
ECE 1659H Assignment 1 Solutions
Winter 2023

Instructor: J. W. Simpson-Porco

Department of Electrical and Computer Engineering
University of Toronto

Note: You are always free to use MATLAB for any calculation, as long as you understand what
MATLAB is doing and provide sufficient commentary.

Problem 1 (Gain and Phase Margins in a SISO Loop)

Consider the standard feedback arrangement shown in Figure 1, where L(s) is a SISO transfer
function.

L(s)r y

−

Figure 1: Feedback interconnection for Problem 5.

Gain and phase margins are the classical tools used to assess robustness of this feedback system;
refresh yourself on these concepts if necessary, including their interpretation in terms of the Nyquist
plot of L(s). While sufficiently large gain and phase margins are necessary for a robust SISO
design, they are in fact not sufficient. Consider the following loop gain given by Seiler, Packard,
and Gahinet:

L(s) = −47.252s7 − 20.234s6 − 135.4086s5 + 61.6166s4 + 804.6454s3 + 600.0611s2 + 59.1451s + 1.888
99.8696s7 + 175.5045s6 + 673.7378s5 + 890.5109s4 + 553.1742s3 − 49.2268s2 + 12.1448s + 1

Using MATLAB, compute the gain and phase margins for this loop. Then, plot the Nyquist curve.
Are the gain and phase margins representative of the actual ability of the system to tolerate
perturbations in L? Explain.
Solution: We can begin by plotting the Nyquist plots, with a few different zooms so that we make
sure we understand things.
In Figure 2 we get the overall picture. There are two counter-clockwise encirclements of s = −1,
and you can check that L(s) has two poles in the RHP, so we conclude via Nyquist’s criteria that
the closed-loop system is stable.
Importantly, note from Figure 3 that the curves are not touching around -0.75. From Figure 4, we
can eye-ball the gain margins to be about 1/0.45 ≈ 2 and 45◦. As you know, the phase margin just
considers adding phase uncertainty to L(s), which means rotating the Nyquist plot, and the gain
margin just considers adding gain uncertainty to L(s), which means scaling the Nyquist plot. Note
though that as we scale the Nyquist plot with a multiple from 1 (the nominal system) to 2 (the
upper gain margin), there is an intermediate range where the curves in Figure 3 pass very close

1 / 11



-6 -5 -4 -3 -2 -1 0 1 2

-4

-3

-2

-1

0

1

2

3

4

Figure 2

-0.85 -0.8 -0.75 -0.7 -0.65 -0.6

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Figure 3

to the critical point. If we scaled the gain to say, 1.5, and then added some very small amount of
phase uncertainty, we would change the number of encirclements and the closed-loop system would
become unstable. We conclude that the system is substantially less robust than the gain and phase
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margins alone suggest, because these margins consider only independent one-at-a-time variations
in gain and phase, and not joint variations.
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Problem 2 (Robustness of MIMO Spinning Satellite)

This problem tugs at a similar thread to the first problem, but in a MIMO state-space model.
A satellite spinning around one of its principal axes can be described after linearization by the
minimal LTI state-space model with parameters

A =
[

0 a
−a 0

]
, B =

[
1 0
0 1

]
, C =

[
1 a

−a 1

]
, D =

[
0 0
0 0

]
,

where a = 10.

(i) Verify that with the output feedback controller u = −Ky where K = I2, the closed-loop
system is asymptotically stable.

(ii) Suppose now that there is uncertainty in how strongly the inputs enter the system, modeled
as parametric uncertainty in the B matrix which now becomes

B′ =
[
1 + ϵ1 0

0 1 + ϵ2

]
.

where (ϵ1, ϵ2) ∈ R2. Study the stability of the uncertain system (A, B′, C, D) with the same
controller as in part (i), for different values of (ϵ1, ϵ2) between −0.5 and 0.5. You could do
this analytically, or you could make a numerical plot by colouring in regions of interest in the
(ϵ1, ϵ2) plane. Describe what you find, and explain the implications of your results.

