi)definite

▶ Congruence Transform: Given nonsingular T ∈ Rn×n, A is positive
(semi)definite if and only if T TAT is positive (semi)definite.

▶ Projection Result: Given full column rank T ∈ Rn×•, if A is
positive definite then T TAT is positive definite.
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Definiteness and the trace

▶ Recall that for X ∈ Rn×n we have that trace(X) =
∑n

i=1 λi(X)
where {λi(X)}n

i=1 are the eigenvalues of X. Obviously:

X ⪰ 0 =⇒ trace(X) ≥ 0

▶ Moreover, the trace has the following cyclic property

trace(XY Z) = trace(ZXY ) = trace(Y ZX)

▶ If Y ⪰ 0 and F ⪯ 0, then

trace(Y F ) = trace(Y
1
2 Y

1
2 F ) = trace(Y

1
2 FY

1
2︸ ︷︷ ︸

⪯0

) ≤ 0

Y ⪰ 0, F ⪯ 0 =⇒ ⟨Y, F ⟩Sn = trace(Y F ) ≤ 0
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The Schur complement

Lemma 3.2 (Schur Complement Lemma). Let Q ∈ Sp, S ∈ Rp×m,
and R ∈ Sm. The following statements are equivalent:

(i)
[

Q S

ST R

]
≺ 0

(ii) Q ≺ 0 and R − STQ−1S ≺ 0

(iii) R ≺ 0 and Q − SR−1ST ≺ 0.

▶ An endlessly useful result for block matrices
▶ Various semidefinite versions hold as well, e.g., if Q ≺ 0 then[

Q S

ST R

]
⪯ 0 if and only if R − STQ−1S ⪯ 0

(i) ⇒ (ii) used for reducing dimension of a block matrix, while (ii) ⇒
(i) is useful for linearizing the nonlinear inequality R − STQ−1S ≺ 0.
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Convexity of Sn
≥0

Proposition 3.4. The sets Sn
≥0,Sn

>0,Sn
<0,Sn

≤0 ⊂ Sn are all convex.

Let X1, X2 ∈ Sn≥0, α ∈ [0, 1], and x ∈ Rn. We compute

xT(αX1 + (1 − α)X2)x = αxTX1x + (1 − α)xTX2x ≥ 0

since each term is nonnegative, so αX1 + (1 − α)X2 ∈ Sn≥0. •

In short, this means we can efficiently optimize over these sets; this
leads to a class of optimization problems called semidefinite

programs.
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Linear matrix inequalities (LMIs)

Definition 3.4 (LMI). Let X be a finite-dimensional Hilbert space over
R and let F : X → Sn be an affine mapping. We call the inequality
F (x) ⪯ 0 a linear matrix inequality or LMI, and the inequality F (x) ≺ 0
a strict LMI.

(n.s.d. inequality is just a convention; doesn’t matter).

Proposition 3.5 (LMIs define convex sets). The set of points
satisfying an LMI or strict LMI is convex.

Proof: Sn≤0 is a convex set, and the preimage of a convex set under an affine map is
convex, so {x ∈ X | F (x) ⪯ 0} is convex. •

▶ Note: multiple simultaneous LMIs F1(x) ⪯ 0, . . . , FN (x) ⪯ 0 all
together also define an LMI (why?)
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LMI feasibility and linear SDP problems

Definition 3.5 (LMI Feasibility and Linear SDP). A LMI
feasibility problem is the convex feasibility problem

find x ∈ X subject to F (x) ⪯ 0

where F (x) ⪯ 0 is an LMI. A linear semidefinite program (SDP) is the
convex optimization problem

minimize
x∈X

φ(x) subject to F (x) ⪯ 0

where F (x) ⪯ 0 is a LMI and φ : X → R is a linear map.

▶ Short story: Analytical solutions very rare, but we can (usually)
numerically compute accurate solutions to these problems.

▶ You can also add affine equality constraints without issue.
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Remarks on writing LMIs and SDPs

▶ LMIs often naturally appear with matrix variables. For example,

F (X) =
r∑

k=1
AkXBT

k + BkXAT
k + Qk + QT

k ⪯ 0

where X ∈ X ≜ Sm and Ak, Bk, Qk are matrices of appropriate sizes.

▶ This is a perfectly acceptable representation: there is no need to play
around with bases for Sm to rewrite the problem, nor is there a need
to translate the problem to standard forms that you may find in other
references. The map F is affine, and that’s all that matters.

▶ In this case, you will typically see linear costs expressed as
φ(x) = ⟨C, X⟩Sn = trace(CX) for some C ∈ Sn (Riesz Theorem).
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Example: minimum induced norm

▶ Let A0, . . . , AN ∈ Sn and consider the problem

minimize
x∈RN

∥A(x)∥2, where A(x) = A0 +
∑N

i=1
xiAi ∈ Sn.

▶ Key observation: From Theorem 2.2, ∥A∥2
2 = σmax(A)2, which (by

definition) is the maximum eigenvalue of ATA ⪰ 0. We have that

∥A∥2 < γ ⇔ λmax(ATA) < γ2 ⇐⇒ λmax(ATA − γ2In) < 0

⇐⇒ ATA − γ2In ≺ 0

⇐⇒
[

γIn A

AT γIn

]
≻ 0

▶ So the problem can be equivalently written as the SDP

minimize
γ≥0,x∈RN

γ subject to
[

γIn A(x)
A(x)T γIn

]
≻ 0
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Solving SDPs

▶ Some excellent options available for MATLAB

▶ Two ingredients: a parser (front-end to make your life easy) and a
solver (algorithm which does the computation)

▶ My two cents: use YALMIP as your parser, and have SDPT3 and
SeDuMi installed as two different solvers to try out.

▶ You can also try cvx, which is a popular and flexible platform for
optimization. I have personally found the parser to be less reliable
than YALMIP, particularly for larger problems.
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https://yalmip.github.io/
http://cvxr.com/


Example: Minimum induced norm via YALMIP

1 %% Define Problem Data

2 n = 5; N = 7; A = randn(n,n,N+1);

3 for k=1:N; A(:,:,k)=A(:,:,k) + A(:,:,k)'; end

4

5 %% Define SDP Problem

6 gamma = sdpvar(1,1); x = sdpvar(N,1);

7 Ax = A(:,:,1);

8 for k=1:N; Ax = Ax + x(k)*A(:,:,k+1); end

9 M = [gamma*eye(n),Ax;Ax',gamma*eye(n)];

10 Constraints = [gamma ≥ 0, M ≥ eye(2*n)];

11 Cost = gamma;

12

13 %% Solve

14 options = sdpsettings('solver','sdpt3','verbose',1);

15 sol = optimize(Constraints,Cost,options);

16

17 value(x) %print value
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Other comments on LMIs

▶ Strict vs. non-strict LMIs: For both numerical and theoretical
reasons, strict LMIs are typically preferred to non-strict LMIs. Most
parsers however accept only non-strict LMIs. In code, one therefore
replaces F (x) ≺ 0 with F (x) ⪯ −ϵIn for some small ϵ > 0.

▶ Linear LMIs: If the function F is a linear function (as opposed to
affine), then F (x) ≺ 0 is feasible if and only if F (x) ⪯ −I is feasible.
Additionally, note that if x is feasible, then F (αx) = αF (x) ≺ 0 for
all α > 0, so αx is a solution. Numerically, things can now go crazy,
because solvers can generate solutions with arbitrarily large norms. To
fix this, one should additionally constrain (or minimize) the norm of x.
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The adjoint of a linear operator

Definition 3.6 (Adjoint). Let X, Y be Hilbert∗ spaces over F and let
F : X → Y be a bounded linear operator. The adjoint of F is the
mapping F adj : Y → X satisfying

⟨y, F (x)⟩Y = ⟨F adj(y), x⟩X, x ∈ X, y ∈ Y.

▶ One can show that F adj always exists, is unique, and is itself a bounded
linear operator with induced norm ∥F adj∥Y→X = ∥F ∥X→Y.

▶ Example: If A ∈ Cm×n and F (x) = Ax, then

⟨y, F (x)⟩2 = ⟨y, Ax⟩2 = y∗(Ax)

= (A∗y)∗x = ⟨A∗y, x⟩2 = ⟨F adj(y), x⟩2

so F adj(y) = A∗y; the adjoint is defined by the Hermitian transpose A∗

∗A Hilbert space is a complete inner product space.
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Example: adjoint of the Lyapunov operator

▶ For a fixed A ∈ Rn×n, recall that the mapping Lyap : Sn → Sn by
defined by Lyap(X) = ATX + XA is a (bounded) linear operator.

▶ For any X, Y ∈ Sn we have that

⟨Y, Lyap(X)⟩Sn = trace(Y T(ATX + XA))

= trace(Y (ATX + XA))

= trace(Y ATX) + trace(Y XA)

= trace(Y ATX) + trace(AY X)

= trace((AY + Y AT)X)

= ⟨AY + Y AT, X⟩Sn

from which we conclude that Lyapadj(Y ) = AY + Y AT.
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Example: adjoint of the convolution operator

▶ For a causal FD-LTI system (A, B, C, 0) with impulse response
m(t) = CeAtB1(t) ∈ Rp×m, the linear convolution operator is

Convm(u)(t) =
∫ ∞

−∞
m(t − τ)u(τ) dτ

▶ Bounded iff the system is BIBO stable ⇔ limt→∞ m(t) = 0

▶ For any signals u(t) ∈ Rm and z(t) ∈ Rp, we have

⟨z, Convm(u)⟩L2 =
∫ ∞

−∞
z(t)T

∫ ∞

−∞
m(t − τ)u(τ) dτ dt

=
∫ ∞

−∞
u(τ)T

∫ ∞

−∞
m(−(τ − t))Tz(t) dt dτ = ⟨u, Convn(z)⟩L2

▶ Adjoint is a conv. operator of the anti-causal FD-LTI system
(AT, CT, BT, 0) with impulse response n(t) = BTe−ATtCT1(−t).
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SDP duality

▶ We now consider the formulation of dual problems for semidefinite
programs; while the exposition is self-contained, previous background
in duality theory for linear programming would be beneficial

▶ Consider the “primal” linear SDP

minimize
x∈X

⟨c, x⟩X subject to F0 + F1(x) ⪯ 0

where c ∈ X, F0 ∈ Sn and F1 : X → Sn is a (bounded) linear
operator.

▶ The optimal value popt of this problem is of course

popt = inf
x∈C

⟨c, x⟩X

where C ≜ {ξ ∈ X | F0 + F1(ξ) ⪯ 0} denotes the feasible set
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SDP duality

▶ The (conic) Lagrangian L of this primal SDP is the function
L : X × Sn → R defined by

L(x, Y ) = ⟨c, x⟩X + ⟨Y, F0 + F1(x)⟩Sn

▶ Y ∈ Sn is the dual variable associated with the LMI constraint

▶ Recall: If Y ⪰ 0 and F ⪯ 0, then

⟨Y, F⟩Sn = trace(Y F) ≤ 0

▶ Fact: For any F ∈ Sn we have

sup
Y ⪰0

⟨Y, F⟩Sn =

0 if F ⪯ 0

+∞ if otherwise
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SDP duality

▶ It follows immediately that

sup
Y ⪰0

L(x, Y ) = ⟨c, x⟩X + sup
Y ⪰0

⟨Y, F0 + F1(x)⟩Sn

=

⟨c, x⟩X if x ∈ C
+∞ if x /∈ C

▶ We conclude that

inf
x∈X

sup
Y ⪰0

L(x, Y ) = inf
x∈C

⟨c, x⟩X = popt

The maximin problem infx∈X supY ⪰0 L(x, Y ) is
equivalent to the primal problem!
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SDP duality

Lemma 3.3 (Max-Min Inequality). Let X , Y be any sets and let
f : X × Y → R. Then

sup
y∈Y

inf
x∈X

f(x, y) ≤ inf
x∈X

sup
y∈Y

f(x, y)

▶ The Lagrange dual SDP associated with the primal SDP is obtained
by interchanging sup and inf in our maximin problem

dopt = sup
Y ⪰0

inf
x∈X

L(x, Y )︸ ︷︷ ︸
≜g(Y )

≤ inf
x∈X

sup
Y ⪰0

L(x, Y ) = popt

or simply dopt = supY ⪰0 g(Y )

▶ We therefore always have so-called weak duality: dopt ≤ popt
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SDP duality

▶ To compute the dual function, note that

L(x, Y ) = ⟨c, x⟩X + ⟨Y, F0 + F1(x)⟩Sn

= ⟨c, x⟩X + ⟨Y, F0⟩Sn + ⟨Y, F1(x)⟩Sn

= ⟨c + F adj
1 (Y ), x⟩X + ⟨F0, Y ⟩Sn

▶ We can now compute that

g(Y ) = inf
x∈X

L(x, Y ) =

−∞ if c + F adj
1 (Y ) ̸= 0

⟨F0, Y ⟩Sn if c + F adj
1 (Y ) = 0.

▶ The dual problem is therefore

dopt = sup
Y ⪰0, c+F adj

1 (Y )=0
⟨F0, Y ⟩Sn .
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Example: The minimum may not be achieved

▶ Consider the example

inf
(x1,x2)∈R2

x1 subject to
(

x1 1
1 x2

)
⪰ 0.

▶ The PSD conditions are that x1 ≥ 0, x2 ≥ 0, and x1x2 ≥ 1; note
also the problem is strictly feasible. For ϵ > 0, set x1 = ϵ and
x2 = 1/ϵ. The LMI is satisfied, and limϵ→0 popt(ϵ) = 0, but the
optimal value is never achieved.

It turns out the issue here is with the dual problem.

sup
Y ⪰0

−2y12 subject to y11 = 1, y22 = 0

▶ Here, dopt = 0 is achieved by Y = ( 1 0
0 0 ) ⪰ 0, but the dual problem is

not strictly feasible.
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SDP and dual SDP
Primal SDP:

popt = inf
F0+F1(x)⪯0

⟨c, x⟩X

Dual SDP:

dopt = sup
Y ⪰0, c+F adj

1 (Y )=0
⟨F0, Y ⟩Sn .

Theorem 3.1 (Strong Duality). Suppose that the primal and dual
SDP problems are both feasible.

(i) If the primal is strictly feasible, i.e., there exists x s.t. F0 + F1(x) ≺ 0,
then popt = dopt and the dual optimum is achieved by some Y ⪰ 0.

(ii) If the dual is strictly feasible, i.e., there exists Y ≻ 0 s.t.
c + F adj

1 (Y ) = 0, then popt = dopt and the primal optimum is
achieved by some x ∈ C.

(iii) If popt = dopt, then any primal-feasible x and dual-feasible Y are
optimal if and only if (F0 + F1(x))Y = 0.
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Strong alternatives for LMIs

▶ Consider the case of a primal feasibility problem

Primal SDP:

popt = inf
F0+F1(x)⪯0

0

Dual SDP:

dopt = sup
Y ⪰0, F adj

1 (Y )=0
⟨F0, Y ⟩Sn .

Theorem 3.2 (Strong Alternatives). Exactly one of the following
statements is true:

(i) There exists x ∈ X such that F0 + F1(x) ≺ 0.

(ii) There exists a non-zero Y ⪰ 0 such that F adj
1 (Y ) = 0 and

⟨F0, Y ⟩Sn ≥ 0.
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Proof of Theorem 3.2

Suppose that both statements are true. Then by our previous arguments we have

⟨Y, F0 + F1(x)⟩Sn ≤ 0.

Moreover though, since Y is non-zero and F0 + F1(x) ≺ 0, one can strengthen our
previous argument to show that in fact

⟨Y, F0 + F1(x)⟩Sn < 0.

This now implies that
⟨Y, F0⟩Sn + ⟨F adj

1 (Y ), x⟩X︸ ︷︷ ︸
=0

< 0

and therefore ⟨Y, F0⟩Sn < 0, which is a contradiction with the second statement.
Therefore, at most one of these statements is true. The remainder of the proof is
omitted; see, e.g., Balakrishnan & Vandenberghe. •
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Supplement: The geometry of Sn
≥0

▶ Sn
≥0 has a special structure: it is a proper convex cone in the vector

space Sn, and Sn
>0 = interior(Sn

≥0).

▶ All matrices X ∈ interior(Sn
≥0) have all positive eigenvalues, while all

matrices X ∈ bd(Sn
≥0) have at least one eigenvalue equal to zero.

▶ The proper convex cone structure implies that Sn
≥0 and Sn

>0 can be
used to define a partial order and a strict partial order on Sn,
which allows us to order (some) elements of the space

▶ Indeed, this is why we use the notation A ⪰ B to mean that
A − B ∈ Sn

≥0, and A ≻ B to mean that A − B ∈ Sn
>0.

▶ You can go much deeper on the geometry of this space and look at
faces, etc. . . . we have everything we need though.
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4. Lyapunov Stability and Inequalities

• 4.1 review of stability for LTI systems
• 4.2 Lyapunov’s theorems for stability
• 4.3 Lyapunov inequality for LTI systems
• 4.4 state feedback design
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State-space LTI systems

▶ In ECE557 you learned all about the causal CT FD LTI model

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ Rn (1)

with state x(t) ∈ Rn and input u(t) ∈ Rm.
▶ For now, we will side-step precisely what types of inputs and what

kinds of solutions are being considered.

Two questions you answered in 557:

(i) What is exponential stability, and how do you check it for (1)?

(ii) How to design state feedback / LQR controllers u(t) = −Kx(t)?

We will begin by approaching these same questions via LMIs
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Stability of autonomous systems

▶ Let f : Rn → Rn and consider the nonlinear differential equation

ẋ = f(x), where x(0) ∈ Rn and f(0) = 0. (2)

Definition 4.1. The equilibrium point x = 0 of (2) is

(i) stable if, for each ε > 0 there exists δ > 0 such that

∥x(0)∥2 ≤ δ =⇒ ∥x(t)∥2 ≤ ε for all t ≥ 0;

(ii) globally asymptotically stable if it is stable and if for all x(0) ∈ Rn

we have limt→∞ x(t) = 0;

(iii) globally exponentially stable if there exist constants c, M > 0 such
that ∥x(t)∥2 ≤ Me−ct∥x(0)∥2 for all t ≥ 0 and all x(0) ∈ Rn.
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Stability of autonomous LTI systems

Theorem 4.1 (Stability). The equilibrium point x = 0 of ẋ = Ax is

(i) stable if and only if all eigenvalues of A have nonpositive real part
and any eigenvalue λ ∈ eig(A) with Re(λ) = 0 has equal geometric
and algebraic multiplicity;

(ii) globally asymptotically stable if and only if all eigenvalues of A have
negative real part (A is Hurwitz);

(iii) globally exp. stable if and only if it is globally asymptotically stable.

This characterization is problematic, in that
(i) it does not extend to nonlinear systems, and
(ii) the set of Hurwitz matrices is not a convex set (we can’t optimize)

We need to develop a more flexible characterization of stability.
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Lyapunov theorems for stability

▶ We now return to ẋ = f(x) with f(0) = 0

Theorem 4.2 (Lyapunov). Suppose there exists a continuously
differentiable map V : Rn → R satisfying V (0) = 0 and such that

V (x) ≥ c1∥x∥2
2 and ∇V (x)Tf(x) ≤ −c3∥x∥2

2

for some c1 > 0, c3 ≥ 0, and all x ∈ Rn. Then x = 0 is stable. Moreover,

(i) if c3 > 0, then x = 0 is globally asymptotically stable;

(ii) if c3 > 0 and V (x) ≤ c2∥x∥2
2 for some c2 > 0, then x = 0 is globally

exponentially stable.

Asymptotic stability guaranteed by finding a scalar-valued
positive-definite function that decreases along trajectories.
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Proof of Theorem 4.2 for Exp. Stability Case

Differentiating V along trajectories of ẋ = f(x), we have that

V̇ (x(t)) = ∇V (x(t))Tẋ = ∇V (x(t))Tf(x(t)) ≤ −c3∥x(t)∥2
2 ≤ −

c3

c2
V (x(t))

which implies (e.g., via the so-called comparison lemma) that

V (x(t)) ≤ exp
(

−
c3

c2
t

)
V (x(0)).

Lower bounding the LHS and upper bounding the RHS, we obtain

c1∥x(t)∥2
2 ≤ c2 exp

(
−

c3

c2
t

)
∥x(0)∥2

2

from which it follows that

∥x(t)∥2 ≤
√

c2

c1
exp
(

−
c3

2c2
t

)
∥x(0)∥2

showing global exponential stability. •
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Quadratic Lyapunov functions for LTI systems

For our LTI system ẋ = Ax what happens if we look for a quadratic
Lyapunov function V (x) = xTPx for some matrix P ∈ Rn×n?

▶ We can assume P ∈ Sn, and V (x) ≤ c2∥x∥2
2 is satisfied (why?)

▶ To satisfy xTPx ≥ c1∥x∥2
2, we need that λmin(P ) > 0 ⇐⇒ P ≻ 0.

▶ The condition ∇V (x)Tf(x) ≤ −c3∥x∥2
2 becomes

2xTP︸ ︷︷ ︸
∇V (x)T

Ax︸︷︷︸
f(x)

= xT(PA + ATP )x ≤ −c3∥x∥2
2, ∀x ∈ Rn,

or equivalently ATP + PA ⪯ −c3In. There exists c3 > 0 satisfying
this if and only if

ATP + PA ≺ 0.
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Exponential stability of LTI systems (revised)

Theorem 4.3 (Exponential stability of LTI systems). Consider the
LTI state-space system (1). The following statements are equivalent:

(i) the origin x = 0n of (1) is globally exponentially stable;

(ii) all eigenvalues of A have negative real part (A is Hurwitz);

(iii) there exists P ≻ 0 satisfying the Lyapunov LMI

ATP + PA ≺ 0

(iv) x = 0n of (1) admits a Lyapunov function V (x) = xTPx.

LMI Problem! find P ∈ Sn subject to
P ≻ 0

ATP + PA ≺ 0.
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Proof of Theorem 4.5
(i) ⇐⇒ (ii): This is in ECE 557. (iv) =⇒ (i): This is the result of Theorem 4.2.
(iii) ⇐⇒ (iv): This is basically our argument preceding the Theorem.
(ii) =⇒ (iii): For any Q ≻ 0 define P =

∫∞
0 eA

TtQeAt dt. Obviously P is symmetric.
Since A is Hurwitz, ∥eAt∥2 → 0 as t → ∞, and it is easy to show as a result that P is
well-defined. To check positive-definiteness, let v ∈ Rn be non-zero and compute that

vTP v =
∫ ∞

0
vTeA

TtQeAtv dt =
∫ ∞

0
(eAtv)TQ(eAtv) dt =

∫ ∞

0
ξ(t)TQξ(t) dt,

where ξ(t) = eAtv. Since Q ≻ 0, the integrand is nonnegative for all t ≥ 0, so we
conclude that at least P ⪰ 0. Further, we can have vTP v = 0 only if ξ(t) = eAtv = 0n
for all t ≥ 0. Since eAt is always nonsingular, this implies that v = 0n, and therefore
P ≻ 0. Finally, we compute that

ATP + P A =
∫ ∞

0

(
ATeA

TtQeAt + eA
TtQeAtA

)
dt =

∫ ∞

0

d
dt

(
eA

TtQeAt
)

dt

= lim
t→∞

[
eA

TtQeAt
]

− lim
t→0

[
eA

TtQeAt
]

= −Q ≺ 0

where we have used that AeAt = eAtA and that eA0 = In. •
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Application: diagonal Lyapunov functions

▶ Important case: the solution P ≻ 0 to the Lyapunov equation is
diagonal or block diagonal

find P ≻ 0 subject to ATP + PA ≺ 0, Pij = 0 ∀i ̸= j.

▶ Applications in economics, biology, ecology, numerical analysis, and
stability of systems over networks.

▶ You can obviously include other (affine) constraints on P to enforce
any structure you would like.

▶ Diagonal stability is restrictive, and a solution might not exist even if
A is Hurwitz. If the LMI is feasible, you can compute a solution. If
the LMI is infeasible, then no such solution exists.
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Application to large-scale system analysis

Suppose we have N interconnected nonlinear systems

ẋi = fi(xi) +
∑N

j=1
gij(xj), i ∈ {1, . . . , N},

where each fi admits a Lyapunov function Vi (Theorem 4.2) and the coupling functions
gij satisfy the boundedness condition

|∇Vi(xi)Tgij(xj)| ≤ γij∥xi∥2∥xj∥2, for some γij > 0.

Let D = diag(d1, . . . , dN ) ≻ 0 and define V (x) =
∑N

i=1 diVi(xi). Then

V̇ (x(t)) =
∑N

i=1
di∇Vi(xi)Tfi(xi) +

∑N

i=1
di

∑N

j=1
∇Vi(xi)Tgij(xj)

≤ −
∑N

i=1
dici∥xi∥2

2 +
∑N

i=1

∑N

j=1
diγij∥xi∥2∥xj∥2

= 1
2 ϕ(x)T [−2DC + ΓTD + DΓ

]
ϕ(x)

where ϕ(x) = (∥x1∥2, . . . , ∥xN∥2).

Find diagonal D ≻ 0 s.t. −2DC + ΓTD + DΓ ≺ 0 to guarantee asymp. stability!
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Stabilizing state feedback design

With our handy new stability LMI, we can start having some fun!

▶ Problem: stabilizing state feedback u = Kx for ẋ = Ax + Bu.

▶ The closed-loop system is given by ẋ = (A + BK)x
▶ Closed-loop stability: there exists P ≻ 0 such that

(A + BK)TP + P (A + BK) ≺ 0

⇐⇒ ATP + PA + (PBK) + (PBK)T ≺ 0

▶ Perform a congruence transformation with X = P −1 ≻ 0

⇐⇒ XAT + AX + (BKX) + (BKX)T ≺ 0

▶ Now define Z = KX as a new variable, and we get the LMI

find X ≻ 0, Z ∈ Rm×n subject to XAT+AX+BZ+(BZ)T ≺ 0.
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Stabilizing state feedback design

Theorem 4.4 (LMI for Stabilizing State Feedback). There exists
K ∈ Rm×n such that A + BK is Hurwitz if and only if there exist X ≻ 0
and Z ∈ Rm×n such that[

A B
] [X

Z

]
+
[
X ZT

] [AT

BT

]
≺ 0 . (3)

In particular, a stabilizing feedback gain is given by K = ZX−1, with
P = X−1 satisfying the closed-loop Lyapunov LMI.

▶ Neat Trick: we removed a product of decision variables KX by
introducing a new variable Z; this linearized the inequality

▶ Observation: the final synthesis inequality (3) involves the inverse
X = P −1 of the original Lyapunov variable P .
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Example: Stabilizing state feedback

1 %% Define Two-Mass Positioning System

2 k = 5; b = 5.82e-3;

3 J1 = 1e-3; J2 = 2e-4;

4 Jtot = J1+J2; Jred = J1*J2/(J1+J2);

5 s = tf('s'); P = (b*s+k)/((Jtot*s^2)*(Jred*s^2 + b*s + ...

k)); P = ss(P);

6 A = P.A; B = P.B; n = size(A,1); m = size(B,2);

7

8 %% Solve LMI Problem

9 X = sdpvar(n,n); Z = sdpvar(m,n,'full');

10 small = 1e-6;

11 Constraints = [X ≥ small*eye(n), [A,B]*[X;Z] + ...

([A,B]*[X;Z])' ≤ -small*eye(n)];

12 Cost = 0;

13 options = sdpsettings('solver','sdpt3','verbose',1);

14 sol = optimize(Constraints,Cost,options);

15 K = value(Z)*inv(value(X));
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Connection to stabilizability of (A, B)

Shouldn’t it hold that (A, B) stabilizable ⇐⇒ synthesis LMI feasible?

▶ With X = Sn × Rm×n and x = (X, Z) the state-feedback LMI is

F (x) =
[

XAT + AX + BX + (BX)T 0
0 −X

]
≺ 0

▶ Contraposition via strong alternatives: if F (x) ≺ 0 is infeasible,
then there exists a non-zero Y =

[
Y1 Y T

2
Y2 Y3

]
⪰ 0 such that[

0
0

]
= F adj(Y ) =

[
ATY1 + Y1A − Y3

BTY1

]
▶ Note: Y1 ̸= 0; otherwise, contradiction with Y ̸= 0
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Connection to stabilizability of (A, B)

▶ Since rank(Y1) = r ≥ 1, let Y1 = UU∗ with U ∈ Cn×r full rank. Then

ATY1 + Y1A = ATUU∗ + UU∗A = Y3 ⪰ 0

Lemma 4.1. UU∗A + (UU∗A)∗ ⪰ 0 if and only if ∃D ⪰ 0 and ∃S

satisfying S + S∗ = 0 such that UU∗A = U(D + S)U∗.

Proof of “if”: Compute directly that

UU∗A + (UU∗A)∗ = U(D + D∗ + S + S∗)U∗ = 2UDU∗ ⪰ 0.

▶ Necessarily, we have eig(D + S) ⊆ C≥0

▶ We let JΛJ−1 denote the Jordan decomposition of D + S∗
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Connection to stabilizability of (A, B)

▶ As U has full column rank, we conclude that U∗A = (D + S)U∗, or

ATU = U(D + S∗) =⇒ AT UJ︸︷︷︸
≜V

= UJ︸︷︷︸
≜V

Λ =⇒ ATV = V Λ

Therefore, V ≜ range(V ) is a non-empty AT-invariant subspace
corresponding to some unstable eigenvalues Λ of AT!

▶ Fact∗: V must contain at least one eigenvector v of AT, in this case
with corresponding eigenvalue λ ∈ C≥0. Moreover,

BTY1 = 0 ⇔ BTU = 0 ⇔ BTV = 0 ⇒ BTv = 0

The system fails the eigenvector test for stabilizability!

∗See, e.g., Hespanha, Property P12.2.
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OK, but how do we achieve good “performance”?

▶ We want to design control systems that have good performance
. . . but what precisely does that even mean?

▶ In undergraduate control design, performance usually refers to the
step response: rise time, settling time, overshoot . . .

• this seems daunting to spec. for big MIMO systems
• control effort is more of an afterthought

▶ In ECE 557, good performance meant “minimum LQR cost” which
keeps a combination of the square-integrated states and control
signals small . . . but quite unclear how this relates to response under
set-point changes or disturbances!

We need a more unified, systematic, and computationally-friendly
framework for assessing performance
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Appendix: Stability of discrete-time systems

▶ Let f : Rn → Rn and consider the nonlinear difference equation

x(k + 1) = f(x(k)), where f(0) = 0 and k ∈ {0, 1, 2, . . .} (4)

Definition 4.2. The equilibrium point x = 0 of (4) is

(i) stable if, for each ε > 0 there exists δ > 0 such that

∥x(0)∥2 ≤ δ =⇒ ∥x(k)∥2 ≤ ε for all k ≥ 0;

(ii) globally asymptotically stable if it is stable and if for all x(0) ∈ Rn

we have limk→∞ x(k) = 0;

(iii) globally exponentially stable if ∃ M > 0 and ρ ∈ [0, 1) such that
∥x(k)∥2 ≤ Mρk∥x(0)∥2 for all k ≥ 0 and all x(0) ∈ Rn.
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Appendix: Stability of discrete-time LTI systems

Consider the discrete-time LTI system x(k + 1) = Ax(k)? Here, a
Lyapunov function needs to decrease at each step, so we ask for

c1∥x∥2
2 ≤ V (x) ≤ c2∥x∥2

2, V (Ax) − V (x) ≤ −c3∥x∥2
2.

Theorem 4.5 (Exponential stability of LTI systems). Consider the
(DT-LTI) system. The following statements are equivalent:

(i) the origin x = 0n of (DT-LTI) is globally exponentially stable;

(ii) all eigenvalues of A have magnitude less than 1 (A is Schur);

(iii) there exists P ≻ 0 satisfying the Lyapunov LMI

ATPA − P ≺ 0

(iv) x = 0n admits a Lyapunov function V (x) = xTPx.
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5. The KYP Lemma and Dissipative Dynamical
Systems

• 5.1 dissipative dynamical systems
• 5.2 quadratically dissipative LTI systems
• 5.3 strictly quadratically dissipative LTI systems
• 5.4 the Kalman-Yakubovich-Popov Lemma

Section 5: The KYP Lemma and Dissipative Dynamical Systems 5-95



Introduction to dissipativity theory

▶ Lyapunov theory provides a tool (the Lyapunov function) for
analyzing the autonomous behaviour of a dynamical system. We
measure the “energy” of the state x using a Lyapunov function V (x),
and study how this energy evolves over time.

V̇ (x(t)) ≤ 0 ⇐⇒ V (x(t2)) ≤ V (x(t1)) ∀ t1, t2 s.t. t2 ≥ t1.

▶ Dissipativity theory generalizes Lyapunov theory to dynamical systems
with inputs and outputs. Two ingredients:

(i) a storage function V (x) which measures the “energy” of the state
(ii) a supply rate s(w, z) which captures the rate of change of energy

entering the system through the input w and output z

V̇ (x(t)) ≤ s(w(t), z(t)) ⇐⇒ V (x(t2)) ≤ V (x(t1)) +
∫ t2

t1

s(w(τ), z(τ)) dτ
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Input-output causal CT-LTI systems

▶ We will focus on the FD CT state-space model

M :
[

ẋ

z

]
=
[

A B

C D

][
x

w

]
, x(0) = 0,

with state x ∈ Rn, input w ∈ Rm, and output z ∈ Rp.

▶ We will interpret the above ODE as defining a causal linear
time-invariant system by restricting all signals to be right-sided

▶ Fact: If w(t) is “sufficiently nice” and right-sided, then the system
will respond with a unique right-sided solution x(t) and right-sided
output z(t), which both depend causally on w(t):

M
wz
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Input-output causal CT-LTI systems

▶ With this, the state and output are given by

x(t) =
[∫ t

0
CeA(t−τ)Bw(τ) dτ

]
1(t)

z(t) = Cx(t) + Dw(t)

and x(t) satisfies the ODE for almost every t ∈ R.

▶ As you know, the system has a transfer function

M̂(s) = C(sIn − A)−1B + D, s ∈ ROC.

▶ Assuming BIBO stability, the system also has a frequency response

M̂(jω) = C(jωIn − A)−1B + D
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Definition of dissipativity

Definition 5.1 (Dissipativity). Let s : Rm × Rp → R be a supply rate.
The state-space system (CT-LTI) is dissipative if there exists a
differentiable storage function V : Rn → R and ε ≥ 0 such that

∇V (x)T(Ax + Bw) ≤ s(w, z) − ε2∥w∥2
2

for all (x, w) ∈ Rn+m. If ε > 0, the system is input-strictly dissipative.

▶ If (w(t), x(t), z(t)) is a system trajectory, then we have that

V̇ (x(t))︸ ︷︷ ︸
Rate of Change of Stored Energy

≤ s(w(t), z(t)) − ε2∥w(t)∥2
2︸ ︷︷ ︸

Externally Provided Power

▶ Often (not always) V (x) ≥ 0
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Quadratic supply rates

We now restrict our attention to fairly simple types of supply rates:
homogeneous quadratic forms of (z, w)

Definition 5.2 (Quadratic supply rate). Let Π =
[Π11 Π12

Π21 Π22

]
∈ Sp+m.

The mapping s : Rm × Rp → R defined by

s(w, z) =
[

z

w

]T

Π
[

z

w

]

is called a quadratic supply rate.

▶ Finite-gain: s(w, z) = −zTz + γ2wTw, Π =
[

−Ip 0
0 γ2Im

]
▶ Passive: s(w, z) = wTz, Π = 1

2
[ 0 Im

Im 0
]

Why? Quadratic supply rates will play nice with LMIs
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Integral characterization of dissipativity

▶ Suppose that V (x) ≥ 0, that V (0n) = 0, and that x(0) = 0n

▶ Integrating V̇ (x(t)) ≤
[

z(t)
w(t)

]T
Π
[

z(t)
w(t)

]
over [0, T ] we obtain

V (x(T ))︸ ︷︷ ︸
≥0

− V (x(0))︸ ︷︷ ︸
=0

≤
∫ T

0

[
z(t)
w(t)

]T

Π
[

z(t)
w(t)

]
dt.

and therefore

∫ T

0

[
z(t)
w(t)

]T

Π
[

z(t)
w(t)

]
≥ 0, ∀ T ≥ 0.

▶ Dissipativity therefore specifies an integral-quadratic inequality
involving the input and output signals.
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Example: linear mechanical system

▶ Dynamics of a linearized mechanical system

[
q̇

Mv̇

]
=
[

0 I

−K −D

][
q

v

]
+
[

0
I

]
u,

q = coordinates

v = velocities

u = torques

▶ inertia/damping/stiffness matrices M, D, K ≻ 0
▶ Take energy V (q, v) = 1

2 qTKq + 1
2 vTMv as storage and compute

V̇ (q, v) = −vTDv − vTKq + vTu + qTKv

= −vTDv + vTu

=
[

v

u

]T [
−D 1

2 I
1
2 I 0

][
v

u

]
▶ This is an instance of so-called output-strict passivity
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Example: Linear mechanical system

▶ Sometimes you can manipulate one supply rate into another
▶ Our previous calculations show that for some d > 0 we have

V̇ (q, v) ≤ −dvTv + vTu

▶ We can complete the square to obtain

V̇ (q, v) ≤ − 1
2d

(u − dv)T(u − dv) − d

2vTv + 1
2d

uTu

≤ −d

2vTv + 1
2d

uTu

= d

2

(
−vTv + 1

d2 uTu

)
▶ Defining V ′(q, v) = V (q, v) · 2

d , we finally have that

V̇ ′(q, v) ≤ −vTv + 1
d2 uTu, (finite-gain supply rate)
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Example: Linear electrical circuit

▶ Dynamics of a linear RLC circuit with shunt conductances

[
Cv̇

Li̇

]
=
[

−G −B

BT −R

][
v

i

]
+
[

I

0

]
Iext,

V = n cap. voltages

i = m inductor currents

Iext = external currents

▶ G, R, C, L ≻ 0 are diagonal matrices
▶ B ∈ Rn×m is the node-edge incidence matrix of the circuit graph
▶ Take energy V (v, i) = 1

2 vTCv + 1
2 iTLi and compute

V̇ = −vTGv − vTBi + iTBTv − iTRi + vTIext

≤ −vTGv + vTIext

Section 5: The KYP Lemma and Dissipative Dynamical Systems 5-104

Stability of dissipative LTI systems

One can sometimes go from dissipativity — an input-output property — to
a statement about internal stability of the system. Here is one variation.

▶ Suppose that V (x) ≥ 0, and in Π =
[Π11 Π12

Π21 Π22

]
we have Π11 ≺ 0

▶ With zero input w = 0, along trajectories of (CT-LTI) we have

V̇ (x(t)) ≤
[

z(t)
w(t)

]T
Π
[

z(t)
w(t)

]
= z(t)TΠ11z(t) ≤ −c3∥z(t)∥2

2

for some c3 > 0. Then, with x(0) = x0, for any T ≥ 0 we have

V (x(T ))︸ ︷︷ ︸
≥0

−V (x0) ≤ −c3

∫ T

0
∥z(τ)∥2

2 dτ

and therefore V (x0) ≥ c3
∫ T

0 ∥z(τ)∥2
2 dτ .
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Stability of dissipative LTI systems

▶ Keep in mind though that z(τ) = CeAτ x0. Therefore,

V (x0) ≥ c3

∫ T

0
∥CeAτ x0∥2

2 dτ, for all T ≥ 0.

▶ Claim: If (C, A) is observable, then ∃c1 > 0 s.t. V (x0) ≥ c1∥x0∥2
2

Proof: If ∃ x0 ̸= 0 such that V (x0) = 0, then the above implies that∫ T
0 ∥CeAτx0∥2

2 dτ = 0 for all T ≥ 0, which implies CeAtx0 = 0. Thus, x0 be-
longs to the unobservable subspace. If (C, A) is observable, this subspace is just the
origin, implying that x0 = 0, a contradiction, and hence V (x0) > 0 for all x0 ̸= 0. In
fact, picking any T ⋆ > 0, we have

V (x0) ≥ c3xT
0

∫ T⋆

0
eA

TtCTCeAt dt︸ ︷︷ ︸
≜Wo(T⋆)

x0 ≥ c1∥x0∥2
2

with c1 ≜ c3λmin(Wo(T ⋆)). •
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Stability of dissipative LTI systems

▶ Since V (x) ≥ c1∥x∥2
2 and V̇ (x(t)) ≤ 0, x = 0 is certainly stable.

▶ However, V̇ (x(t)) ≤ −c3∥z(t)∥2
2, so V is forced to decrease until

z(t) = 0, i.e., x(t) → Z ≜ {ξ | Cξ = 0}

▶ Once x(t) reaches Z, we would have Cx(t) = CeAtx0 = 0, but by
observability this means x0 = 0 and hence x(t) = 0

▶ So convergence to Z implies convergence to x = 0. We therefore
have global asymptotic (hence, exponential) stability!

A standard variation on this result:

V (x) pos. def., Π11 ≺ 0, (C, A) detectable =⇒ exp. stability
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Example: Linear electrical circuit

▶ Dynamics of a linear RLC circuit with shunt conductances[
Cv̇

Li̇

]
=
[

−G −B

BT −R

][
v

i

]
+
[

I

0

]
Iext,

z = v

V = n cap. voltages

i = m inductor currents

Iext = external currents

▶ V (v, i) = 1
2 vTCv + 1

2 iTLi is positive definite
▶ We had V̇ ≤ −vTGv + vTIext, so we have Π11 = −G ≺ 0.
▶ If the circuit contains no loops, then null(B) = 0. Eigenvector test:

ξ ∈ null(C) = range
[

0
I

]
, Aξ =

[
−C−1Bξ

−L−1Rξ

]
= not a multiple of ξ

so the system is observable and thus is globally exp. stable
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Strictly quadratically dissipative systems

Theorem 5.1 (Strict Dissipativity). Assume that A is Hurwitz. Then
the following statements are equivalent:

(i) system (CT-LTI) is input-strictly dissipative with quadratic supply
rate s and storage function V (x) = xTPx, where P ∈ Sn;

(ii) there exists P ∈ Sn satisfying the strict LMI[
In 0

A B

]T [
0 P

P 0

][
In 0

A B

]
−
[

C D

0 Im

]T

Π
[

C D

0 Im

]
≺ 0.

(iii) for all ω ∈ R∪{∞} the frequency response M̂(jω) satisfies[
M̂(jω)

Im

]∗

Π
[

M̂(jω)
Im

]
≻ 0.
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Comments on strict dissipativity theorem

▶ Existence of a storage function certifying strict dissipativity is
equivalent to a strict LMI feasibility problem

▶ The set of P ∈ Sn satisfying the LMI is convex, which means the set
of all quadratic storage functions is convex.

▶ The result is even stronger than written here; one can show there is
no loss of generality in the restriction to quadratic storage functions.

▶ The inequality in (iii) is called a frequency-domain inequality
(FDI). It is essentially a statement about the Nyquist plot of the
frequency response. We will look at this in a bit more detail soon.

▶ The hard implication to prove is that (iii) =⇒ (ii), which relies on the
Kalman-Yakubovich-Popov Lemma

Section 5: The KYP Lemma and Dissipative Dynamical Systems 5-110

Comments on strict dissipativity theorem

▶ The FDI is strict. Since it must also hold at ω = +∞, this may place
additional requirements on the feedthrough term D for the model M .
For example, with Π = 1

2
[ 0 Im

Im 0
]
, the FDI becomes

M̂(jω) + M̂(jω)∗ ≻ 0 ∀ω ∈ R∪{∞} =⇒ D + DT ≻ 0.

▶ Why are we assuming that A is Hurwitz?

(i) We will typically be applying the result to closed-loop systems

(ii) You can relax the Hurwitz assumption; see Appendix
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Equivalent ways to write the LMI

With Π =
[
Q S

ST R

]
one often sees the LMI written in equivalent forms:[

ATP + P A P B

BTP 0

]
−
[

C D

0 Im

]T [
Q S

ST R

][
C D

0 Im

]
≺ 0

[
ATP + P A − CTQC P B − CTST − CTQD

BTP − SC − DTQC −R − SD − DTST − DTQD

]
≺ 0


In 0

A B

C D

0 Im


T 

0 P 0 0

P 0 0 0

0 0 −Q −S

0 0 −ST −R




In 0

A B

C D

0 Im

 ≺ 0

Number #3 is the most intuitive, because you can easily left-right multiply
by (x, w) and then substitute the dynamics.
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Proof of Theorem 5.1
(i) ⇒ (iii): Let ω0 > 0 and consider the input signal w(t) = ejω0tw01(t) for some
w0 ∈ Rm. The system M is causal and LTI, and since A is Hurwitz, the system M

is BIBO stable. It follows by standard arguments that the state and output converge
towards the steady-state signals

xss(t) = (jω0 − A)−1Bw0ejω0t, zss(t) = M̂(jω0)w0ejω0t.

which are periodic with period T0 = 2π/ω0. Note that

s(w(t), zss(t)) − ε2∥w(t)∥2
2 =
[

zss(t)
w(t)

]∗

Π
[

zss(t)
w(t)

]
− ε2∥w(t)∥2

2

= w(t)∗

[
M̂(jω0)

Im

]∗

Π
[

M̂(jω0)
Im

]
w(t) − ε2∥w(t)∥2

2

= w∗
0

([
M̂(jω0)

Im

]∗

Π
[

M̂(jω0)
Im

]
− ε2Im

)
w0

is actually independent of t ≥ 0.
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Proof of Theorem 5.1
By strict dissipativity, we have for any t ≥ 0 that

V (x(t + T0)) − V (x(t)) ≤
∫ t+T0

t

s(w(τ), z(τ)) − ε2∥w(τ)∥2
2 dτ

for some ε > 0. Taking limits as t → ∞, by periodicity we have that

lim
t→∞

V (x(t + T0)) − V (x(t)) = 0

lim
t→∞

(RHS) = T0w
∗
0

([
M̂(jω0)

Im

]∗

Π
[

M̂(jω0)
Im

]
− ε

2
Im

)
w0.

Since T0 > 0 and w0 were arbitrary, we conclude that[
M̂(jω0)

Im

]∗

Π
[

M̂(jω0)
Im

]
≻ ε2Im ≻ 0.

Since A is Hurwitz, M̂ has no poles on the jω axis, and hence the inequality (iii) must
also hold by continuity at ω0 = 0 and as ω0 → ∞. The case ω0 < 0 is handled similarly.

(iii) ⇒ (ii): This is a consequence of the KYP Lemma, to be stated shortly.
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Proof of Theorem 5.1
(ii) ⇒ (i): Since the LMI is strict, there exists some ε > 0 such that[

In 0

A B

]T [
0 P

P 0

][
In 0

A B

]
−
[

C D

0 Im

]T

Π
[

C D

0 Im

]
⪯
[

0 0

0 −ε2Im

]
. (5)

Let (x, w) be arbitrary, and left/right multiply this LMI by (x, w) to obtain[
x

w

]T
([

In 0

A B

]T [
0 P

P 0

][
In 0

A B

]
−
[

C D

0 I

]T

Π
[

C D

0 I

])[
x

w

]
≤ −ε2∥w∥2

2

or[
x

Ax + Bw

]T [
0 P

P 0

][
x

Ax + Bw

]
−
[

Cx + Dw

w

]T

Π
[

Cx + Dw

w

]
≤ −ε2∥w∥2

2.

With V (x) = xTP x and z = Cx + Dw, this says precisely that

∇V (x)T(Ax + Bu) −
[

z

w

]T

Π
[

z

w

]
︸ ︷︷ ︸

=s(w,z)

≤ −ε2∥w∥2
2.
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Proof of Theorem 5.1
Just for fun, we can give a direct proof of (ii) =⇒ (iii): For the case ω = +∞, note that
the (2,2) block of the LMI simply says that (multiply things out to convince yourself)

0 ≺
[

D

Im

]T

Π
[

D

Im

]
which is (iii) at ω = +∞, since limω→+∞ M̂(jω) = D. Now let ω ∈ R and w ∈ Cm,
and set x = (jωIn − A)−1Bw. Left/right multiplying (5) by (x, w), we obtain[

x

Ax + Bw

]∗ [
0 P

P 0

][
x

Ax + Bw

]
−
[

x

w

]∗ [
C D

0 Im

]T
Π
[

C D

0 Im

][
x

w

]
≤ −ε

2∥w∥2
2[

x

jωx

]∗ [
0 P

P 0

][
x

jωx

]
−
[

M̂(jω)w

w

]∗

Π
[

M̂(jω)w

w

]
≤ −ε

2∥w∥2
2

0 − w
∗
[

M̂(jω)
Im

]∗

Π
[

M̂(jω)
Im

]
w ≤ −ε

2∥w∥2
2.

which shows (iii) since w was arbitrary.

Section 5: The KYP Lemma and Dissipative Dynamical Systems 5-116

The KYP lemma

Theorem 5.2 (KYP Lemma I). Let A ∈ Rn×n, B ∈ Rn×m, and let
K =

[
K11 K12
K21 K22

]
∈ Sn+m. The following two statements are equivalent:

(i) there exists a symmetric matrix P ∈ Sn satisfying the strict LMI[
In 0

A B

]T [
0 P

P 0

][
In 0

A B

]
+ K ≺ 0

(ii) K22 ≺ 0 and for all ω ∈ R and (x, w) ∈ Cn+m \ {0}

[
A − jωIn B

] [x

w

]
= 0n =⇒

[
x

w

]∗

K

[
x

w

]
< 0.

Also: if (A, B) is controllable, then (i)⇐⇒(ii) with non-strict inequalities.

We will specialize to the case where A is Hurwitz.
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The KYP lemma

Theorem 5.3 (KYP Lemma II). Let A ∈ Rn×n, B ∈ Rn×m, and let
K =

[
K11 K12
K21 K22

]
∈ Sn+m. If A is Hurwitz, then the following two

statements are equivalent:

(i) there exists a symmetric matrix P ∈ Sn satisfying the strict LMI[
In 0

A B

]T [
0 P

P 0

][
In 0

A B

]
+ K ≺ 0

(ii) K22 ≺ 0 and for all ω ∈ R∪{∞}[
(jωIn − A)−1B

Im

]∗

K

[
(jωIn − A)−1B

Im

]
≺ 0.

Also: if (A, B) is controllable, then (i)⇐⇒(ii) with non-strict inequalities.

A striking abstract relationship between time and frequency domain.
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Comments on the KYP lemma

▶ The frequency-domain inequality is an infinite-dimensional analytic
test; you need to check it for all ω. The KYP Lemma shows that this
is equivalent to a finite-dimensional LMI. Truly amazing!

▶ The LMI does not require that P ⪰ 0. However, note that if
K11 ⪰ 0, then from the (1,1) block of the LMI we conclude that
ATP + PA ≺ 0. Since A is Hurwitz, this implies that P ≻ 0 (try to
prove this). So sometimes definiteness of P comes for free.

▶ You will find many versions of this result in the literature, most of
them looking quite different than this one!

▶ Many contributors other than Kalman, Yakubovich, and Popov:
Anderson, Willems, Rantzer, Balakrishnan, Vandenberghe, . . .
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Interconnections of dissipative systems

M1

M2

v1 w1 z1

w2z2 v2

▶ Assume that each system individually is quadratically dissipative with
positive-definite storage function:

V̇1(x1) ≤

[
z1

w1

]T

Π1

[
z1

w1

]
, V̇2(x2) ≤

[
z2

w2

]T

Π2

[
z2

w2

]
▶ Interconnection conditions

w1 = z2 + v1, w2 = z1 + v2
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Interconnections of dissipative systems

▶ Let α1, α2 > 0 and set V (x) = α1V1(x1) + α2V2(x2).

▶ Trajectories of the unforced (v1 = v2 = 0) system satisfy

V̇ (x(t)) ≤

[
z1

z2

]T

(α1Π1 + α2 [ 0 I
I 0 ] Π2 [ 0 I

I 0 ])︸ ︷︷ ︸
≜Π(α1,α2)

[
z1

z2

]

▶ Suppose now that
(i) ∃α1, α2 > 0 such that Π(α1, α2) ≺ 0 (LMI Problem!) and
(ii) (C1, A1) and (C2, A2) are observable.

=⇒ origin is globally exponentially stable!

A general and classic stability result (Hill/Moylan ’77). Can
you spot any results you already know as special cases?
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Appendix: Proof of (i)⇒(ii) for Theorem 5.2/5.3
(i) =⇒ (ii): Multiplying out the matrices, the LMI can be equivalently written as[

ATP + P A + K11 P B + K12
BTP + KT

12 K22

]
≺ 0,

and so we conclude via Schur’s Lemma that K22 ≺ 0. Let ω ∈ R and let (x, w) ̸= 0

be such that (A − jωIn)x + Bw = 0n, or equivalently Ax + Bw = jωx. Right and
left-multiplying the LMI by (x, w) we have[

x

w

]∗ [
In 0

A B

]T [
0 P

P 0

][
In 0

A B

][
x

w

]
+
[

x

w

]∗

K

[
x

w

]
< 0

=⇒
[

x

jωx

]∗ [
0 P

P 0

][
x

jωx

]
+
[

x

w

]∗

K

[
x

w

]
< 0

=⇒ 0 +
[

x

w

]∗

K

[
x

w

]
< 0 ,

so we conclude that the inequality in (ii) holds in Theorem 5.2. For Theorem 5.3, since
A has no imaginary axis eigenvalues the unique x is given by x = (A − jωIn)−1Bw.
Substituting this in immediately yields the FDI in Theorem 5.3 (ii).
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Appendix: Proof of (ii)⇒(i) for Theorem 5.3
The proof is by contradiction. First note that if K22 ≺ 0 is violated, then (i) is
automatically false, so assume that K22 ≺ 0. Assume now that the LMI is infeasible.
This means that

popt = inf
P∈Sn,γ≥0 s.t.

[
In 0
A B

]T[ 0 P
P 0

][
In 0
A B

]
+K⪯γI

γ ≥ 0.

Note that the constraints of this problem are strictly feasible, since we can always find γ

sufficiently large such that the LMI holds as a strict LMI. It follows that the problem has
zero duality gap, so the Lagrange dual problem has the same optimal value dopt = popt.
To compute the dual, we need the adjoint of the Lyapunov operator

F1(P ) ≜

[
In 0

A B

]T [
0 P

P 0

][
In 0

A B

]
.

Skipping the details, calculations show that F adj
1 : Sn+m → Sn is given by

F adj
1 (Y ) =

[
A B

]
Y

[
I

0

]
+
[
I 0

]
Y

[
AT

BT

]
.
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Appendix: Proof of (ii)⇒(i) for Theorem 5.3
The dual problem is therefore

dopt = sup
Y⪰0, [A B ]Y

[
In
0

]
+[ In 0 ]Y

[
AT

BT

]
=0

trace(KY ) ≥ 0.

By strong alternatives, we know that there is therefore a non-zero Y ⪰ 0 such that

[A B ] Y
[
In
0

]
+ [ In 0 ] Y

[
AT

BT

]
= 0, trace(KY ) ≥ 0.

If we partition Y =
[
Y11 Y12
Y T

12 Y22

]
, then a separate argument shows that Y11 ̸= 0 and hence

Y admits a factorization of the form

Y =
[

Y11 Y12
Y T

12 Y22

]
=
[

V 0
W U

][
V 0
W U

]∗

=
[

V V ∗ V W ∗
W V ∗ W W ∗ + UU∗

]
.

where V has full column rank. Substituting this in, we find that

AV V ∗ + BW V ∗ + (AV V ∗ + BW V ∗)∗ = 0

and therefore AV V ∗ + BW V ∗ is skew-Hermitian.
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Appendix: Proof of (ii)⇒(i) for Theorem 5.3
It follows that we may write AV V ∗ + BW V ∗ = V JV ∗ for some J + J∗ = 0. Since V

has full column rank, this implies that AV + BW = V J .
Our previous condition trace(KY ) ≥ 0 can be written as

0 ≤ trace(Y K) = trace
[

K11 K12
KT

12 K22

][
V 0
W U

][
V 0
W U

]∗

= trace
[

V 0
W U

]∗ [
K11 K12
KT

12 K22

][
V 0
W U

]
= trace

[
V

W

]∗ [
K11 K12
KT

12 K22

][
V

W

]
+ trace U∗K22U

≤ trace
[

V

W

]∗ [
K11 K12
KT

12 K22

][
V

W

]
since K22 ≺ 0. Let J = QSQ−1 be a Schur decomposition of J ; since J is skew-
symmetric, S is diagonal with imaginary entries. The matrix Q is unitary satisfying
QQ∗ = I, and we may write

Q =
[
q1 · · · qr

]
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Appendix: Proof of (ii)⇒(i) for Theorem 5.3

trace
[

V

W

]∗ [
K11 K12
KT

12 K22

][
V

W

]
= trace Q∗

[
V

W

]∗ [
K11 K12
KT

12 K22

][
V

W

]
Q

=
∑
k

q∗
k

[
V

W

]∗ [
K11 K12
KT

12 K22

][
V

W

]
qk ≥ 0

Obviously, at least one term in this sum must be nonnegative. Let k be the associated
index, and define xk = V qk, wk = W qk, and let jωk = eTk Sek be the associated
eigenvalue of J . Note that since V has full column rank, we have that col(xk, wk) ̸= 0.
From AV + BW = V J = V QSQ∗, we have that AV Q + BW Q − V QS = 0, the kth
column of which reads as

0 = AV qk + BW qk − jωkV qk = Axk + Bwk − jωkxk = (A − jωkIn)xk + Bwk.

We therefore have ωk ∈ R and a vector col(xk, wk) ̸= 0 such that 0 = (A − jωkIn)xk +
Bwk such that [

xk
wk

]∗

K

[
xk
wk

]
≥ 0

which contradicts statement (ii). •
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Appendix: Quadratically dissipative systems

Theorem 5.4 (Dissipativity). The following are equivalent:

(i) system (CT-LTI) is dissipative with quadratic supply rate s and
storage function V (x) = xTPx, where P ∈ Sn;

(ii) there exists P ∈ Sn satisfying the LMI[
In 0

A B

]T [
0 P

P 0

][
In 0

A B

]
−
[

C D

0 Im

]T

Π
[

C D

0 Im

]
⪯ 0.

If additionally (A, B) is controllable, then a third equivalent statement is

(iii) for all ω ∈ R∪{∞} such that jω /∈ eig(A) the frequency response
M̂(jω) satisfies [

M̂(jω)
Im

]∗

Π
[

M̂(jω)
Im

]
⪰ 0.
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Appendix: Available Storage and Required Supply

▶ Dissipativity: V̇ (x(t)) ≤ s(w(t), z(t))

▶ Controllable dissipative systems have two canonical storage functions

Definition 5.3. Consider the system (CT-LTI) with x(0) = x0 ∈ Rn, and
let s(w, z) be a supply rate. The available storage from x0 is

Vav(x0) = sup
w(·)
T ≥0

{
−
∫ T

0
s(w(t), z(t)) dt : x(T ) = 0

}
.

The required supply to x0 is

Vreq(x0) = inf
w(·)
T ≥0

{∫ 0

−T

s(w(t), z(t)) dt : x(−T ) = 0
}

.
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Appendix: Available Storage and Required Supply

Proposition 5.1. If (CT-LTI) is controllable and dissipative with storage
function V (x) satisfying V (0) = 0 and quadratic s(w, z), then

(i) Vav(x) and Vreq(x) are both storage functions,

(ii) Vav(x) ≤ V (x) ≤ Vreq(x),

(iii) there exists P− ∈ Sn such that Vav(x) = xTP−x, and

(iv) there exists P+ ∈ Sn such that Vreq(x) = xTP+x.

▶ Vav(x) finite for all x =⇒ you can only extract finite energy from a
dissipative system from any state

▶ Vreq(x) finite for all x =⇒ you need only provide finite energy to a
dissipative system to transition to any state
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Appendix: Available Storage and Required Supply
We prove the results for Vav(x); the results for Vreq(x) are similar. Let T ≥ 0 and let
(w(t), x(t), z(t)) be a trajectory of (CT-LTI) such that x(0) = x0 and x(T ) = 0; by
controllability, such a trajectory exists. By dissipativity, we know that

V (x(T ))︸ ︷︷ ︸
=0

−V (x0) ≤
∫ T

0
s(w(t), z(t)) dt

Taking the supremum over T ≥ 0 and w(·), we find that Vav(x) ≤ V (x0) which shows
(ii). To show (i), let 0 ≤ τ ≤ T and note that, by definition

Vav(x0) ≥ −
∫ τ

0
s(w(t), z(t)) dt −

∫ T

τ

s(w(t), z(t)) dt

The second term on the RHS is lower bounded by Vav(x(τ)), and thus

Vav(x0) − Vav(x(τ)) ≥ −
∫ τ

0
s(w(t), z(t)) dt

which shows (i). Item (iii) follows from the fact that the optimal value of a quadratic
functional subject to linear dynamics is always quadratic function of the initial condition.
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Appendix: Causal DT-LTI systems

▶ Consider the finite-dimensional discrete-time state-space model

M :
x(k + 1) = Ax(k) + Bw(k), x(0) = 0

z(k) = Cx(k) + Dw(k)
▶ The state and output are of course given by

x(k) =
[

k−1∑
ℓ=0

CAk−ℓ−1Bw(ℓ)
]

1(k)

z(k) = Cx(k) + Dw(k)
▶ As you know, the system has a transfer function

M̂(z) = C(zIn − A)−1B + D, z ∈ ROC

▶ Assuming BIBO stability, the system also has a frequency response

M̂(ejω) = C(ejωIn − A)−1B + D
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Appendix: Discrete-time dissipativity

Definition 5.4 (Dissipativity). Let s : Rm × Rp → R be a supply rate.
The state-space system (DT-LTI) is dissipative if there exists a storage
function V : Rn → R and ε ≥ 0 such that

V (Ax + Bw) − V (x) ≤ s(w, z) − ε2∥w∥2
2

for all (x, w) ∈ Rn+m. If ε > 0, the system is input-strictly dissipative.

▶ If (w(k), x(k), z(k)) is a system trajectory, then we have that

V (x(k + 1)) − V (x(k))︸ ︷︷ ︸
Change in Stored Energy

≤ s(w(k), z(k)) − ε2∥w(k)∥2
2︸ ︷︷ ︸

Externally Provided Power

▶ Often (not always) V (x) ≥ 0
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Appendix: dissipative DT systems

Theorem 5.5 (Strict Dissipativity). Assume that A is Schur. Then
the following statements are equivalent:

(i) system (DT-LTI) is input-strictly dissipative with quadratic supply
rate s and storage function V (x) = xTPx, where P ∈ Sn;

(ii) there exists P ∈ Sn satisfying the strict LMI[
In 0

A B

]T [
−P 0

0 P

][
In 0

A B

]
−
[

C D

0 Im

]T

Π
[

C D

0 Im

]
≺ 0.

(iii) for all ω ∈ [0, π] the frequency response M̂(ejω) satisfies[
M̂(ejω)

Im

]∗

Π
[

M̂(ejω)
Im

]
≻ 0.
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Appendix: The discrete-time KYP lemma

Theorem 5.6 (Discrete KYP Lemma). Let A ∈ Rn×n, B ∈ Rn×m,
and let K =

[
K11 K12
K21 K22

]
∈ Sn+m. If A is Schur stable, then the following

two statements are equivalent:

(i) there exists a symmetric matrix P ∈ Sn satisfying the strict LMI[
In 0

A B

]T [
−P 0

0 P

][
In 0

A B

]
+ K ≺ 0

(ii) K22 ≺ 0 and for all ω ∈ [0, π][
(ejωIn − A)−1B

Im

]∗

K

[
(ejωIn − A)−1B

Im

]
≺ 0.

Also: if (A, B) is controllable, then (i)⇐⇒(ii) with non-strict inequalities.
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6. Signals and Systems for Stability and
Performance Analysis

• 6.1 what is input-output performance?
• 6.2 models of deterministic time-domain signals
• 6.3 signal-space operators and input-output stability
• 6.4 induced L2-norm performance
• 6.5 H2-norm performance
• 6.6 performance weights
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Problem setup for I/O performance

We will focus on FD CT-LTI systems

M :
[

ẋ

z

]
=
[

A B

C D

][
x

w

]
M

wz

with x(0) = 0n and frequency response M̂(jω) = C(jωIn − A)−1B + D.

▶ w(t) is an exogenous input; a vector of signals from the environment
that drives the system. This could include (possibly, weighted)
process disturbances, reference commands, and measurement noise.

▶ z(t) is a performance output; a vector of signals that should be (in
some sense to be determined) kept small. Typically, z contains
(possibly, weighted) tracking errors, states, and/or control signals.
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Example: SISO control loop

C P

Pd

r e u y

n

d

−

▶ Exogenous signals w = (r, d, n), performance signals z = (e, u)
▶ Model M is easily described by, e.g., a 2 × 3 transfer matrix

[
e

u

]
=
[

1
1+P C − Pd

1+P C
−1

1+P C
C

1+P C − PdC
1+P C

−C
1+P C

]r

d

n


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Disturbance types in I/O performance

Big question: how to quantify the effect of w on z?

M :
[

ẋ

z

]
=
[

A B

C D

][
x

w

]
M

wz

Any sensible answer must depend on the character of w. For instance

(i) Deterministic w: Compare the output energy to the input energy
(ii) Stochastic w: Look at the variance of the output
(iii) Impulsive w: Look at the energy in the impulse response

We need to look closer at signal modelling.
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Modelling deterministic time-domain signals

▶ The simplest model of a time-domain signal is as a map from R into
a vector space, often Fn

Sig(R;Fn) ≜ {f | f : R → Fn}.

▶ The set Sig(R;Fn) has an obvious vector space structure (that’s
good) but cannot be normed (that’s bad).

▶ So, what else should go into a useful set of signals? Potentially . . .
(i) Restrictions on support
(ii) Continuity, differentiability, . . .
(iii) Boundedness
(iv) Integrability, square integrability, . . .
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Modelling deterministic time-domain signals

▶ Recall: the space C0
cpt(R;F) of all continuous and compactly

supported signals

C0
cpt(R;Fn) = {f ∈ C0(R;Fn) | ∃ T > 0 s.t. f(t) = 0 ∀|t| ≥ T}.

▶ This is a normed vector space with any of

∥f∥Lp =
(∫ ∞

−∞
∥f(t)∥p

2 dt

)1/p

, p ∈ [1, ∞)

∥f∥∞ = sup
t∈R

∥f(x)∥2

but it is not complete with any of these norms.

Completing C0
cpt(R;Fn) leads to useful Banach spaces of signals.
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Banach spaces of continuous-time signals

Theorem 6.1 (Banach spaces of CT signals).
(i) The completion of C0

cpt(R;Fn) in the norm ∥ · ∥∞ is

C0
0(R;Fn) = {f : R → Fn | f continuous and lim

t→±∞
∥f(t)∥2 = 0}

(ii) The completion of C0
cpt(R;Fn) in the norm ∥ · ∥Lp for p ∈ [1, ∞) is

Lp(R;Fn) =
{

f : R → Fn
∣∣ ∥f∥Lp < ∞

}
.

(iii) The space L∞(R;Fn) = {f : R → Fn | ∥f∥L∞ < ∞} is a Banach
space, where

∥f∥L∞ = inf{M ≥ 0
∣∣ ∥f(t)∥2 ≤ M almost everywhere}.

▶ Note: if f ∈ C0(R;Fn) ∩ L∞(R;Fn), then ∥f∥L∞ = ∥f∥∞.
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Comments on complete signal spaces

▶ Within the Lp/L∞ spaces, there are no continuity requirements.

▶ The Lp/L∞ norms do not care if you change the signal values at a point;
two signals are considered as the same if they are equal almost everywhere.

▶ There are some relationships between the signal spaces, but few inclusions

L2

C0
0

L∞

L1

Selected results:

(i) C0
0(R;Fn) ⊂ L∞(R;Fn).

(ii) If f ∈ L1(R;Fn) ∩ L∞(R;Fn),
then f ∈ L2(R;Fn).

(iii) If f, g ∈ L2(R;F), then
fg ∈ L1(R;F).
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Comments on complete signal spaces

▶ The Lp spaces are defined in terms of integrals, so we are talking about
“finite area under the curve”. Surely then, the signals must be bounded and
tend to 0? No. For instance, with a > 0 and

Boxa(t) = 1(t + a
2 ) − 1(t − a

2 ), f(t) =
∑∞

n=2
n · Box 1

n2
(t − n)

we have ∥f∥L2 < ∞, but f is unbounded and never tends to 0.

▶ The major issue here ends up being a lack of bound on the derivative; with
this additional assumption things become more intuitive.

Lemma 6.1. If f ∈ C1(R;Fn) ∩ Lp(R;Fn) and ḟ ∈ L∞(R;Fn), then
f ∈ C1

0(R;Fn) ∩ Lp(R;Fn).

Be careful interpreting these signal spaces! They are not intuitive.
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The L2-space of signals

▶ For the Lp spaces, the case p = 2 is extremely important

∥f∥L2 =
(∫ ∞

−∞
∥f(t)∥2

2 dt

)1/2

▶ The norm ∥ · ∥L2 can be seen to arise from the inner product

⟨f, g⟩L2 ≜
∫ ∞

−∞
⟨f(t), g(t)⟩2 dt =

∫ ∞

−∞
f(t)∗g(t) dt.

with associated Cauchy-Schwarz inequality

|⟨f, g⟩L2 | ≤ ∥f∥L2∥g∥L2

▶ Thus, L2(R;Fn) is a Hilbert space, and signals f ∈ L2(R;Fn) are
interpreted as having finite energy
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The L1 Fourier Transform

▶ The Fourier Transform F (f) of a signal f ∈ L1(R;Fn) is defined by

F (f)(jω) ≜
∫ ∞

−∞
f(t)e−jωt dt.

Proposition 6.1. Let f ∈ L1(R;Fn). The following statements hold:

(i) F : L1(R;Fn) → C0
0(jR;Fn), so f̂ = F (f) is continuous in ω,

bounded, and tends to 0 as ω → ±∞;

(ii) F is a bounded linear operator, and ∥F∥Lp→C0
0

≤ 1;

(iii) F is injective, and therefore possess a left inverse

F −1 : C0
0(jR;Fn) → L1(R;Fn), F −1 ◦ F (f) = f.
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The L2 Fourier Transform

It is possible to extend the definition of the Fourier transform
from L1 to L2 via a limiting procedure; we skip the details.

▶ For frequency-domain L2 signals we will use the inner product

⟨f̂ , ĝ⟩L2 = 1
2π

∫ ∞

−∞
f̂(jω)∗ĝ(jω) dω.

Theorem 6.2. The L2 Fourier transform F : L2(R;Fn) → L2(jR;Fn) is
a bounded and invertible linear operator satisfying ⟨f, g⟩L2 = ⟨f̂ , ĝ⟩L2 , or
explicitly ∫ ∞

0
f(t)∗g(t) dt = 1

2π

∫ ∞

−∞
f̂(jω)∗ĝ(jω) dω.

for any f, g ∈ L2(R;Fn) with transforms f̂ = F (f) and ĝ = F (g).
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Truncation and right-sided signals

▶ A useful tool is truncation: for T ≥ 0, the T -truncation operator
TT : Sig(R;Fn) → Sig(R;Fn) is defined as

TT (f)(t) ≜

f(t) if − T ≤ t ≤ T

0 else.

and we often write fT = TT (f).

▶ We will work mostly with right-sided time-domain signals, which are
forced to equal zero for t < 0.

▶ Our notational convention indicating right-sidedness will be

Sig[0, ∞), L1[0, ∞), L2[0, ∞), L∞[0, ∞), etc.
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Extended right-sided Lp-spaces of signals

▶ The Lp spaces are unfortunately missing some fairly benign signals
that we would wish to work with for control applications

▶ Example: t 7→ 1(t) is in L∞, but not in Lp for any p ∈ [1, ∞), and
t 7→ et1(t) is not in Lp or L∞.

▶ For p ∈ [1, ∞] we define the extended Lp[0, ∞) spaces

Lpe[0, ∞) ≜
{

f ∈ Sig[0, ∞)
∣∣∣ fT ∈ Lp[0, ∞) for all T ≥ 0

}
in which truncated signals must have finite Lp-norm.

t

f

fT
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Extended right-sided Lp-spaces of signals

▶ Lpe[0, ∞) is a vector space, but is not a normed vector space.
▶ Nonetheless, we can still discuss convergence in Lpe[0, ∞), and

Lpe[0, ∞) relates in a nice continuous way to Lp[0, ∞)

Proposition 6.2 (Facts about Lpe).
(i) Lp[0, ∞) is a subspace of Lpe[0, ∞);

(ii) If f ∈ Lpe[0, ∞), then T 7→ ∥fT ∥Lp is a non-decreasing function;

(iii) If f ∈ Lpe[0, ∞), then f ∈ Lp[0, ∞) if and only if
limT →∞ ∥fT ∥Lp < ∞, in which case limT →∞ ∥fT ∥Lp = ∥f∥Lp ;

(iv) If f ∈ Lpe[0, ∞), then fT ∈ Lq[0, ∞) for all q ∈ [1, ∞] satisfying
q ≥ p.
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Final comments on signal modelling

▶ We have a nice collection of signal spaces to work with, norms,
relationships between the spaces, and even an inner product on L2 . . .

▶ For properly discussing all relevant aspects of linear systems theory,
this discussion is not quite comprehensive enough, because

(i) even L2e[0, ∞) does not contain the Dirac impulse signal δ, and
(ii) we have no models of random signals.

▶ We will sidestep these issues by using “δ(t)” when needed anyways,
and we will not worry about making our (brief) stochastic arguments
very rigorous
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Systems as signal-space operators

▶ We think of a system M as a mapping between Lpe[0, ∞) spaces,
and most often, as a mapping between L2e[0, ∞) spaces

M : L2e[0, ∞) → L2e[0, ∞), M(0) = 0

▶ M takes an input w and produces an output z = M(w)

▶ The operation M usually cannot be written out, as this would
usually amount to explicitly solving the underlying (e.g., nonlinear
differential) equations.

▶ That M actually maps L2e[0, ∞) to L2e[0, ∞) is a standing
assumption which we term well-posedness

▶ We will additionally impose causality as an assumption

Section 6: Signals and Systems for Stability and Performance Analysis 6-151



Causality

Definition 6.1 (Causality). A system M : L2e[0, ∞) → L2e[0, ∞) is
causal if for any w, v ∈ L2e[0, ∞) and any T ≥ 0

w(t) = v(t) for all t ≤ T =⇒ M(w)(t) = M(v)(t) for all t ≤ T.

▶ If the inputs agree up to time T , the outputs must also agree

Proposition 6.3 (Causality). A system M is causal if and only if

TT ◦ M = TT ◦ M ◦ TT , for all T ≥ 0,

or equivalently if M(w)T = M(wT )T for all w ∈ L2e[0, ∞) and all T ≥ 0.

▶ The output at time T depends only on the input up to time T .
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Sanity check for LTI systems

▶ For (CT-LTI), the signal-space mapping M is defined via convolution
with the impulse response m(t) = CeAtB 1(t) + Dδ(t), yielding
M(w)(t) = 0 for t < 0 and

z(t) = M(w)(t) = Dw(t) +
∫ t

0
CeA(t−τ)Bw(τ)dτ, t ≥ 0.

▶ Clearly M(0) = 0, and easy to show that M is causal

▶ Proof on next slide: If w ∈ L2e[0, ∞), then z ∈ L2e[0, ∞)

Thus, our usual LTI model does indeed define a causal signal-space
operator M : L2e[0, ∞) → L2e[0, ∞)!
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Proof that LTI maps L2e[0, ∞) to L2e[0, ∞)

If w ∈ L2e[0, ∞), then Dw ∈ L2e[0, ∞), so we need only show that f(t) ≜∫ t
0 CeAτBw(t − τ)dτ belongs to L2e[0, ∞). We compute

∥f(t)∥2 =

∥∥∥∥∫ t

0
CeAτBw(t − τ)dτ

∥∥∥∥
2

≤
∫ t

0
ceγτ∥w(t − τ)∥2dτ

for some constants c, γ > 0. Therefore,

∥fT ∥2
L2

=
∫ T

0
∥f(t)∥2

2 dt ≤
∫ t

0

∫ t

0
c2eγτ eγσ

[∫ T

0
∥w(t − τ)∥2∥w(t − σ)∥2 dt

]
dτdσ

Let Sτ : L2e[0, ∞) → L2e[0, ∞) denote the shift operator (Sτf)(t) = f(t − τ). With
f(t) = ∥w(t)∥2, the term in brackets is∫ T

0
⟨(Sτf)(t), (Sσf)(t)⟩2 dt = ⟨(Sτf)T , (Sσf)T ⟩L2 ≤ ∥(Sτf)T ∥L2 ∥(Sσf)T ∥L2

≤ ∥fT ∥L2 ∥fT ∥L2 = ∥wT ∥2
L2

so ∥fT ∥L2 ≤ c
γ

(eγT − 1)∥wT ∥L2 < ∞ for all T ≥ 0, so f ∈ L2e[0, ∞).
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Stability of signal-space operators

Definition 6.2 (Stability). We say M : L2e[0, ∞) → L2e[0, ∞) is

(i) L2-stable if M maps L2[0, ∞) to L2[0, ∞).

(ii) L2-stable with finite gain if it is L2-stable and ∃γ ≥ 0 s.t.

∥M(w)∥L2 ≤ γ∥w∥L2 , ∀w ∈ L2[0, ∞). (6)

In this case ∥M∥L2→L2 = inf{γ | (6) holds} is the L2-gain of M .

(iii) L2e-stable with finite gain if ∃γ ≥ 0 s.t.

∥M(w)T ∥L2 ≤ γ∥wT ∥L2 , ∀T ≥ 0, w ∈ L2e[0, ∞). (7)

In this case, γe(M) ≜ inf{γ | (7) holds} is the L2e-gain of M .
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Comments on I/O stability definitions

▶ Item (i) says L2 inputs produce L2 outputs. This is a bit weak; the
output can’t be bounded in terms of the input.

▶ In (ii) and (iii), we try to bound the output in terms of the input,
either using signals in L2[0, ∞) or signals in L2e[0, ∞).

▶ Remarkably, (ii) and (iii) are equivalent.

Proposition 6.4. A causal operator M is L2-stab. w/ finite gain if and
only if M is L2e-stab. w/ finite gain. In either case, γe(M) = ∥M∥L2→L2 .

(=⇒): Trivial (⇐=): For any v ∈ L2e[0, ∞) we have that vT ∈ L2[0, ∞), and
therefore ∥M(vT )∥L2 ≤ γ∥vT ∥L2 . By causality, we have that M(vT )T = M(v)T for
all v ∈ L2e[0, ∞), and we can therefore compute for any T ≥ 0 that

∥M(v)T ∥L2 = ∥M(vT )T ∥L2 ≤ ∥M(vT )∥L2 ≤ γ∥vT ∥L2

which shows that the desired finite L2e-gain result. •
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Stability of LTI signal-space operators

▶ Consider a causal finite-dimensional CT-LTI system M

m(t) = CeAtB1(t) + Dδ(t)

M̂(s) = C(sIn − A)−1B + D

Proposition 6.5 (Stability of FD-LTI Systems). The following
statements are equivalent:

(i) All poles of all elements of M̂(s) are contained in C<0;

(ii) t 7→ CeAtB1(t) belongs to L1[0, ∞)

(iii) M is L2-stable;

(iv) M is L2-stable with finite gain.

These stability concepts are identical for LTI systems.
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Proof of Proposition 6.5
(i) ⇐⇒ (ii): This equivalence is standard.
(i) =⇒ (iv): Let (A, B, C, D) be a minimal realization of M , with A Hurwitz. Let
Q ≻ 0 be such that Q ≻ CTC. By Lyapunov theory for LTI systems, there exists P ≻ 0
such that ATP + P A = −Q ≺ −CTC, or simply ATP + P A + CTC ≺ 0. Since the
inequality is strict, there exists some sufficiently large γ > 0 such that

ATP + P A + CTC +
1

γ2 (P B + CTD)T(P B + CTD) ≺ 0

or equivalently, via Schur complements, that[
ATP + P A P B

BTP 0

]
−
[

C D

0 Im

]T [
−Ip 0

0 γ2Im

][
C D

0 Im

]
≺ 0

The rest of the proof follows similar lines to that of Corollary 6.1, to follow.
(iii) =⇒ (i): Consider the SISO case. By contraposition, suppose that M̂(s) has at least
one pole with nonnegative real part. Consider the input signal w(t) = e−t1(t), which is
obviously in L2[0, ∞). Standard computation of z(t) using partial fraction expansion
will show that the response must contain a persistent or growing term, and hence will
not be in L2[0, ∞), so M is not L2-stable.
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I/O performance: finite L2-gain

M :
[

ẋ

z

]
=
[

A B

C D

][
x

w

]
M

wz

▶ We now understand that our state-space LTI system defines a causal
signal-space operator

M : Lm2e[0, ∞) → Lp2e[0, ∞), M(w)(t) = Dw(t) +
∫ t

0
CeA(t−τ)Bw(τ)dτ

▶ If M is L2-stable with finite gain, then we know that we will have

∥zT ∥2
L2

≤ γ2∥wT ∥2
L2

, ∀ T ≥ 0, ∀w ∈ L2e[0, ∞)

which bounds output energy in terms of input energy.
▶ This looks suspiciously like dissipativity . . .
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Input-output L2-gain performance

Corollary 6.1 (“Bounded Real” Lemma). Assume that A is Hurwitz
and let γ > 0. The following statements are equivalent:

(i) (CT-LTI) is i.s.d. with supply rate s(w, z) = −∥z∥2
2 + γ2∥w∥2

2 and
storage function V (x) = xTPx with P ≻ 0;

(ii) ∥M∥L2→L2 < γ;

(iii) there exists P ≻ 0 satisfying the strict LMI[
In 0

A B

]T [
0 P

P 0

][
In 0

A B

]
−
[

C D

0 Im

]T [
−Ip 0

0 γ2Im

][
C D

0 Im

]
≺ 0;

(iv) for all ω ∈ R∪{∞} the frequency response M̂(jω) satisfies

M̂(jω)∗M̂(jω) ≺ γ2Im ⇐⇒ σmax(M̂(jω)) < γ.
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Proof of Corollary 6.1
(i) ⇐⇒ (iii) ⇐⇒ (iv): This is precisely the strict dissipativity theorem applied to the
supply rate under consideration.

(i) =⇒ (ii): Our dissipation inequality is that

dV (x(t))
dt

=
d
dt

x(t)TP x(t) ≤ −∥z(t)∥2
2 + (γ2 − ϵ2)∥w(t)∥2

2

for some ϵ > 0. Since x(0) = 0 we may integrate both sides over [0, T ] to obtain

x(T )TP x(T ) ≤
∫ T

0
−∥z(t)∥2

2 + (γ2 − ϵ2)∥w(t)∥2
2 dt.

Since P ≻ 0, the LHS is always nonnegative. We therefore find that

∥zT ∥2
L2

≤ (γ2 − ϵ2)∥wT ∥2
L2

=⇒ ∥zT ∥L2 < γ∥wT ∥L2

which shows that ∥M∥L2→L2 < γ.
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Comments on Corollary 6.1

▶ Given a desired level of performance γ > 0, the strict LMI in (iii)
allows us to check if our system meets this performance level.

▶ We can do one better, and compute the best upper bound γ⋆ by
setting ρ = γ2 and solving the SDP

minimize
P≻0, ρ≥0

ρ subject to LMI in (iii)

▶ The FDI in (iv) can be equivalently expressed as

sup
ω∈R

σmax(M̂(jω)) < γ ⇐⇒ sup
ω∈R

∥M̂(jω)∥2 < γ.

This quantity is known as the H∞ norm of the associated transfer
function M̂(s), denoted by ∥M̂∥H∞ . Optimal L2-control of linear
systems is therefore usually referred to as H∞ control.

▶ In fact: ∥M̂∥H∞ = ∥M∥L2→L2 , so these two quantities coincide.
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Example: Bode plot interpretation of ∥M∥L2→L2

G(s) =

 10(s + 1)
s2 + 0.2s + 100

1
s + 1

s + 2
s2 + 0.1s + 10

5(s + 1)
(s + 2)(s + 3)



10
0

10
1

10
2

-30

-20

-10

0

10

20

30

40
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I/O performance: peak vs. area

M :
[

ẋ

z

]
=
[

A B

C D

][
x

w

]
M

wz

▶ We have seen that a system has L2-gain less than γ if the peak
value of the Bode magnitude plot ω 7→ ∥M̂(jω)∥2 is less than γ.

▶ This seems intuitive from a classical control perspective; keeping the
magnitude of the transfer function small is a good way to reduce the
effect of inputs on the output.

▶ A different way to quantify this same idea is to instead look at the
area under the Bode plot, as opposed to the peak value
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I/O performance: the H2 norm

M :
[

ẋ

z

]
=
[

A B

C 0

][
x

w

]
M

wz

▶ We assume A Hurwitz, but now require D = 0. The associated
transfer matrix M̂(s) = C(sIn − A)−1B belongs to the space

RH2 ≜ {M̂(s) | M̂ strictly proper with all poles in C<0}.

▶ On this vector space of transfer matrices, define inner product

⟨M̂, N̂⟩H2 = 1
2π

∫ ∞

−∞
⟨M̂(jω), N̂(jω)⟩F dω

= 1
2π

∫ ∞

−∞
trace

[
M̂(jω)∗N̂(jω)

]
dω
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The H2 norm of an LTI system

▶ The H2 norm of M is defined using this inner product

∥M∥H2 ≜

(
1

2π

∫ ∞

−∞
trace

[
M̂(jω)∗M̂(jω)

]
dω

) 1
2

=
(

1
2π

m∑
k=1

∫ ∞

−∞
σ2

k(M̂(jω)) dω

) 1
2

▶ The H∞ norm is an induced norm — the induced norm from
L2[0, ∞) to L2[0, ∞). The H2 norm is not, and is defined using an
inner product placed directly on the space of transfer functions.

▶ Both H∞ and H2 measure the “gain” of an LTI system, but they are
not equivalent norms; you cannot in bound one in terms of the other.
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H2 and H∞ norms are not equivalent

Consider the two transfer functions

M1(s) = 1
ϵs + 1 , M2(s) = ϵs

s2 + ϵs + 1

As ϵ → 0 . . .
▶ M1 is a low-pass filter with very large bandwidth. The peak Bode

plot value ∥M1∥H∞ equals 1, but the area under the Bode plot is
infinite, so ∥M1∥H2 = +∞.

▶ For M2 we can compute that

∥M2∥H∞ = sup
ω

ϵω√
(1 − ω2)2 + ϵ2ω2

= 1

∥M2∥2
H2

= 1
2π

∫ ∞

−∞

ϵ2ω2

(1 − ω2)2 + ϵ2ω2 dω → 0.
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State-space formulas for the H2 norm

▶ The H2 norm admits a very simple characterization in terms of
Lyapunov-like variables

Proposition 6.6 (Lyapunov Equations for H2 Norm). Consider
(CT-LTI) and assume that A is Hurwitz and D = 0. Then

∥M∥2
H2

= trace(CXCT) = trace(BTY B).

where Y ≻ 0 and X ≻ 0 are the unique solutions to

ATY + Y A + CTC = 0

AX + XAT + BBT = 0.
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Proof of Proposition 6.6

The Fourier-transform pair of the frequency response M̂(jω) is the causal impulse
response t 7→ CeAtB1(t). By Parseval’s Theorem, we may equivalently write

∥M∥2
H2

=
1

2π
trace

∫ ∞

−∞
M̂(jω)∗M̂(jω) dω

= trace
∫ ∞

0
(CeAtB)TCeAtB dt

= trace BT
[∫ ∞

0
eA

TtCTCeAt dt

]
︸ ︷︷ ︸

≜Y

B

It follows by calculations similar to those in the proof of Lyapunov’s Theorem for LTI
systems that Y as defined above is the unique positive definite solution to ATY + Y A +

CTC = 0. The other formula can be similarly obtained after applying the cyclic property
of the trace operation to the above expression for ∥M∥H2 . •
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Stochastic interpretation of the H2 norm

M :
[

ẋ

z

]
=
[

A B

C 0

][
x

w

]
M

wz

Suppose that the input w to (CT-LTI) is a random process satisfying
(i) E{w(t)} = 0 for all t ≥ 0;
(ii) E{w(t)w(τ)T} = Imδ(t − τ);
(iii) E{x0w(t)T} = 0 for all t ≥ 0.

▶ The idea is that noise will cause x(t) to randomly bounce around the
origin; our goal is to quantify the variance of z(t)

▶ First, if x̄ = E{x(t)}, then

˙̄x = E{Ax + Bw} = AE{x} + BE{w} = Ax̄

so x̄(t) = eAtx0 = 0.
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Stochastic interpretation of H2 norm

▶ Now define the covariance matrix of the state

P (t) ≜ E{(x(t) − x̄(t))(x(t) − x̄(t))T} = E{x(t)x(t)T}

▶ Substituting for x(t) = eAtx0 +
∫ t

0 eA(t−τ)Bw(τ) dτ , we have

P (t) = E{eAtx0xT
0 eA

Tt} + E

{
eAtx0

∫ t

0
w(τ)TBTeA

T(t−τ) dτ

}
+ (⋆)T

+ E

{∫ t

0

∫ t

0
eA(t−τ)Bw(τ)w(σ)TBTeA

T(t−σ) dτdσ

}
▶ Using Assumptions (ii) and (iii), we obtain

P (t) = eAtP (0)eATt +
∫ t

0
eA(t−τ)BBTeAT(t−τ) dτ
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Stochastic interpretation of H2 norm

▶ Direct calculation shows that Ṗ = AP + PAT + BBT

▶ Since A is Hurwitz, limt→∞ P (t) converges to unique pos.-def.
solution of AP + PAT + BBT = 0, i.e., limt→∞ P (t) = X!

lim
t→∞

E{z(t)Tz(t)} = lim
t→∞

E{x(t)TCTCx(t)}

= lim
t→∞

E{trace(x(t)TCTCx(t))}

= lim
t→∞

E{trace(Cx(t)x(t)TCT)}

= trace C
[

lim
t→∞

E{x(t)x(t)T}
]

CT

= trace CXCT = ∥M∥2
H2

.

∥M∥2
H2

is the asymptotic variance of the output z(t)
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Impulse response interpretation of H2 norm

▶ For simplicity consider (CT-LTI) with a single scalar input, and let the
input be w = δ(t), a unit impulse at t = 0.

▶ The corresponding output z is given by the impulse response
z(t) = CeAtB1(t), and we compute that

∥z∥2
L2

=
∫ ∞

0
z(t)Tz(t) dt

= 1
2π

∫ ∞

−∞
ẑ(jω)∗ẑ(jω) dω

= 1
2π

∫ ∞

−∞
M̂(jω)∗M̂(jω) dω

= ∥M∥2
H2

.

∥M∥H2 is the output energy of the impulse response.
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LMI conditions for H2 norm

Theorem 6.3 (LMI for H2 Performance). Consider (CT-LTI) with
D = 0, and let γ > 0. The following statements are equivalent:

(i) A is Hurwitz and ∥M∥H2 < γ;
(ii) ∃X ≻ 0 satisfying AX + XAT + BBT ≺ 0 and trace(CXCT) < γ2;
(iii) ∃Y ≻ 0 satisfying ATY + Y A + CTC ≺ 0 and trace(BTY B) < γ2;
(iv) ∃P ≻ 0 and W ∈ Sp satisfying trace(W ) < γ and[

ATP + P A P B

BTP 0

]
−
[

0 0

0 γIm

]
≺ 0 ,

[
P CT

C W

]
≻ 0;

(v) ∃L ≻ 0 and W ∈ Sm satisfying trace(W ) < γ and[
AL + LAT LCT

CL 0

]
−
[

0 0

0 γIp

]
≺ 0 ,

[
L B

BT W

]
≻ 0.
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Proof of Theorem 6.3
(i) =⇒ (iii): By Prop. 6.6 we have that for some W ≻ 0

ATW + W A + CTC = 0, trace(BTW B) < γ2.

Moreover, since A is Hurwitz, there exists L ≻ 0 such that ATL + LA ≺ 0. Due to the
strictness of the inequality trace(BTW B) < γ2, there must exist ϵ > 0 such that

trace(BT(W + ϵL)B) < γ2

Define Y = W + ϵL, which obviously satisfies Y ≻ 0. We compute then that

ATY + Y A + CTC = AT(W + ϵL) + (W + ϵL)A + CTC = ϵ(ATL + LA) ≺ 0.
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Proof of Theorem 6.3
(iii) =⇒ (i): That A is Hurwitz follows by Lyapunov’s theorem. Since −(ATY + Y A +
CTC) ≻ 0, there must exist a matrix C0 such that CT

0 C0 = −(ATY + Y A + CTC),
and therefore

ATY + Y A + CTC + CT
0 C = 0, trace(BTY B) < γ2. (8)

We augment the system M with an additional output z0 = C0x, so the overall output
is now (z, z0) =

[
C
C0

]
x and the overall transfer matrix is

[
M(s)
M0(s)

]
where M0(s) =

C0(sIn − A)−1B. It follows that (8) establishes∥∥[ M
M0

]∥∥2
H2

= ∥M∥2
H2

+ ∥M0∥2
H2

< γ2

which shows that ∥M∥H2 < γ.
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Proof of Theorem 6.3
(ii) =⇒ (iv): Define P ≜ γX−1 ≻ 0. We compute that

ATP + P A +
1
γ

P BBTP = AT(γX−1) + (γX−1)A +
1
γ

(γX−1)BBT(γX−1)

= γX−1
[
XAT + AX + BBT] γX−1

≺ 0

by congruence. By Schur complements we further obtain[
ATP + P A P B

BTP −γIm

]
≺ 0.

Now let ϵ > 0 be sufficiently small such that W ≜ 1
γ

CXCT + ϵI satisfies trace(W ) < γ,
and note that W ≻ C( 1

γ
X)CT = CP −1C. By Schur complements then

W − CP −1CT ≻ 0 ⇐⇒
[

P CT

C W

]
≻ 0

which shows the result. •
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Performance weights

Let’s now return to our SISO control example

C P

Pd

r e u y

n

d

−

▶ Exogenous signals w = (r, d, n), performance signals z = (e, u)
▶ Problem: these signals are all very different! We expect r(t) to be

mostly low-frequency, n(t) to be mostly high frequency, and so on.
Lumping them all into one vector and quantifying performance using
a norm such as H2 or H∞ doesn’t seem to make much sense . . .
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Performance weights

The solution is to add weighting filters to the model, which attempt to
capture the relative importance and frequency content of the signals.

Wr C P

Pd

rwr e u y

Wn

wnn

Wd

wd d

−

We

ze

Wu

zu

▶ Exogenous signals w = (wr, wd, wn), performance signals z = (ze, zu)
▶ For you to think about: how should the filters W be chosen?
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Appendix: Stability of convolution operators

▶ Consider our causal CT-LTI system M with impulse response
m(t) = CeAtB1(t); we consider the case D = 0 here.

▶ Recall the convolution operator Convm defined by

Convm(u)(t) ≜
∫ ∞

−∞
m(t − τ)u(τ) dτ.

Proposition 6.7 (BIBO Stability). If m ∈ L1[0, ∞), then

(i) Convm : L2[0, ∞) → L2[0, ∞) and

∥Convm∥L2→L2 ≤ ∥m∥L1 ;

(ii) Convm : L∞[0, ∞) → L∞[0, ∞) and

∥Convm∥L∞→L∞ ≤ ∥m∥L1 .
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Appendix: Incremental stability

▶ The idea of finite L2-gain is in fact a bit weak, because it has no
relationship to continuity of the operator M . Lipschitz continuity of
M is referred to as incremental gain

▶ An operator M : L2e[0, ∞) → L2e[0, ∞) is L2-stable with finite
incremental gain if it is L2-stable and there exists γ ≥ 0 s.t.

∥M(w) − M(w′)∥L2 ≤ γ∥w − w′∥L2 , ∀ w, w′ ∈ L2[0, ∞)

▶ For LTI operators, stability and incremental stability are equivalent
(try to prove it)

▶ Useful property for contraction mapping arguments (can guarantee
existence/uniqueness of solutions)
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Appendix: Discrete-time signal spaces

▶ The analogous discrete-time signal spaces are simpler than their
continuous-time cousins

▶ Recall: the Banach spaces

c0(Z;Fn) =
{

f : Z → Fn
∣∣ lim

n→±∞
f(n) = 0

}
ℓp(Z;Fn) =

{
f : Z → Fn

∣∣ ∥f∥ℓp < ∞
}

ℓ∞(Z;Fn) =
{

f : Z → Fn
∣∣ ∥f∥ℓ∞ < ∞

}
with norms

∥f∥ℓp =
( ∞∑

−∞
∥f(n)∥p

2

)1/p

, p ∈ [1, ∞)

∥f∥ℓ∞ = sup
n∈Z

∥f(n)∥2
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Appendix: Discrete-time signal spaces

ℓ1 ℓ2 c0 ℓ∞

▶ Very simple inclusions

ℓ1 ⊂ ℓ2 ⊂ c0 ⊂ ℓ∞

▶ ℓ2 is a Hilbert space

⟨f, g⟩ℓ2 =
∑∞

n=−∞
f(n)∗g(n)

|⟨f, g⟩ℓ2 | ≤ ∥f∥ℓ2∥g∥ℓ2

▶ We can have right-sided versions ℓ1[0, ∞), ℓ2[0, ∞), ℓ∞[0, ∞), . . .

▶ The extended spaces ℓ1e[0, ∞), ℓ2e[0, ∞), etc. are all simply equal to
the space of all right-sided DT signals f : Z → Fn
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Appendix: ℓ1 and ℓ2 Fourier Transforms

▶ The Fourier transform F (f) of a signal f ∈ ℓ1(Z;Fn) is defined by

F (f)(ejω) ≜
∑∞

−∞
f(n)e−jωn.

▶ F : ℓ1(Z;Fn) → C0
per,2π(jR;Fn), where

C0
per,2π(jR;Fn) = {f ∈ C0(jR;Fn) | f is 2π periodic}

▶ F is injective with left inverse F −1 : C0
per,2π(jR;Fn) → c0(Z;Fn)

F −1(f̂)(n) =
∫ π

−π

f̂(ejω)ejωt dω.

▶ The transform admits an extension to ℓ2(Z;Fn) similar to the L2 case
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Appendix: H2 norm of a discrete-time system

M :
[

x+

z

]
=
[

A B

C D

][
x

w

]
M

wz

▶ We assume A Schur, and do not require D = 0. The associated
transfer matrix is M̂(z) = C(zIn − A)−1B + D

▶ The norm is defined as

∥M∥H2 ≜

(
1

2π

∫ π

−π

trace
[
M̂(ejω)∗M̂(ejω)

]
dω

) 1
2

▶ Can be shown that ∥M∥2
H2

= trace(DTD + CXCT) and also equals
trace(DTD + BTY B) where Y ≻ 0 and X ≻ 0 are the unique
solutions to

ATY A − Y + CTC = 0, AXAT − A + BBT = 0.
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7. The H2 and H∞ State-Feedback Control
Problems

• 7.1 H2 state feedback control
• 7.2 relationship between H2 and LQR control
• 7.3 H∞ state feedback control
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Problem setup for H2 state feedback

We are now ready to design some controllers!

G :
[

ẋ

z

]
=
[

A Bw Bu

Cz 0 Dzu

] x

w

u


u = Kx

Gzw Gzu

Gxw Gxu

K

x u ∈ Rm

w ∈ Rnwz ∈ Rnz

Closed-loop system is:

Mcl : ẋ = (A + BuK)x + Bww, z = (Cz + DzuK)x.

Problem 7.1 (Suboptimal H2 state-feedback control). Given
γ > 0, design (if possible) a state-feedback controller u = Kx such that
(A + BuK) is Hurwitz and ∥Mcl∥H2 < γ.
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Solution of H2 state-feedback problem

From Theorem 6.3, A + BuK is Hurwitz and the system meets the H2-norm constraint
∥Mcl∥H2 < γ if and only if there exists X ≻ 0 such that

(A + BuK)X + X(A + BuK)T + BwBT
w ≺ 0

trace((Cz + DzuK)X(Cz + DzuK)T) < γ2

If we define Z = KX, we can rewrite these inequalities as

(AX + BZ) + (AX + BZ)T + BwBT
w ≺ 0

trace((CzX + DzuZ)X−1(CzX + DzuZ)T) < γ2

The second inequality is equivalent to the existence of W ≻ 0 such that

(CzX + DzuZ)X−1(CzX + DzuZ)T ≺ W , trace(W ) < γ2.

Using Schur’s Lemma to linearize the last inequality, we obtain[
X (CzX + DzuZ)T

(CzX + DzuZ) W

]
≻ 0, trace(W ) < γ2.
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Solution of H2 state-feedback problem

Theorem 7.1 (Optimal H2 state-feedback synthesis). The
γ-suboptimal H2 state-feedback synthesis problem is solvable if and only if
there exists X ≻ 0, Z ∈ Rm×n and W ≻ 0 satisfying

[
A Bu

] [X

Z

]
+
[
X ZT

] [AT

BT
u

]
+ BwBT

w ≺ 0[
X (CzX + DzuZ)T

(CzX + DzuZ) W

]
≻ 0

trace(W ) < γ2

in which case the controller is reconstructed as K = ZX−1.

To obtain the optimal controller, minimize over γ2 s.t. LMIs.
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H2 state-feedback control synthesis

1 X = sdpvar(n,n); Z = sdpvar(m,n,'full'); W = ...

sdpvar(n_z,n_z);

2 small = 1e-6;

3 Constraints = [X ≥ small*eye(n), ...

4 [A,Bu]*[X;Z] + ([A,Bu]*[X;Z])' + Bw*Bw' ≤ ...

-small*eye(n), ...

5 [X,(Cz*X+Dzu*Z)';(Cz*X+Dzu*Z),W] ≥ ...

small*eye(n+n_z)];

6 Cost = trace(W);

7 options = sdpsettings('solver','sdpt3','verbose',1);

8 sol = optimize(Constraints,Cost,options);

9 K_H2 = value(Z)*inv(value(X));
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Relationship between H2 and LQR control

H2 control is a generalization of LQR control. In the classical static
state-feedback LQR problem, one considers

minimize
K

J(x0) ≜
∫ ∞

0
x(t)TQx(t) + u(t)TRu(t) dt

subject to ẋ(t) = Ax(t) + Buu(t)

x(0) = x0

u(t) = Kx(t).

where Q ⪰ 0 and R ≻ 0.

▶ LQR: non-zero initial conditions, zero exogenous disturbances
▶ H2: zero initial conditions, non-zero exogenous disturbances
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Relationship between H2 and LQR control

▶ Define the performance output

z = Czx + Dzuu =
[

Q1/2

0

]
x +

[ 0
R1/2

]
u =

[
Q1/2x

R1/2u

]
in which case we see that

∥z∥2
L2

=
∫ ∞

0
z(t)Tz(t) dt =

∫ ∞

0
[xTQx + uTRu] dt = J(x0).

▶ The closed-loop LQR system is

Mcl :
ẋ = (A + BuK)x, x(0) = x0,

z = (Cz + DzuK)x

with Laplace-domain solution

ẑ(s) = (Cz + DzuK)(sIn − (A + BuK))−1︸ ︷︷ ︸
≜M̂cl(s)

x0.
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Relationship between H2 and LQR control

▶ We can exactly reproduce the effect of the initial condition through
an impulse input applied to the fictitious system

M ′
cl :

ẋ′ = (A + BK)x′ + x0w, x′(0) = 0

z′ = (Cz + DzuK)x′

with impulse input w(t) = δ(t) =⇒ ŵ(s) = 1. The Laplace solution
ẑ′(s) = M̂cl(s)x0ŵ(s) = M̂cl(s)x0 is exactly the same as before.

▶ Therefore, we have

J(x0) = ∥z∥2
L2

=
1

2π

∫ ∞

−∞
ẑ(jω)∗ẑ(jω) dω

= ∥x0∥2
2

1
2π

∫ ∞

−∞
trace M̂cl(jω)∗M̂cl(jω) dω

= ∥x0∥2
2∥Mcl∥2

H2
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Problem setup for H∞ state feedback

G :
[

ẋ

z

]
=
[

A Bw Bu

Cz Dzw Dzu

] x

w

u


u = Kx

Gzw Gzu

Gxw Gxu

K

x u ∈ Rm

w ∈ Rnwz ∈ Rnz

Closed-loop system is:

Mcl :
ẋ = (A + BuK)x + Bww

z = (Cz + DzuK)x + Dzww

Problem 7.2 (Suboptimal H∞ state-feedback control). Given
γ > 0, design (if possible) a state-feedback controller u = Kx such that
(A + BuK) is Hurwitz and ∥Mcl∥H∞ = ∥Mcl∥L2→L2 < γ.
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Solution of the H∞ state-feedback problem

From Corollary 6.1, if (A + BuK) is Hurwitz, then the closed-loop system meets the
H∞-norm constraint if and only if there exists P ≻ 0 such that[

(A + BuK)TP + P (A + BuK) P Bw

BT
wP 0

]
−
[

(Cz + DzuK) Dzw

0 Inw

]T [
−Inz 0

0 γ2Inw

][
(Cz + DzuK) Dzw

0 Inw

]
≺ 0

The top left block of this LMI reads as

(A + BuK)TP + P (A + BuK) + (Cz + DzuK)T(Cz + DzuK)︸ ︷︷ ︸
⪰0

≺ 0

from which we conclude that

(A + BuK)TP + P (A + BuK) ≺ 0.

Since P ≻ 0, we conclude that (A + BuK) is Hurwitz, so stability comes automatically.
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Solution of the H∞ state-feedback problem

Defining X = P −1 ≻ 0 and performing a congruence transformation with the matrix
diag(X, Inw ) we obtain the equivalent LMI[

X(A + BuK)T + (A + BuK)X Bw

BT
w 0

]
−
[

(Cz + DzuK)X Dzw

0 Inw

]T [
−Inz 0

0 γ2Inw

][
(Cz + DzuK)X Dzw

0 Inw

]
≺ 0

Now define Z = KX to obtain[
(AX + BuZ)T + (AX + BuZ) Bw

BT
w 0

]
−
[

(CzX + DzuZ) Dzw

0 Inw

]T [
−Inz 0

0 γ2Inw

][
(CzX + DzuZ) Dzw

0 Inw

]
≺ 0
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Solution of the H∞ state-feedback problem

This is still not an LMI, because the second term contains a product of decision
variables. Rewriting this further as[

(AX + BuZ)T + (AX + BuZ) Bw

BT
w −γ2Inw

]
+
[
(CzX + DzuZ) Dzw

]T [
(CzX + DzuZ) Dzw

]
≺ 0

We can linearize via Schur’s Lemma to obtain a genuine LMI which is block 3 × 3:(AX + BuZ)T + (AX + BuZ) Bw (CzX + DzuZ)T

BT
w −γ2Inw DT

zw

(CzX + DzuZ) Dzw −Inz

 ≺ 0
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Solution of the H∞ state-feedback problem

Theorem 7.2 (Optimal H∞ state-feedback synthesis). The
γ-suboptimal H∞ state-feedback synthesis problem is solvable if and only
if there exists X ≻ 0 and Z ∈ Rm×n(AX + BuZ)T + (AX + BuZ) ⋆ ⋆

BT
w −γ2Inw ⋆

(CzX + DzuZ) Dzw −Inz

 ≺ 0

in which case the controller is reconstructed as K = ZX−1.

To obtain the optimal controller, minimize over γ2 s.t. LMIs.
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Example: Two-inertia positioning system

64 CHAPTER 2. SYSTEM MODELING

generator has a normalized form that is similar to the dynamics of a pendulum with
forcing at the pivot.

2.8 (Admission control for a queue) Consider the queuing system described in
Example 2.10. The long delays created by temporary overloads can be reduced by
rejecting requests when the queue gets large. This allows requests that are accepted
to be serviced quickly and requests that cannot be accommodated to receive a
rejection quickly so that they can try another server. Consider an admission control
system described by

dx
dt

= λu − µmax
x

x + 1
, u = sat(0,1)(k(r − x)), (2.37)

where the controller is a simple proportional control with saturation (sat(a,b) is
defined by equation (3.9)) and r is the desired (reference) queue length. Use a
simulation to show that this controller reduces the rush-hour effect and explain
how the choice of r affects the system dynamics.

2.9 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

u1

A

B

u2 B

u2

u1

A

Using the models from Example 2.13—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steady state quickly—show
that the dynamics can be written in normalized coordinates as

dz1
dτ

= µ

1+ zn2
− z1 − v1,

dz2
dτ

= µ

1+ zn1
− z2 − v2, (2.38)

where z1 and z2 are scaled versions of the protein concentrations and the time scale
has also been changed. Show that µ ≈ 200 using the parameters in Example 2.13,
and use simulations to demonstrate the switch-like behavior of the system.

2.10 (Motor drive) Consider a system consisting of a motor driving two masses that
are connected by a torsional spring, as shown in the diagram below.

Motor
I

J1

1

1

J2

ω

ϕ 2ϕ

2ω

This system can represent a motor with a flexible shaft that drives a load. Assuming
that the motor delivers a torque that is proportional to the current, the dynamics of▶ Goal: Maintain position φ2 = 0
▶ Control: Motor torque u applied to J1

▶ Disturbance: Load torque τd applied to J2

▶ Integral state η̇ = φ2 added to ensure steady-state regulation
φ̇1
φ̇2

J1ω̇1
J2ω̇2

η̇

 =


0 0 1 0 0
0 0 0 1 0

−k k −b b 0
k −k b −b 0
0 1 0 0 0




φ1
φ2
ω1
ω2
η

+


0
0
0
1
0

 τd +


0
0
1
0
0

u
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Example: two-inertia positioning system

▶ To limit high-frequency controller response, introduce high-pass filter

τcξ̇ = −ξ + u, uhp = −ξ + u

and use performance output z = (η, ρuhp) for ρ > 0.
φ̇1
φ̇2

J1ω̇1
J2ω̇2

η̇

ξ̇

 =


0 0 1 0 0 0
0 0 0 1 0 0

−k k −b b 0 0
k −k b −b 0 0
0 1 0 0 0 0
0 0 0 0 0 −1/τc




φ1
φ2
ω1
ω2
η

ξ

+


0
0
0
1
0
0

 τd +


0
0
1
0
0

1/τc

u

z =
[

0 0 0 0 1 0
0 0 0 0 0 −ρ

]
φ1
φ2
ω1
ω2
η

ξ

+
[

0
0

]
τd +

[
0
ρ

]
u
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Impulse and step on two-inertia positioning system
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8. The H2 and H∞ Output-Feedback Control
Problems

• 8.1 problem setup
• 8.2 H2 output-feedback synthesis
• 8.3 H∞ output-feedback synthesis
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Problem setup for output feedback control

We now replace state-feedback with measurement-feedback.

G :

 ẋ

z

y

 =

 A Bw Bu

Cz Dzw Dzu

Cy Dyw 0

 x

w

u


Gzw Gzu

Gyw Gyu

K

y ∈ Rp u ∈ Rm

w ∈ Rnwz ∈ Rnz

▶ Note: Dyu = 0 ensures well-posedness. Our goal is to design a
dynamic feedback controller K : Lp

2e[0, ∞) → Lm
2e[0, ∞) as

K :
[

ẋc

u

]
=
[

Ac Bc

Cc Dc

][
xc

y

]
with state xc ∈ Rnc for some nc ∈ Z≥0 to be determined.

Section 8: The H2 and H∞ Output-Feedback Control Problems 8-203



Problem setup for output feedback control

▶ Some simple algebra shows that the closed-loop system is[
ξ̇

z

]
=
[

A Bw
Cz Dzw

][
ξ

w

]
. (9)

where[
A Bw
Cz Dzw

]
=

 A + BuDcCy BuCc Bw + BuDcDyw

BcCy Ac BcDyw

Cz + DzuDcCy DzuCc Dzw + DzuDcDyw


▶ Despite things being significantly more complicated, we will stick to

our established principles and follow a similar sequence of steps:
1. Write down a Lyapunov inequality capturing performance on w 7→ z

2. Find a smart change of variables which linearizes Lyapunov inequality
3. Recover the controller
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H2 output-feedback synthesis problem

By Theorem 6.3, A will be Hurwitz and the closed-loop system (9) will
have an H2-norm less than γ iff there exists P ≻ 0 and W ≻ 0 such that

[
ATP + PA PBw

BwTP 0

]
−
[

0 0

0 γInw

]
≺ 0 (nonlinear) (10a)[

P CzT

Cz W

]
≻ 0 (this is affine) (10b)

trace(W ) < γ (this is affine) (10c)
Dzw = Dzw + DzuDcDyw = 0 (this is affine) (10d)

It turns out that our previous tricks for state-feedback design will
not work here. We need to develop a new linearization method

which transforms (10) into a system of LMIs.
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Linearization procedure for H2 synthesis

The inequality (10a) can be rewritten as[
In+nc 0

PA PBw

0 Inw

]T [ 0 In+nc 0
In+nc 0 0

0 0 −γInw

][
In+nc 0

PA PBw

0 Inw

]
≺ 0. (11)

Let’s take our matrix P and partition it and its inverse:

P =
[

X U

UT Xo

]
∈ Sn+nc , P−1 =

[
Y V

V T Yo

]
∈ Sn+nc

from which it follows that XY + UV T = In and Y U + V Xo = 0. Let’s further define

Y =
[

Y In

V T 0nc×n

]
∈ R(n+nc)×2n, Z =

[
In 0n×nc

X U

]
. (12)

If we assume nc ≥ n, then we can always select V ∈ Rn×nc to have full row rank, and
therefore Y will have full column rank. Note that

YTP =
[

Y V

In 0

] [
X U

UT Xo

]
=
[

Y X + V UT Y U + V Xo
X U

]
=
[

In 0
X U

]
= Z
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Linearization procedure for H2 synthesis

If (11) holds, then it also holds that[
Y 0
0 I

]T
[

I 0
PA PBw

0 I

]T [ 0 I 0
I 0 0
0 0 −γI

][
I 0

PA PBw

0 I

][
Y 0
0 I

]
≺ 0. (13)

The important piece here is the sub-block[
Y 0
0 I

]T [
PA PBw

0 I

][
Y 0
0 I

]
=
[

YTPAY YTPBw
0 I

]
.

Working on the pieces, we first compute that

YTPAY =
[

In 0
X U

][
A + BuDcCy BuCc

BcCy Ac

][
Y In

V T 0

]
=
[

AY A

0 XA

]
+
[

0 Bu

I 0

][
K L

M N

][
I 0
0 Cy

]
, (affine!)

where [
K L

M N

]
≜

[
U XBu

0 Im

][
Ac Bc
Cc Dc

][
V T 0

CyY Ip

]
+
[

XAY 0
0 0

]
(14)
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Linearization procedure for H2 synthesis

Similarly we can calculate that

YTPBw =
[

In 0
X U

][
Bw + BuDcDyw

BcDyw

]
=
[

Bw

XBw

]
+
[

BuDcDyw

XBuDcDyw + UBcDyw

]
=
[

Bw

XBw

]
+
[

0 Bu

I 0

][
K L

M N

][
0

Dyw

]
, (affine!)

Putting things together, we find that[
YTPAY YTPBw

]
=

[
AY A Bw

0 XA XBw

]
+

[
0 Bu
I 0

][
K L

M N

][
I 0 0
0 Cy Dyw

]
≜

[
A(v) Bw(v)

]
where v = (X, Y , K, L, M, N). This is affine in v!
We can similarly compute that

P ≻ 0 =⇒ YTPY =
[

Y In

In X

]
≜ P (v) ≻ 0,

which is also affine in v.
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Linearization procedure for H2 synthesis

With these calculations, (13) simplifies to[
I 0

A(v) Bw(v)
0 I

]T [ 0 I 0
I 0 0
0 0 −γI

][
I 0

A(v) Bw(v)
0 I

]
≺ 0.

So (10a) implies the above. Similarly, if (10b) holds, then we have[
Y 0
0 I

]T [P Cz
T

Cz W

][
Y 0
0 I

]
=
[

YTPY YTCz
T

CzY W

]
≻ 0. (15)

We have calculated all blocks except CzY:

CzY =
[

Cz + DzuDcCy DzuCc
] [ Y I

V T 0

]
=
[

CzY Cz

]
+
[

0 Dzu

] [K L

M N

][
I 0
0 Cy

]
≜ Cz(v)

Thus, (15) simplifies to [
P (v) Cz(v)T

Cz(v) W

]
≻ 0.
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Linearization procedure for H2 synthesis

The inequality (10c) is already affine, and so is Dzw(v) ≜ Dzw + DzuNDyw = 0.

Summary so far (necessity): if nc ≥ n and ∃P, W ≻ 0 satisfying (10), then one
may define v = (X, Y , K, L, M, N) satisfying the LMIs

P (v) ≻ 0, trace(W ) < γ,

[
P (v) Cz(v)T

Cz(v) W

]
≻ 0, Dzw(v) = 0 (16)

and[
I 0

A(v) Bw(v)
0 I

]T [ 0 I 0
I 0 0
0 0 −γI

][
I 0

A(v) Bw(v)
0 I

]
≺ 0. (17)

In other words, feasibility of the nonlinear synthesis inequalities implies feasibility of this
set of LMIs. Thus, the above LMIs are necessary for solvability of the output feedback
design problem. The key insight is that for nc = n, we can actually invert all these
transformations to obtain sufficiency.
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Linearization procedure for H2 synthesis

Sufficiency: Set nc = n. Suppose that (16)–(17) are feasible in W and v. Then since
P (v) ≻ 0, it follows by Schur complements that XY ≻ In, so In − XY is nonsingular.
We can always factor this as In − XY = UV T for square invertible matrices U, V .
This allows us to define the matrices Y and Z in (12), which are now square since
nc = n, and using the relationship YTP = Z, we can now immediately calculate P.
Since v = (X, Y , K, L, M, N) is now known, we can use (14) to compute that[

Ac Bc

Cc Dc

]
=
[

U XBu

0 I

]−1 [
K − XAY L

M N

][
V T 0

CyY I

]−1

. (18)

Since Y is square, the previous congruence transformations are reversible, so one may
work backwards from (16)–(17) to obtain the original inequalities (10).

Theorem 8.1 (LMI for H2 Output Feedback Synthesis). There
exists a dynamic controller K such that A is Hurwitz and the closed-loop system
achieves H2 performance at level γ > 0 if and only if there exists
v = (X, Y, K, L, M, N) and W ≻ 0 satisfying (16)–(17).
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Comments on H2 synthesis

▶ As sufficiency argument shows, controller order nc ≥ n can always be
chosen equal to the order of the plant; this is what you would expect
based on ECE 557. If you instead impose that nc < n, then
arguments require non-convex rank constraints — reduced-order
controller design is non-convex!

▶ You can enforce a strictly proper controller via constraint N = 0

▶ For factorization In − XY = UV T, simple choice is U = In − XY

and V = In.

▶ The number of variables can be reduced (Elimination Lemma); this
can be important in large problems, but we will not pursue this here.
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Numerical comments on H2 synthesis

Numerically, LMI-based synthesis requires some care. In particular, (i) the decision
variables v can become quite large, and (ii) the matrix In − XY may be close to
singular. The following four step procedure usually produces reliable results:

1. Minimize γ subject to (16)–(17) to find optimal γopt

2. Fix some γ > γopt, introduce the additional bounding constraints

X ≺ αIn, Y ≺ αIn,

 αI 0 K L

0 αI M N

KT MT αI 0
LT NT 0 αI

 ≻ 0 (19)

and minimize over α subject to (16)–(17),(19).
3. Fix some α > αopt, introduce additional constraint[

Y βIn

βIn X

]
≻ 0 (20)

and maximize over β subject to (16)–(17),(19),(20).

4. Now reconstruct the controller parameters
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H∞ output-feedback synthesis problem

According to Corollary 6.1, A will be Hurwitz and the closed-loop system
(9) will have an H∞-norm less than γ ≥ 0 iff there exists P ≻ 0 such that

In+nc 0
A Bw

Cz Dzw

0 Inw


T 

0 P 0 0
P 0 0 0
0 0 Inz 0
0 0 0 −γ2Inw




In+nc 0
A Bw

Cz Dzw

0 Inw

 ≺ 0;

An identical linearization procedure can be applied to this problem!
In fact, the linearization procedure extends to a variety of other

situations, including other performance objectives and to
multi-objective synthesis . . .
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Solution of H∞ output-feedback synthesis problem

Theorem 8.2 (LMI for H∞ Output Feedback Synthesis). There
exists a dynamic controller K such that the closed-loop system is
exponentially stable and achieves H∞ performance at level γ > 0 if and
only if there exists v = (X, Y , K, L, M, N) satisfying P (v) ≻ 0 and I 0

A(v) Bw(v)
Cz(v) Dzw(v)

0 I


T 0 I 0 0

I 0 0 0
0 0 I 0
0 0 0 −γ2I


 I 0

A(v) Bw(v)
Cz(v) Dzw(v)

0 I

 ≺ 0.

In this case, In − XY is nonsingular, and for any square nonsingular
matrices U, V satisfying In − XY = UV T, the controller may be
reconstructed via (18).

▶ This is still technically nonlinear; there are quadratic terms in [Cz(v), Dzw(v)].
However, you can quickly use Schur’s Lemma to obtain a genuine LMI.
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Example: two-inertia positioning system

64 CHAPTER 2. SYSTEM MODELING

generator has a normalized form that is similar to the dynamics of a pendulum with
forcing at the pivot.

2.8 (Admission control for a queue) Consider the queuing system described in
Example 2.10. The long delays created by temporary overloads can be reduced by
rejecting requests when the queue gets large. This allows requests that are accepted
to be serviced quickly and requests that cannot be accommodated to receive a
rejection quickly so that they can try another server. Consider an admission control
system described by

dx
dt

= λu − µmax
x

x + 1
, u = sat(0,1)(k(r − x)), (2.37)

where the controller is a simple proportional control with saturation (sat(a,b) is
defined by equation (3.9)) and r is the desired (reference) queue length. Use a
simulation to show that this controller reduces the rush-hour effect and explain
how the choice of r affects the system dynamics.

2.9 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

u1

A

B

u2 B

u2

u1

A

Using the models from Example 2.13—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steady state quickly—show
that the dynamics can be written in normalized coordinates as

dz1
dτ

= µ

1+ zn2
− z1 − v1,

dz2
dτ

= µ

1+ zn1
− z2 − v2, (2.38)

where z1 and z2 are scaled versions of the protein concentrations and the time scale
has also been changed. Show that µ ≈ 200 using the parameters in Example 2.13,
and use simulations to demonstrate the switch-like behavior of the system.

2.10 (Motor drive) Consider a system consisting of a motor driving two masses that
are connected by a torsional spring, as shown in the diagram below.

Motor
I

J1

1

1

J2

ω

ϕ 2ϕ

2ω

This system can represent a motor with a flexible shaft that drives a load. Assuming
that the motor delivers a torque that is proportional to the current, the dynamics of▶ Measurements: Only second position φ2 is measurable; we are also

free to take the integral state η and filter state ξ
φ̇1
φ̇2

J1ω̇1
J2ω̇2

η̇

ξ̇

 =


0 0 1 0 0 0
0 0 0 1 0 0

−k k −b b 0 0
k −k b −b 0 0
0 1 0 0 0 0
0 0 0 0 0 −1/τc




φ1
φ2
ω1
ω2
η

ξ

+


0
0
0
1
0
0

 τd +


0
0
1
0
0

1/τc

u

[
z

y

]
=


0 0 0 0 1 0
0 0 0 0 0 −ρ

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




φ1
φ2
ω1
ω2
η

ξ

+


0
0
0
0
0

 τd +


0
ρ

0
0
0

u
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Impulse and step disturbance test
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9. Stability and Performance of Uncertain
Systems

• 9.1 what is model uncertainty?
• 9.2 linear fractional uncertainty representations
• 9.3 introduction to robust stability
• 9.4 framework for input-output robust stability
• 9.5 quadratic constraints and robust stability
• 9.6 robust L2-performance
• 9.7 robust H2-performance
• 9.8 synthesis for robust performance
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Sources of model uncertainty

▶ Ubiquitous sources of model uncertainty:
(i) unmodelled (or unmodellable) higher-order dynamics,
(ii) uncertain parameters and nonlinearities,
(iii) imperfections in actuators and sensors, and
(iv) deliberate simplification of a more complex model.

▶ It may also be the case that some elements of the system are known,
but are “trouble-making” in the sense that their presence complicates
our analysis or design (e.g., nonlinear infinite-dimensional
components). It could then be advantageous to treat these known
trouble-making components as being uncertain, if the uncertain
model is easier to work with than the original model.
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Uncertainty in I/O mappings

▶ Consider our usual input-output picture of a system

M
wz

where M : L2e[0, ∞) → L2e[0, ∞). That is, associated with each
input w is exactly one output M(w).

▶ When we say M is “uncertain”, we mean that there is ambiguity in
what the output will be, even if the input is specified.

▶ Put differently, we are not dealing with one mapping M , but with a
set of mappings, which is parameterized by the uncertainty.

We will focus on one parameterization, called the LFR.
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The LFR framework for uncertain systems

Mqp Mqw

Mzp Mzw

∆

q p

wz

In a linear fractional representation (LFR)

of uncertainty, an uncertain input-output
system z = F(M, ∆)(w) is described using
a feedback interconnection between (i) a
causal LTI system M , and (ii) a causal

system ∆.

▶ If we let ∆ range over a known set ∆, we obtain a set of
input-output mappings {F(M, ∆) | ∆ ∈ ∆}.

▶ For ∆ = 0, we obtain a nominal I/O mapping z = Mzw(w), which
we are presumably already satisfied with. The question of interest is
whether the closed-loop system is stable and performs well for all
possible values of uncertainty ∆ ∈ ∆.
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The LFR framework for uncertain systems

Mqp Mqw

Mzp Mzw

∆

q p

wz

q = Mqpp + Mqww

z = Mzpp + Mzww

p = ∆(q)

▶ Why is it called a linear fractional representation? Suppose that ∆ is linear and all
system blocks were actually just fixed scalars. Then

z =
(MzpMqw − MzwMqp)∆ + Mzw

(−Mqp)∆ + 1
w =

a∆ + b

c∆ + d
w

so F(M, ∆) is a linear-fractional function of ∆.
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LFR Example #1: parametric uncertainty

▶ Consider the uncertain scalar model

ẋ = ax + bw, amin ≤ a ≤ amax

z = x

▶ If we define the average ā and the relative spread Wa as

ā = amin + amax

2 , Wa = 1
ā

amax − amin

2
then we can write a = ā(1 + Wa∆) where ∆ ∈ [−1, 1], so

ẋ = āx + āWa∆x + bw, z = x

▶ We can therefore obtain the LFR model

ẋ = āx + āWap + bw

q = x

z = x

with p = ∆q.
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LFR Example #2: uncertain SISO plant

▶ Suppose that we have a plant G we want to model.
▶ From a set of n experiments, we are able to fit transfer functions

G1(s), . . . , Gn(s) describing the system. This gives us a nominal
model Gnom(s) = 1

n

∑n
i=1 Gi(s)

▶ To quantify the error in this choice, we can plot each relative error

|Ei(jω)| =
∣∣∣∣Gi(jω) − Gnom(jω)

Gnom(jω)

∣∣∣∣
over all frequencies. You will get a plot that looks something like this:
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LFR Example #2: uncertain SISO plant

▶ Main idea: Find a (stable) weighting function W (s) that upper
bounds all relative errors: |Ei(jω)| ≤ |W (jω)| for all i ∈ {1, . . . , n}.

▶ We can then model G using the uncertain transfer function model

G(s) = Gnom(s)[1 + W (s)∆(s)]

where ∆(s) is any stable proper TF with ∥∆∥H∞ ≤ 1.
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LFR Example #2: uncertain SISO plant

G(s) = Gnom(s)[1 + W (s)∆(s)]

K
(

1 + 1
sTi

)
Gnom(s)

W (s) ∆(s)

Gd(s)

r e u y

d

−

This is called an unstructured multiplicative
representation of plant uncertainty.
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LFR Example #3: actuator saturation in a SISO loop

K
(

1 + 1
sTi

)
G(s)

Gd(s)

r e ũ u y

d

−

▶ The nominal model M should model the case without saturation. To
do this, we note that sat(ũ) = ũ − deadzone(ũ).

K
(

1 + 1
sTi

)
1 G(s)

Gd(s)

r e

ũ

− u

q
p

y

d

−
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Structured uncertainty

Often our uncertain operator ∆ is not just one big operator, but is a
collection of several smaller operators ∆1, . . . , ∆N which each act on
individual sub-signals q1, . . . , qN . This is called structured uncertainty,
and is the norm rather than the exception.

Mqp Mqw

Mzp Mzw

∆1
. . .

∆Nq p

wz


p1
...

pN

 =


∆1(q1)

...

∆N (qN )



Note: the exact same block ∆k might appear multiple times.
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LFR Example #4: two-block uncertainty

K
(

1 + 1
sTi

)
1 Gnom(s)

W2(s) ∆2

Gd(s)

r e

ũ

− u

q2 p2

q1 p1

y

d

−

p = [ p1
p2 ] , q = [ q1

q2 ] , ∆(q) =
[

deadzone(q1)
∆2(q2)

]
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LFR Example #5: repeated uncertainty (h/t Scherer)

Consider the uncertain dynamics

ẋ =
[

−1 2δ1

− 1
2+δ1

−4

]
x, δ1 ∈ [−1, 1].

You can verify by direct calculation that an LFR for this is

[
ẋ

q

]
=


−1 0 0 2

−1/2 −4 −1/2 −2
−1/2 −4 −1/2 −2

0 1 0 0


[

x

p

]
, p =

[
δ1 0
0 δ1

]
q

Repeated uncertain blocks will frequently occur when the same
uncertain parameter appears in more than one place in your equations.
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Uncertainty modelling and conservatism

▶ A very generic model for ∆ : Lnq

2e [0, ∞) → Lnp

2e [0, ∞) is as a causal
operator with finite L2-gain bounded (without loss of generality) by 1.

▶ The set of all such operators is extremely large; it contains, for
instance, nonlinear time-varying infinite-dimensional dynamic systems.

▶ We may thus desire to restrict our attention to smaller uncertainty
classes, by assuming other properties such as (i) linearity, (ii)
time-invariance, (iii) memoryless-ness, and more . . .

The general principle though is that large crude uncertainty classes are easy to
describe and lead to simple computational tests, while smaller more nuanced

classes are more difficult to describe and result in higher computational burden
=⇒ trade-off between conservatism and problem complexity.
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Robust stability and performance

Mqp Mqw

Mzp Mzw

∆

q p

wz

Questions we must answer:

(i) When is this loop stable (in some sense . . . ) for all ∆ ∈ ∆?

(ii) How can we bound the worst-case performance

sup
∆∈∆

∥F(M, ∆)∥H2 or sup
∆∈∆

∥F(M, ∆)∥L2→L2
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Building intuition: The case of transfer functions

Mqp Mqw

Mzp Mzw

∆

q p

wz

If ∆ was described by a causal stable
LTI system, then the whole system is

LTI, and we would know how to
calculate the closed-loop response . . .

q = Mqpp + Mqww

z = Mzpp + Mzww

p = ∆q

=⇒
q = (I − Mqp∆)−1Mqww

z = Mzp∆q + Mzww

z = F(M, ∆)w =
[
Mzw + Mzp∆(I − Mqp∆)−1Mqw

]
w

F(M, ∆) causal & stable ⇐⇒ (I − Mqp∆)−1 causal & stable
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Building intuition: the case of constant matrices

▶ So we can now guess that (I − Mqp∆) is very important. As ∆
ranges over a set ∆, we would first want to ensure that (I − Mqp∆)
is invertible. This alone still seems like a hard question . . .

▶ Maybe we can first try to answer this for the case of constant
matrices, before coming back to dynamic systems . . .

Problem 9.1 (Robust matrix invertibility problem). Given a
matrix M ∈ Cnq×np and a set ∆ ⊂ Cnp×nq of matrices, decide if
(Inq

− M∆) is invertible for all ∆ ∈ ∆.

Invertible ⇐⇒ det(Inq − M∆) ̸= 0 ⇐⇒ det
[

Inq
M

∆ Inp

]
̸= 0
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Robust invertibility of matrix families

det
[

Inq M

∆ Inp

]
̸= 0 ⇐⇒ range

[
Inq

∆

]
∩ range

[
M

Inp

]
= {0}.

▶ If we interpret M and ∆ as defining linear operators, this has an
interpretation in terms of the graphs of M and ∆

graph(∆) ≜ {(q, ∆q) | q ∈ Cnq } = range
[

Inq

∆

]
“Set of I/O pairs”

graph−1(M) ≜ {(Mp, p) | p ∈ Cnp } = range
[

M

Ip

]
“Set of O/I pairs”

Graph separation principle: (Inq
− M∆) invertible ∀∆ ∈ ∆ if and only

if graph(∆) ∩ graph−1(M) = {0} ∀∆ ∈ ∆.
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Robust invertibility of matrix families

How can we guarantee this separation condition? Look for cones.

q

p

graph−1(M)
graph(∆1)
graph(∆2)
graph(∆3)

If we knew that ∀∆ ∈ ∆, graph(∆) was
contained in the grey-shaded cone region,

then we just need to make sure that
graph−1(M) is contained in the

complementary blue-shaded cone!

▶ Parameterize this idea by introducing a quadratic form
π : Cnq+np → R, π(ξ) = ξ∗Πξ, Π = Π∗ ∈ C(nq+np)×(nq+np)

{grey shaded region} = {ξ ∈ Cnq×np | π(ξ) ≥ 0}

{blue shaded region} = {ξ ∈ Cnq×np | π(ξ) < 0}.
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Robust invertibility of matrix families

Putting things together, what we want is

π(ξ) = ξ∗Πξ ≥ 0 for all ξ = (q, p) ∈ graph(∆) and all ∆ ∈ ∆,

π(ξ) = ξ∗Πξ < 0 for all ξ = (q, p) ∈ graph−1(M).

Proposition 9.1 (Invertibility of Matrix Families). Let
M ∈ Cnq×np and let ∆ ⊂ Cnp×nq be a set of matrices. Suppose that
there exists a Hermitian matrix Π = Π∗ ∈ C(nq+np)×(nq+np) such that[

Inq

∆

]∗

Π
[

Inq

∆

]
⪰ 0 for all ∆ ∈ ∆[

M

Inp

]∗

Π
[

M

Inp

]
≺ 0.

Then (Inq − M∆) is invertible for all ∆ ∈ ∆.
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Proof of Proposition 9.1
By contradiction, suppose there exists some element ∆ ∈ ∆ for which the conclusion fails.
Then by our determinant conditions, there exists a non-zero vector col(q, p) ∈ Cnq+np

such that

0q+p =
[

Inq M

∆ Inp

][
q

p

]
=
[

Inq

∆

]
q +
[

M

Inp

]
p ⇐⇒

[
Inq

∆

]
q = −

[
M

Inp

]
p.

Since q = −Mp and p = −∆q, this further implies that q and p are individually also
non-zero. From the inequality conditions then, we find that

0 ≤ q∗

[
Inq

∆

]∗

Π
[

Inq

∆

]
q = p∗

[
M

Inp

]
Π
[

M

Inp

]
p ≤ −ε∥p∥2

2.

for some sufficiently small ε > 0, which implies that ∥p∥2 ≤ 0. This can hold only if
p = 0np , which is a contradiction. Hence there exists no element ∆ ∈ ∆ for which
det(Inq − M∆) = 0, which establishes the claim. •
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Example

For β ∈ R consider the matrix and uncertainty set

Mβ =
[

1/2
√

3β√
3β 1/3

]
, ∆ =

{[
δ1 0
0 δ2

] ∣∣∣∣ δ1, δ2 ∈ [−1, 1]
}

If we define

Π =


 q1 0 0 0

0 q2 0 0
0 0 −q1 0
0 0 0 −q2

 ∣∣∣∣ q1, q2 ≥ 0

 .

Then for any Π ∈ Π we have[
I2
∆

]∗

Π
[

I2
∆

]
=
[

q1(1 − δ2
1) 0

0 q2(1 − δ2
2)

]
⪰ 0 , ∆ ∈ ∆.

For any fixed value of β, we can try to solve the LMI problem

find Π ∈ Π such that
[

Mβ

I2

]∗

Π
[

Mβ

I2

]
≺ 0

In this case, turns out LMI is feasible for β ∈ (− 1
3 , 1

3 ).
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Key insights from matrix invertibility problem

▶ The recipe for checking invertibility seems to be the following:
1. Find a set Π of matrices such that[

Inq

∆

]∗

Π
[

Inq

∆

]
⪰ 0 ∀∆ ∈ ∆, Π ∈ Π

This is a quadratic constraint description of the uncertainty set ∆.
2. Find any particular Π ∈ Π to satisfy the inequality[

M

Inp

]∗

Π
[

M

Inp

]
≺ 0

▶ Note: The richer the set Π is in Step 1, the easier it will be to find
one particular Π ∈ Π that works for Step 2!

Our goal is now to translate these ideas back to systems.
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Robust feedback stability setup

We now consider the following prototypical feedback diagram

∆

M

w q q̃

pp̃ v

[
v

w

]
=
[

p − ∆(q)
q − Mp

]
≜ Σ∆(p, q)

▶ M is a causal stable LTI system
▶ ∆ ∈ ∆, a set of causal operators which are uniformly L2-stable with

finite gain (i.e., a uniform gain bound for all ∆)
▶ w and v are exogenous signals which excite the interconnection

As you learned in undergrad, the proper stability notion for a
feedback interconnection is “bounded input–bounded output”
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Robust feedback stability setup

We first need some basic conditions for this setup to make much sense:

(i) if we fix (v, w), there should exist a unique solution for (p, q), and

(ii) the solution (p, q) should depend causally on (v, w).

In other words, for all ∆, the operator Σ∆ should be invertible and the
inverse should be causal; we call this well-posedness of the

interconnection, and we assume this going forward

Definition 9.1 (Robust Feedback Stability). Assume the
interconnection is well-posed. Then it is robustly L2-stable with finite gain if
there exists γ ≥ 0 such that ∥Σ−1

∆ ∥L2→L2 ≤ γ for all ∆ ∈ ∆.

Note: this is the same as saying that ∥p∥2
L2 + ∥q∥2

L2 ≤ γ2(∥v∥2
L2 + ∥w∥2

L2 ) for
some γ ≥ 0 and all (v, w) ∈ L2[0, ∞): BIBO Stability!
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Reduced problem for robust stability

It turns out the problem is simpler than it looks. As notation, we let I

denote the identity operator on L2e[0, ∞).

Proposition 9.2 (Reduction to Stability of (I − M∆)−1). The
following statements are equivalent:

(i) the interconnection is robustly L2-stable with finite gain;

(ii) the operator I − M∆ : L2e[0, ∞) → L2e[0, ∞) has a causal inverse
(I − M∆)−1 which is robustly L2-stable with finite gain.

▶ Stability of the overall interconnection is equivalent to stability of the
much simpler mapping (I − M∆)−1.

▶ We now know where to focus our attention
▶ Looks suspiciously like our robust matrix invertibility problem!
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Proof of Proposition 9.2
(ii) ⇒ (i): Using the feedback interconnection equations, we can eliminate p = v + ∆(q)
and use linearity of M to find that

w = q − M(v + ∆(q)) = q − Mv − M∆(q)

or simply w + Mv = q − M∆(q). Since (I − M∆) has a causal inverse, it follows that
q = (I − M∆)−1(w + Mv) depends causally on (v, w), and hence so does p = v + ∆(q),
so the interconnection is well-posed. By assumption M , ∆, and (I − M∆)−1 are
L2-stable with finite gain; call the gains γ1, γ2, γ3. Then

∥q∥L2 ≤ γ3(∥w∥L2 + γ1∥v∥L2 )

and
∥p∥L2 ≤ ∥v∥L2 + γ2∥q∥L2

≤ ∥v∥L2 + γ2γ3(∥w∥L2 + γ1∥v∥L2 ).
From here simple manipulations show (i).
(i) ⇒ (ii): If the overall interconnection is well-posed and L2-stable with finite gain,
then in particular so is the mapping q = (I − M∆)−1(w + Mv) from (v, w) to q, so
(I − M∆)−1 must be causal and L2-stable with finite gain. •
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Reduced problem for robust stability

Proposition 9.2 allows us to study the simpler block diagram

∆

M

w q

pp̃

q = w + M∆(q)

⇐⇒ q = (I − M∆)−1(w)

▶ As before, we say this system is robustly L2-stable with finite-gain if it
is well-posed and if the L2 norms of the internal signals (p, q) can be
bounded in terms of the L2 norm of w, uniformly with respect to ∆.

▶ We now come to what additional assumptions to place on ∆

Section 9: Stability and Performance of Uncertain Systems 9-245



Introduction to quadratic constraints

▶ Let’s try to generalize our graph separation idea to systems

▶ For example, examine the class of causal operators with finite L2-gain

∆γ ≜ {∆ : L2e[0, ∞) → L2e[0, ∞) | ∆ causal and ∥∆∥L2→L2 ≤ γ}

▶ For ∆ ∈ ∆γ and q ∈ L2e[0, ∞) with p = ∆(q), we have

∥pT ∥L2 ≤ γ∥qT ∥L2 ⇐⇒ σ∥pT ∥2
L2

≤ γ2σ∥qT ∥2
L2

for all T ≥ 0 and any σ > 0. Rearranging, this the same as saying∫ T

0

[
q(t)
p(t)

]T
Π(σ)

[
q(t)
p(t)

]
dt ≥ 0, Π = σ

[
γ2I 0

0 −I

]
. (21)

▶ All I/O pairs satisfy a quadratic constraint.
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Example: Q.C. for parametric uncertainty

Scalar parametric uncertainty is defined by the class of operators

∆par = {∆ | ∆ memoryless, scalar, LTI, and ∥∆∥L2→L2 ≤ γ}

∆(q)(t) = δq(t) where |δ| ≤ γ.

For any σ > 0 with p(t) = ∆(q)(t) we obviously have for all t ≥ 0 that

σ|p(t)|2 ≤ σγ2|q(t)|2 ⇐⇒

[
q(t)
p(t)

]T

Π(σ)
[

q(t)
p(t)

]
≥ 0. (22)

▶ In contrast to the integral quadratic constraint in (21), this is a
stronger point-wise constraint, which holds at all points in time.

▶ A point-wise constraint like (22) will always imply (21) — just
integrate (22) over [0, T ] — but the converse is false.
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Example: Q.C. for repeated parametric uncertainty

What if we have repeated real parametric uncertainty

∆(q)(t) = δIn · q(t), δ ∈ [−γ, γ].

If we take any Q ⪰ 0 and any S such that S = −S∗, then[
q(t)

δInq(t)

]∗ [
γ2Q S

S∗ −Q

][
q(t)

δInq(t)

]
= (γ2 − δ2)q(t)∗Qq(t)

+ δq(t)∗Sq(t) + δq(t)∗S∗q(t)

= (γ2 − δ2)q(t)∗Qq(t)

≥ 0

so we again have a point-wise quadratic constraint. Note now though
that we have much more freedom, because we can choose Q and R as
opposed to just one scalar σ.
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Robust stability via dissipativity theory

Theorem 9.1 (Robust Stability). Consider the previously described
feedback interconnection. Assume that there exists a set of Hermitian
matrices Π ⊆ Hnq+np such that∫ T

0

[
q(t)

∆(q)(t)

]T
Π
[

q(t)
∆(q)(t)

]
dt ≥ 0 ∀q ∈ L2e[0, ∞), T ≥ 0,

for all Π ∈ Π and all ∆ ∈ ∆. If there exists Π ∈ Π such that[
M̂(jω)

Im

]∗

Π
[

M̂(jω)
Im

]
≺ 0, ω ∈ R∪{∞},

then the interconnection is robustly L2-stable with finite gain.

▶ This is a version of the “hard IQC theorem”; more later on this
▶ Can specialize to recover many standard(ish) feedback stability results
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Proof of Theorem 9.1
Let (A, B, C, D) be a minimal realization of M ; since M is stable, A is Hurwitz. By the
strict dissipativity theorem, the stated FDI involving M̂(jω) is equivalent to the system
being input-strictly dissipative with supply rate s(p, p̃) = −

[
p̃
p

]T
Π
[
p̃
p

]
with storage

function V (x) = xTP x with P ≻ 0. We compute along trajectories that

V̇ (x(t)) ≤ −
[
p̃
p

]T
Π
[
p̃
p

]
− ε2∥p∥2

2

= −
[
q−w
p

]T
Π
[
q−w
p

]
− ε2∥p∥2

2

= −
[
q
p

]T
Π
[
q
p

]
− [w0 ]T Π [w0 ] + 2 [w0 ]T Π

[
q
p

]
− ε2∥p∥2

2

≤ −
[
q
p

]T
Π
[
q
p

]
+ c1∥w∥2

2 + c2∥w∥2
∥∥[ q

p

]∥∥
2

− ϵ2∥p∥2
2

for some c1, c2 ≥ 0 which depend only on Π. Integrating over [0, T ] and using
V (x(T )) ≥ 0 and x(0) = 0 we obtain

0 ≤ −
∫ T

0

[
q
p

]T
Π
[
q
p

]
dt︸ ︷︷ ︸

≥0

+
∫ T

0
c1∥w∥2

2 + c2∥w∥2
∥∥[ q

p

]∥∥
2

− ϵ2∥p∥2
2 dt
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Proof of Theorem 9.1
So we arrive at the inequality

0 ≤
∫ T

0
c1∥w∥2

2 + c2∥w∥2
∥∥[ q

p

]∥∥
2

− ϵ2∥p∥2
2 dt, T ≥ 0.

For any a, b ∈ R the so-called Peter-Paul inequality is ab ≤ a2

2δ + δb2

2 for δ > 0. Using
this to upper bound the cross-term, we find that

0 ≤
∫ T

0

(
c1 +

c2

2δ

)
∥w∥2

2 +
c2δ

2
(∥q∥2

2 + ∥p∥2
2) − ϵ2∥p∥2

2 dt

or using the notation of truncated L2 signals, we have more simply that

0 ≤
(

c1 +
c2

2δ

)
∥wT ∥2

L2
+

c2δ

2
(∥qT ∥2

L2
+ ∥pT ∥2

L2
) − ϵ2∥pT ∥2

L2

Since q = w + Mp and M has finite gain, we further have that

∥qT ∥L2 ≤ ∥wT ∥L2 + c3∥pT ∥L2

∥qT ∥2
L2

≤ ∥wT ∥2
L2

+ c2
3∥pT ∥2

L2
+ 2c3∥wT ∥L2 ∥pT ∥L2

≤ (1 + c3)∥wT ∥2
2 + (c2

3 + c3)∥pT ∥2
2
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Proof of Theorem 9.1
Combining these inequalities and rearraging, we find that(

ϵ2 −
c2δ

2
(1 + c2

3 + c3)
)

∥pT ∥2
L2

≤
(

c1 +
c2

2δ
+

c2δ

2
(1 + c3)

)
∥wT ∥2

2.

Selecting δ sufficiently small, we therefore find that ∥pT ∥2
L2

≤ γ2∥wT ∥2
L2

for some
γ ≥ 0 and all T ≥ 0; by our previous calculations, a similar inequality holds for ∥qT ∥L2 .
We conclude that all internal signals are bounded in terms of w, and therefore the
interconnection is robustly L2-stable with finite gain. •

If the constraint Π ∈ Π admits an LMI description, then FDI condition
equivalent to LMI feasibility problem! Find P ≻ 0 and Π ∈ Π s.t.[

In 0

A B

]T [
0 P

P 0

][
In 0

A B

]
+
[

C D

0 Im

]T

Π
[

C D

0 Im

]
≺ 0. (23)
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The small-gain theorem

Consider again our example uncertainty set

∆γ ≜ {∆ | ∆ causal and ∥∆∥L2→L2 ≤ γ}

Corollary 9.1 (Small-Gain Theorem). If ∆ = ∆γ and
∥M∥L2→L2 < 1

γ , then the interconn. is robustly L2-stable with finite gain.

Proof: With Π =
[
γ2I 0

0 −I

]
the FDI reduces to γ2M̂(jω)∗M̂(jω) ≺ I which by our

previous results is precisely the specified gain condition ∥M∥H∞ < 1/γ •

The product of the gains around the loop should be less than 1.

▶ SISO Interpretation: the Nyquist plot of M̂ is strictly contained
within the circle of radius 1/γ in the complex plane.
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A strong passivity theorem

An operator ∆ : Lm
2 [0, ∞) → Lm

2 [0, ∞) is passive if

⟨qT , ∆(q)T ⟩L2 ≥ 0 for all q ∈ L2e[0, ∞), T ≥ 0.

Consider now the uncertainty set

∆p ≜ {∆ | ∆ causal, finite-gain, and passive}

Corollary 9.2 (Strong SPR Theorem). If ∆ = ∆p and
M̂(jω)∗ + M̂(jω) ≺ 0 for all ω ∈ R∪{∞}, then the interconnection is
robustly L2-stable with finite gain.

▶ This is called a strong strictly positive real (SPR) condition on
−M , or equivalently, that −M is an input-strictly passive system

▶ SISO Interpretation: Re(M̂(jω)) ≤ −ϵ for some ϵ > 0 and for all
ω ∈ R∪{∞}; the Nyquist plot of M̂ is strictly contained in C<0.
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The circle criterion (SISO)

It’s often of interest just to consider ∆ blocks defined by memoryless nonlinear
functions such as saturation, deadband, etc. Given a nonlinear (possibly
time-varying) function Φ : [0, ∞) × R → R satisfying Φ(t, 0) = 0, we can define
an associated operator ∆Φ(q)(t) = Φ(t, q(t)). We say ∆Φ is sector bounded if[

q

Φ(t, q)

]T [
−2αβ (α + β)

(α + β) −2

][
q

Φ(t, q)

]
≥ 0, t ≥ 0, q ∈ R

for some α, β ∈ R with β ≥ α ≥ 0; we let ∆αβ denote the uncertainty set.

(Other cases for α, β are similarly treated.)

Interpretation: The function is
bounded between the lines

p = αq and p = βq.
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The circle criterion (SISO, α > 0)

Corollary 9.3 (Circle Criterion). If ∆ = ∆αβ and α > 0, then the
interconnection is robustly L2-stable with finite gain if

|M̂(jω) − c|2 > r2, where c = α + β

2αβ
, r = β − α

2αβ
.

Proof: Follows by direct manipulation of the FDI. •

The Nyquist plot of the transfer
function does not enter the
closed disk of radius r > 0

centred at s = c.
-3 -2 -1 0 1

-2

-1

0

1

2
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The circle criterion (SISO, α = 0)

Corollary 9.4 (Circle Criterion). If ∆ = ∆αβ with α = 0 and β > 0,
then the interconnection is robustly L2-stable with finite gain if

Re(M̂(jω)) <
1
β

.

Proof: Follows by direct manipulation of the FDI. •

The Nyquist plot of the transfer
function lies to the left of the
vertical line Re{s} = 1/β.

-2 0 2

-3

-2

-1

0

1

2

3
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Example: saturation in a SISO loop

K
(

1 + 1
sTi

)
1 G(s)

Gd(s)

r e

ũ

− u

q
p

y

d

−

▶ The deadzone nonlinearity lies within the sector [0, 1], and therefore belongs to
the set ∆01. We can use the circle criterion to test robust stability of the
interconnection as a function of K, Ti, either using the FDI or the LMI.

▶ Feasibility of the FDI/LMI is only a sufficient condition for stability of this loop,
because the sector [0, 1] captures a much larger set of operators than just the
deadzone nonlinearity. To reduce conservatism, you need a tighter description of
the deadzone nonlinearity via IQC theory.
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Robust L2 performance

Mqp Mqw

Mzp Mzw

∆

q p

wz

With z = F(M, ∆)(w), how can we
bound worst-case performance

sup
∆∈∆

∥F(M, ∆)∥L2→L2

▶ Note: The induced L2-gain is well-defined whether ∆ is linear or
nonlinear . . . no problem.

▶ State-space realization for M : ẋ

q

z

 =

 A Bp Bw

Cq Dqp Dqw

Cz Dzp Dzw


 x

p

w


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Robust L2 performance

▶ Our goal: Formulate an LMI for robust performance.

▶ To ensure that ∥F(M, ∆)∥L2→L2 < γ we want ∃ε > 0 s.t.∫ T

0

[
z(t)
w(t)

][
I 0
0 −γ2I

]
︸ ︷︷ ︸

≜Πp
γ

[
z(t)
w(t)

]
dt ≤ −ε2

∫ T

0
w(t)Tw(t) dt ∀ T ≥ 0.

▶ With this notation, our robust stability LMI reads as: find P ≻ 0,
Π ∈ Π s.t. In 0

A Bp

Cq Dqp

0 Inp


T 0 P 0

P 0 0

0 0 Π


 In 0

A Bp

Cq Dqp

0 Inp

 ≺ 0

▶ First column corresponds to signal x . . . second column corresponds
to signal p . . . can we just append another column for the signal w?
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LMI for robust L2 performance

Theorem 9.2 (Robust L2-Performance). Consider the previously
described feedback interconnection. Assume that there exists a set of
Hermitian matrices Π ⊆ Hnq+np such that∫ T

0

[
q(t)

∆(q)(t)

]T
Π
[

q(t)
∆(q)(t)

]
dt ≥ 0 ∀q ∈ L2e[0, ∞), T ≥ 0,

and all Π ∈ Π and all ∆ ∈ ∆. If there exists P ≻ 0 and Π ∈ Π such that
In 0 0
A Bp Bw

Cq Dqp Dqw

0 Inp 0
Cz Dzp Dzw

0 0 Inw



T 0 P 0 0
P 0 0 0
0 0 Π 0
0 0 0 Πp

γ




In 0 0
A Bp Bw

Cq Dqp Dqw

0 Inp 0
Cz Dzp Dzw

0 0 Inw

 ≺ 0

then the closed-loop system is robustly L2-stable with finite gain and
sup∆∈∆ ∥F(M, ∆)∥L2→L2 < γ.
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Proof of Theorem 9.2
The upper two-by-two block of this LMI reads as In 0

A Bp

Cq Dqp

0 Inp

T [
0 P 0
P 0 0
0 0 Π

] In 0
A Bp

Cq Dqp

0 Inp

+
[

Cz Dzp

]T [
Cz Dzp

]︸ ︷︷ ︸
⪰0

≺ 0

from which we conclude that the first term is negative definite. This is precisely our
robust stability LMI (23), so we conclude that the interconnection is robustly L2-stable
with finite gain.

Now let w ∈ L2e[0, ∞) be the input, with corresponding unique trajectory trajectory
(x, p, q, z) ∈ L2e[0, ∞). Left and right multiplying the LMI by (x, p, w) and we obtain[

x

ẋ

]T [
0 P

P 0

][
x

ẋ

]
+
[

q

p

]T

Π
[

q

p

]
+
[

z

w

]
Πp
γ

[
z

w

]
≤ −ε2∥w∥2

2

for some small ε > 0.
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Proof of Theorem 9.2
Defining V (x) = xTP x the previous inequality states that

V̇ (x(t)) +
[

q(t)
p(t)

]T

Π
[

q(t)
p(t)

]
+
[

z(t)
w(t)

]
Πp
γ

[
z(t)
w(t)

]
≤ −ε2∥w(t)∥2

2

Integrating over [0, T ] and using x(0) = 0 we obtain

V (x(T )) +
∫ T

0

[
q(t)
p(t)

]T

Π
[

q(t)
p(t)

]
dt︸ ︷︷ ︸

≥0

+
∫ T

0

[
z(t)
w(t)

]
Πp
γ

[
z(t)
w(t)

]
+ ε2∥w(t)∥2

2 dt ≤ 0

Since V (x(T )) ≥ 0, we conclude that∫ T

0

[
z(t)
w(t)

]
Πp
γ

[
z(t)
w(t)

]
dt ≤ −

∫ T

0
ε2∥w(t)∥2

2 dt

which completes the proof. •
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Robust H2 performance

Mqp Mqw

Mzp Mzw

∆

q p

wz

With z = F(M, ∆)w, how can we
bound worst-case performance

sup
∆∈∆

∥F(M, ∆)∥H2

▶ Problem: The H2 norm is defined for LTI systems; if ∆ is nonlinear,
the above analysis problem makes no sense!

▶ In fact, there is no unique generalization of the H2-norm to
nonlinear systems. We will discuss one generalization based on the
stochastic input interpretation.
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Robust H2 performance

We consider the state-space realization for M :

M :

 ẋ

q

z

 =

 A Bp Bw

Cq Dqp 0
Cz Dzp 0


 x

p

w


with p = ∆(q).

As we did before when studying the H2 norm, consider a white noise input
w. We define the 2-norm of the mapping F(M, ∆) to be the average
asymptotic variance of the output z:

∥F(M, ∆)∥2
2 ≜ lim sup

T →∞

1
T

∫ T

0
E
{

z(t)Tz(t)
}

dt,
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Robust H2 performance

Theorem 9.3 (Robust H2 Performance). Consider the previously
described feedback interconnection. Assume that there exists a set of
Hermitian matrices Π ⊆ Hnq+np such that∫ T

0

[
q(t)

∆(q)(t)

]T
Π
[

q(t)
∆(q)(t)

]
dt ≥ 0 ∀q ∈ L2e[0, ∞), T ≥ 0,

and all Π ∈ Π and all ∆ ∈ ∆. If there exists Y ≻ 0 and Π ∈ Π such that
In 0
A Bp

Cq Dqp

0 Inp

Cz Dzp


T 0 Y 0 0

Y 0 0 0
0 0 Π 0
0 0 0 Inz




In 0
A Bp

Cq Dqp

0 Inp

Cz Dzp

 ≺ 0

trace(BT
wY Bw) < γ2

then the interconnection is robustly L2-stable with finite gain and
sup∆∈∆ ∥F(M, ∆)∥2 < γ.
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Robust synthesis of controllers

G

K

∆

y u

wz

q p

G :

 ẋ

q

z

y

 =

 A Bp Bw Bu

Cq Dqp Dqw Dqu

Cz Dzp Dzw Dzu

Cy Dyp Dyw 0

 x

p

w

u



Problem: Design a (dynamic) feedback controller K such that the
closed-loop system achieves robust performance on the channel w 7→ z.

We combine our nominal synthesis and robust performance procedures:
1. close the loop with K
2. write down the LMI for robust performance, and
3. change of variables to v = (X, Y , . . .)
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Robust synthesis of controllers

For example, for L2-performance: find v, Π ∈ Π such that P (v) ≻ 0 and

(⋆)T

 0 I 0 0
I 0 0 0
0 0 Π 0
0 0 0 Πp

γ




I 0 0
A(v) Bp(v) Bw(v)
Cq(v) Dqp(v) Dqw(v)

0 I 0
Cz(v) Dzp(v) Dzw(v)

0 0 I

 ≺ 0.

This problem is non-convex, and no convexifying transformation has ever been found.
Observe however that if Π11 ⪰ 0, then

1. For fixed Π ∈ Π, the above is an LMI in v

2. For fixed v, the above is an LMI in Π ∈ Π

This idea can be further developed into an iterative numerical method for solving robust
synthesis problems; no guarantees, but often works well.
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Robust state-feedback synthesis

While robust output feedback design is generally non-convex,
the robust state feedback design problem can be convexified.

G

K

∆

x u

wz

q p

G :

[
ẋ

q

z

]
=

[
A Bp Bw Bu

Cq Dqp Dqw Dqu

Cz Dzp Dzw Dzu

] x

p

w

u


u = Kx

p = ∆(q)

Mcl :

ẋ = (A + BuK)x + Bpp + Bww

q = (Cq + DquK)x + Dqpp + Dqww

z = (Cz + DzuK)x + Dzpp + Dzww
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Robust state-feedback synthesis

The loop achieves robust performance on w 7→ z if ∃P ≻ 0, Π ∈ Π s.t.

(⋆)T

 0 P 0 0
P 0 0 0
0 0 Π 0
0 0 0 Πp




In 0 0
A + BuK Bp Bw

Cq + DquK Dqp Dqw

0 Inp 0
Cz + DzuK Dzp Dzw

0 0 Inw

 ≺ 0

With Y = P −1, Z = KY , congruence transformation diag(Y , I, I) yields

(⋆)T

 0 In 0 0
In 0 0 0
0 0 Π 0
0 0 0 Πp




In 0 0
AY + BuZ Bp Bw

CqY + DquZ Dqp Dqw

0 Inp 0
CzY + DzuZ Dzp Dzw

0 0 Inw

 ≺ 0

Still non-convex! Products of Π, Πp with Y , Z.
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The “dualization” lemma

Lemma 9.1. Let X ∈ Sn be nonsingular. Then[
0
I

]T

X

[
0
I

]
⪰ 0 and

[
I

W

]T

X

[
I

W

]
≺ 0

if and only if[
I

0

]T

X−1

[
I

0

]
⪯ 0 and

[
W T

−I

]T

X−1

[
W T

−I

]
≻ 0.

▶ First line: X p.s.d. on V = Im [ 0
I ] and neg. def. on the

complementary subspace W = Im [ I
W ]

▶ Second line: X−1 n.s.d. on V⊥ and X−1 pos. def. on W⊥
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Robust state-feedback synthesis

Shuffling the rows and columns, our inequality can be written as

(⋆)T


0 0 0 In 0 0
0 Π22 0 0 Π12 0
0 0 Πp

22 0 0 Πp
12

In 0 0 0 0 0
0 ΠT

12 0 0 Π11 0
0 0 (Πp

12)T 0 0 Πp
11


︸ ︷︷ ︸

≜X


In 0 0
0 Inp 0
0 0 Inw

AY + BuZ Bp Bw

CqY + DquZ Dqp Dqw

CzY + DzuZ Dzp Dzw


︸ ︷︷ ︸

≜
[
I
W

]
≺ 0

We need to assume: Π is nonsingular and that

Π11 ⪰ 0, Π−1 = Π̃ =
[

Π̃11 Π̃12
Π̃T

12 Π̃22

]
satisfies Π̃22 ⪯ 0

We already have

Πp =
[

1
γ2 Inz 0

0 −Inw

]
with Πp

11 ⪰ 0, (Πp)−1 =
[

γ2Inz 0
0 −Inw

]
with (Πp)−1

22 ⪯ 0
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Robust state-feedback synthesis

With

A(v) ≜ AY + BuZ, C1(v) ≜ CqY + DquZ, C2(v) ≜ CzY + DzuZ

the dualization lemma yields the convex inequality

(⋆)T


0 0 0 In 0 0
0 Π̃22 0 0 Π̃12 0
0 0 −Inw 0 0 0

In 0 0 0 0 0
0 Π̃T

12 0 0 Π̃11 0
0 0 0 0 0 γ2Inz




A(v)T C1(v)T C2(v)T

BT
p DT

qp DT
zp

BT
w DT

qw DT
zw

−In 0 0
0 −Inq 0
0 0 −Inz

 ≻ 0

or (again, reshuffling rows and columns)

(⋆)T


0 In 0 0 0 0

In 0 0 0 0 0
0 0 Π̃11 Π̃12 0 0
0 0 Π̃T

12 Π̃22 0 0
0 0 0 0 −Inw 0
0 0 0 0 0 γ2Inz




A(v)T C1(v)T C2(v)T

−In 0 0
BT
p DT

qp DT
zp

0 −Inq 0
BT
w DT

qw DT
zw

0 0 −Inz

 ≻ 0
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10. Introduction to Integral Quadratic
Constraints

• 10.1 what is an IQC?
• 10.2 IQCs in the time-domain
• 10.3 the soft IQC theorem
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Introduction to integral quadratic constraints

Recall: Scalar parametric uncertainty

∆par = {∆ | ∆ memoryless, scalar, LTI, and ∥∆∥L2→L2 ≤ γ}.

or more simply p(t) = δq(t) with δ ∈ [−γ, γ]. We know this satisfies the
point-wise quadratic constraint[

q(t)
p(t)

]T [
σγ2 0

0 −σ

] [
q(t)
p(t)

]
≥ 0, ∀ σ > 0, t ≥ 0.

We also know that if q ∈ L2[0, ∞), then p = δq ∈ L2[0, ∞). In this case,
we could take Fourier transforms and write p̂(jω) = δq̂(jω), leading to[

q̂(jω)
p̂(jω)

]∗ [
σγ2 0

0 −σ

] [
q̂(jω)
p̂(jω)

]
≥ 0, σ > 0, ω ∈ R.
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Introduction to integral quadratic constraints

Idea: If we are allowed to work in the frequency domain, can we add
even more flexibility by making σ frequency dependent? Yes!

Roughly, we could replace σ by σ(jω), as long as σ(jω) > 0, yielding[
q̂(jω)
p̂(jω)

]∗ [
σ(jω)γ2 0

0 −σ(jω)

] [
q̂(jω)
p̂(jω)

]
≥ 0.

▶ Instead of just a scalar σ > 0, we can now search over a whole set of
of transfer functions σ(jω) when we want to satisfy the stability
conditions derived earlier!

As some helpful frequency-domain notation, we let

RL̂∞ ≜ {Π̂ : C → C | Π̂(s) is rational, proper, and has no poles on jR}

RH∞ ≜ {Π̂ : C → C | Π̂(s) is rational, proper, and has no poles in C≥0}
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Definition of an IQC

Definition 10.1 (Frequency-Domain IQC). Let Π̂ ∈ RL̂(q+p)×(q+p)
∞

be a Hermitian IQC multiplier, and let ∆ : Lq2e[0, ∞) → Lp2e[0, ∞) be a causal
operator with finite L2-gain. We say ∆ satisfies the integral quadratic
constraint (IQC) defined by Π̂ if

〈[
q̂

p̂

]
, Π̂
[

q̂

p̂

]〉
L̂2

≥ 0 ⇐⇒
∫ ∞

−∞

[
q̂(jω)
p̂(jω)

]∗

Π̂(jω)
[

q̂(jω)
p̂(jω)

]
dω ≥ 0,

for all q ∈ Lq2[0, ∞) with corresponding outputs p = ∆(q) ∈ Lp2[0, ∞).
Notationally, we write that ∆ ∈ IQC(Π̂).

▶ A quadratic relationship between all possible I/O pairs
▶ Note: the restriction that q, p ∈ L2[0, ∞) is crucial. If

q ∈ L2e[0, ∞), the above generally makes no sense, because the
Fourier transform may not be defined.
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Example: IQC for parametric uncertainty

Scalar parametric uncertainty is defined by the class of operators

∆par = {∆ | ∆ memoryless, scalar, LTI, and ∥∆∥L2→L2 ≤ γ}.

Then ∆ ∈ IQC(Π̂par) where

Π̂par ≜

{
Π̂

∣∣∣∣∣ Π̂(jω) = σ̂(jω)
[

γ2 0
0 −1

]
, σ̂ = σ̂∗ ∈ RL̂∞,

σ̂(jω) > 0 for all ω ∈ R∪{∞}

}
.

▶ In practice, one just looks at a finite-dimensional subspace of RL̂∞,
expands σ̂ in a basis for that subspace, and then you just have a set
of scalar coefficients which describe σ̂.
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Example: monotone and slope-Restricted nonlinearity

▶ Memoryless nonlinear functions such as saturation, deadband, etc. are
not just sector-bounded, but have bounded slopes.

▶ A function Φ : R → R satisfying Φ(0) = 0 is slope-restricted if[
q − q′

Φ(q) − Φ(q′)

]T [
−2αβ (α + β)

(α + β) −2

] [
q − q′

Φ(q) − Φ(q′)

]
≥ 0, ∀ q, q′ ∈ R

where β ≥ α.
▶ Φ is slope-restricted =⇒ Φ is sector bounded.
▶ If β = +∞ and α = 0, then Φ is monotone and we can divide

through by β to obtain[
q − q′

Φ(q) − Φ(q′)

]T [
0 1
1 0

] [
q − q′

Φ(q) − Φ(q′)

]
≥ 0, ∀ q, q′ ∈ R
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Example: the Zames-Falb IQC

▶ A huge class of IQCs for slope-restricted and monotone nonlinearities
▶ Any slope-restricted Φ satisfies the IQC defined by

Π̂ZF(jω) =
[

−α 1
β −1

]T [
0 m̂(jω)

m̂∗(jω) 0

][
−α 1
β −1

]

where m is an impulse response constructed as

m(t) = h0δ(t) − h(t), h0 > 0, h(t) ≥ 0, ∥h∥L1 < h0.

▶ This is not obvious! Example: m̂(s) = s+2
s+1 is in this class.

▶ In the MIMO case, can be used for describing gradients of convex
functions; lots of interesting research going on in this area.
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The philosophy of IQC analysis

▶ An IQC tells you that the possible input-output pairs of a given
operator are constrained; it provides a (possibly, very coarse)
description of the operator

▶ If your operator satisfies two IQCs Π̂1, Π̂2, they probably each tell you
something useful about the operator, and you can combine them as

Π̂(jω) = σ1Π̂1(jω) + σ2Π̂2(jω), σ1, σ2 ≥ 0

and the operator will satisfy the IQC defined by Π̂. You can then
optimize over the combination. This idea even extends to infinite
combinations . . .

▶ The more IQCs you can find, the better! Just add them up. We will
go over some basic ones soon . . .
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IQCs in the time-domain

We can use Plancherel’s Theorem to translate our definition back to the
time-domain; we need the following simple result first.

Lemma 10.1. Every Hermitian Π̂ ∈ RL̂(q+p)×(q+p)
∞ can be factored as

Π̂(jω) = Ψ̂∗(jω)XΨ̂(jω)

where X = XT ∈ R•×• is a symmetric matrix and Ψ̂ ∈ RH•×(q+p)
∞

▶ Ψ̂ is typically a “tall” transfer matrix; we think of Ψ as filter the
input/output pairs (q, p) of ∆ to produce a new signal zΨ

∆q p

Ψ
zΨ
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IQCs in the time-domain

∆q p

Ψ
zΨ

Π̂(jω) = Ψ̂∗(jω)XΨ̂(jω)

We can now express the IQC in the time-domain as∫ ∞

−∞

[
q̂(jω)
p̂(jω)

]∗

Π̂(jω)
[

q̂(jω)
p̂(jω)

]
dω =

∫ ∞

−∞

[
q̂(jω)
p̂(jω)

]∗

Ψ̂(jω)∗XΨ̂(jω)
[

q̂(jω)
p̂(jω)

]
dω

=
∫ ∞

−∞
ẑψ(jω)∗XẑΨ(jω) dω

=
∫ ∞

0
zΨ(t)TXzΨ(t) dt

= ⟨zΨ, XzΨ⟩L2
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The soft IQC theorem: a graph separation result

Theorem 10.1 (Soft IQC Theorem). Consider the previously
discussed feedback interconnection, and assume additionally that

(i) the interconnection of M and τ∆ is well-posed for all τ ∈ [0, 1];

(ii) τ∆ ∈ ∆ for all τ ∈ [0, 1];

(iii) there exists a set of multipliers Π̂ ⊂ RL̂(q+p)×(q+p)
∞ such that

τ∆ ∈ IQC(Π̂) for all Π̂ ∈ Π̂ and all τ ∈ [0, 1].

Under these conditions, if there exists a Π̂ ∈ Π̂ such that[
M̂(jω)

Im

]∗

Π̂(jω)
[

M̂(jω)
Im

]
≺ 0, ∀ ω ∈ R∪{∞},

then the interconnection is robustly L2-stable with finite gain.
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Using the soft IQC theorem

To check the main FDI condition, one factorizes the multiplier set

Π̂ = {Ψ̂∗XΨ̂ | X ∈ X} ,

where Ψ̂ ∈ RH•×(q+p)
∞ and the set X can be represented as the feasible

set of an LMI. The FDI condition becomes[
M̂(jω)

Im

]∗

Ψ̂(jω)∗XΨ̂(jω)
[

M̂(jω)
Im

]
≺ 0, ∀ ω ∈ R∪{∞}.

Let (A, B, C, D) be a realization for the system Ψ̂
[

M̂
Im

]
. Applying the

KYP Lemma, an equivalent LMI test: find P ∈ S• and X ∈ X such that In 0

A B
C D


T  0 P 0

P 0 0

0 0 X


 In 0

A B
C D

 ≺ 0.
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Comments on soft IQC theorem

Similarities with Theorem 9.1:
▶ We assume the loop is well-posed
▶ We assume ∆ satisfies some quadratic constraints
▶ The main condition on M is again an FDI

Differences with Theorem 9.1:
▶ The quadratic constraint matrix Π is now frequency-dependent
▶ In the time-domain, the quadratic constraints need only hold for

T → ∞ (“soft”) as opposed to for all T ≥ 0 (“hard”)
▶ Some minor but important technical changes involving parameter τ ;

these are what allows the relaxation from “hard” to “soft” constraints.
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Proof of Theorem 10.1
For notational simplicity, we let π denote the quadratic form defined by the IQC, and
we write the conditions on ∆ and M as

π(q, τ∆(q)) ≥ 0 (24a)
π(Mp, p) ≤ −ϵ∥p∥2

L2
(24b)

for all p, q ∈ L2[0, ∞) and all τ ∈ [0, 1]. The proof proceeds by induction. Fix τ ∈ [0, 1]
and assume that (I − τM∆)−1 is is L2-stable, i.e., maps Lq2[0, ∞) to Lq2[0, ∞). In
other words, for any w ∈ Lq2[0, ∞) there exists a unique solution q ∈ Lq2[0, ∞) to the
equation

q − τM∆(q) = w. (25)
Let q ∈ Lq2[0, ∞) be arbitrary and set p = τ∆(q); note that p ∈ Lp2[0, ∞) since ∆ is
bounded. From (24a) we have

0 ≤ π(q, p) = π(Mp, p) + π(q, p) − π(Mp, p)

= π(Mp, p) + [π(Mp + q − Mp, p) − π(Mp, p)]

≤ −ϵ∥p∥2
L2

+ [π(Mp + q − Mp, p) − π(Mp, p)] ,

where we have used (24b).
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Proof of Theorem 10.1
In the above inequality, note that since p and q are in L2[0, ∞) and M is L2-stable with
finite gain, all signals belong to L2[0, ∞). Since π is defined by Π̂ which is bounded,
there exist constants c1, c2 ≥ 0 depending only on Π such that

ϵ∥p∥2
L2

≤ c1

∥∥∥∥(Mp

p

)∥∥∥∥
L2

·

∥∥∥∥(q − Mp

0

)∥∥∥∥
L2

+ c2

∥∥∥∥(q − Mp

0

)∥∥∥∥2

L2

. (26)

Using the Peter–Paul inequality, we can further bound the cross term as

c1

∥∥∥∥(Mp

p

)∥∥∥∥
L2

·

∥∥∥∥(q − Mp

0

)∥∥∥∥
L2

≤
c1δ

2

∥∥∥∥(Mp

p

)∥∥∥∥2

L2

+
c1

2δ

∥∥∥∥(q − Mp

0

)∥∥∥∥2

L2

=
c1δ

2
[
∥Mp∥2

L2
+ ∥p∥2

L2

]
+

c1

2δ
∥q − Mp∥2

L2

≤
c1δ(1 + ∥M∥2)

2
∥p∥2

L2
+

c1

2δ
∥q − Mp∥2

L2
.

for any δ > 0. Inserting this into our inequality (26), we find that(
ϵ −

c1δ(1 + ∥M∥2)
2

)
∥p∥2

L2
≤
(

c1

2δ
+ c2

)
∥q − Mp∥2

L2
.
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Proof of Theorem 10.1
Selecting δ < 2ϵ

c1(1+∥M∥2) , the term in brackets is strictly positive and we find that

α∥p∥L2 ≤ ∥q − Mp∥L2 (27)

where α2 ≜
(
c1
2δ + c2

)−1
(

ϵ − c1δ(1+∥M∥2)
2

)
> 0 does not depend on ∆ or on τ .

Using (27), linearity of M , and boundedness of M , we may compute that

∥q∥L2 = ∥q − Mp + Mp∥L2 ≤ ∥q − Mp∥L2 + ∥Mp∥L2

≤ ∥q − Mp∥L2 + ∥M∥∥p∥L2

= (1 + ∥M∥α−1)∥q − Mp∥L2

= (1 + ∥M∥α−1)︸ ︷︷ ︸
≜γ−1

∥q − τM∆(q))∥L2

and we therefore conclude that

∥q − τM∆(q)∥L2 ≥ γ∥q∥L2 , q ∈ L2[0, ∞).

In words, the operator I − τM∆ : Lq2[0, ∞) → Lq2[0, ∞) is bounded below on L2.
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Proof of Theorem 10.1
Since (by assumption at this point) (I − τM∆)−1 is L2-stable, we have for any, we
have for any w ∈ L2[0, ∞) that

w = (I − τM∆)((I − τM∆)−1(w))

≥ γ(I − τM∆)−1(w)

which shows that (I − τM∆)−1 is robustly L2-stable with finite gain less than or equal
to γ. To summarize, we have established that if τ ∈ [0, 1] is such that (I − τM∆)−1

maps Lq2[0, ∞) into Lq2[0, ∞), then the assumptions guarantee the finite-gain bound

∥(I − τM∆)−1∥L2→L2 ≤ γ. (28)

Now observe that since M and ∆ are bounded, so is M∆, and we may define

ρcrit ≜
1

∥M∆∥γ

and choose ρ ∈ (0, ρcrit). Proceeding inductively, we now claim that if τ ∈ [0, 1]

is such that (I − τM∆)−1 maps Lq2[0, ∞) into Lq2[0, ∞), and τ + ρ ∈ [0, 1], then
(I −(τ +ρ)M∆)−1 also maps L2[0, ∞) into L2[0, ∞), and hence by the above argument,
we have that ∥(I − (τ + ρ)M∆)−1∥ ≤ γ.

Section 10: Introduction to Integral Quadratic Constraints 10-290

Proof of Theorem 10.1
To show this, we wish to establish that for any w ∈ Lq2[0, ∞), the equation

q − (τ + ρ)M∆(q) = w ⇐⇒ q − τM∆(q) = ρM∆(q) + w

is uniquely solvable for a finite-energy solution q ∈ Lq2[0, ∞). This equation is in turn
equivalent to

q = (I − τM∆)−1(ρM∆(q) + w). (29)
We interpret equation (29) in terms of the block diagram below, where both blocks
define bounded operators on L2[0, ∞).

(I − τM∆)−1

ρM∆

w

q
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Proof of Theorem 10.1
Letting z ∈ Lq2[0, ∞), we can bound the composition of these two operators as

∥(I − τM∆)−1(ρM∆(z))∥ ≤ ∥(I − τM∆)−1∥ · ∥ρM∆(z)∥

≤ γρ∥M∆∥∥z∥

= (ρ/ρcrit)︸ ︷︷ ︸
<1

∥z∥

and therefore the composition has induced norm strictly less than one. It follows
from the small-gain theorem then and from the above equivalences that the operator
(I −(τ +ρ)M∆)−1 is bounded, and hence maps L2[0, ∞) into L2[0, ∞), so we conclude
that

∥(I − (τ + ρ)M∆)−1∥ ≤ γ.

Section 10: Introduction to Integral Quadratic Constraints 10-292

Proof of Theorem 10.1
To complete the proof, note that with τ = 0, (I − τM∆)−1 = I obviously maps
L2[0, ∞) into L2[0, ∞). We can apply the previous argument to conclude then that
(I − ρM∆)−1 is bounded (uniformly in ∆) for any ρ ∈ (0, ρcrit). Repeating the process
from our new starting point at τ = ρ, we can conclude that (I − 2ρM∆)−1 is bounded
(uniformly in ∆) for any ρ ∈ (0, ρcrit). Since ρcrit is independent of τ , we repeat this
process until we have covered the interval [0, 1], and thereby conclude that (I − M∆)−1

is bounded uniformly in ∆. •
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