Solution: (i): With this controller the closed-loop A matrix is given by

Acl = A − BKC =
[

0 a
−a 0

]
−
[

1 a
−a 1

]
=
[
−1 0
0 −1

]

The system has two eigenvalues at −1 and is therefore stable.
(ii): With this new B matrix the closed-loop system matrix becomes

Acl = A − B′KC =
(

−ϵ1 − 1 a − a (ϵ1 + 1)
a (ϵ2 + 1) − a −ϵ2 − 1

)

To check stability of this system, we compute that

det(sIn − Acl) = s2 + (2 + ϵ1 + ϵ2)s + (1 + ϵ1 + ϵ2 + (a2 + 1)ϵ1ϵ2).

By the Routh-Hurwitz criteria for a second-order system, the system is stable if the coefficients of
all powers of s are positive.
Let’s look at some cases. If ϵ1 = 0 and ϵ2 is non-zero, then we obtain the polynomial

π1(s) = s2 + (2 + ϵ2)s + (1 + ϵ2)

so the system is stable for ϵ2 > −1. Similarly, if ϵ2 = 0 and ϵ1 is non-zero, we obtain the polynomial

π2(s) = s2 + (2 + ϵ1)s + (1 + ϵ1)
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so we conclude that the system is stable for ϵ1 > −1. We conclude that if we change ϵ1 and ϵ2
individually, then the system is quite robust to changes in these variables. What happens if we
change them simultaneously? As a particular case, consider ϵ2 = −ϵ1 = ϵ, in which case we obtain
the polynomial

π3(s) = s2 + 2s + (1 − (1 + a2)ϵ2).

We conclude now that the system is stable only when

ϵ <
1√

1 + a2
≈ 0.1.

The system is therefore actually very sensitive to simultaneous variation in the uncertain param-
eters. This shows that multivariable stability robustness can be subtle; you can be robust when
you vary each parameter individually, but this just corresponds to moving along the cardinal axes
in parameter space. If you explore other directions in the parameter space, you may encounter
instability very quickly, as we do here. In this example, we would go back and conclude that our
original controller design u = −y was not a very robust design.

Problem 3 (Vector concepts on the space Rm×n)

In this problem we let (A)ij denote the ijth element of a matrix A. Consider the vector space
Rm×n over the field R of real-valued m × n matrices, where addition and scalar multiplication of
elements A, B ∈ Rm×n are defined by

(A + B)ij = (A)ij + (B)ij , (αA)ij = α(A)ij , α ∈ R.

(i) Establish a basis for this vector space; what is its dimension?

(ii) For the case m = 2, n = 3, express the element

A =
[
1 2 3
4 5 6

]
∈ R2×3 (1)

in your basis.

(iii) For the matrix in (1), compute its Frobenius norm ∥ · ∥F =
√

⟨·, ·⟩F and its induced 1, 2, and
∞ norms.

(iv) Is the set {A ∈ Rm×n | ∥A∥F ≤ 1} a subspace of Rm×n?

(v) Prove that for any A, B ∈ Rm×n

∥A∥2
F + ∥B∥2

F = 1
2
(
∥A + B∥2

F + ∥A − B∥2
F

)
. (2)

(vi) Provide an example to show that (2) does not hold if the induced 2-norm is used in place of
the Frobenius norm.
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Solution:
(i): The space is finite-dimensional since the finite set of vectors defined component-wise by

(Eij)kℓ =
{

1 if i = k and j = ℓ

0 otherwise
(3)

for (i, j) ∈ {1, . . . , m} × {1, . . . , n} form a basis. It therefore follows that dim(Rm×n) = nm.
(ii): We can easily write

A = 1 · E11 + 2 · E12 + 3 · E13 + 4 · E21 + 5 · E22 + 6 · E23.

(iii): Simple computations show that

∥A∥F =
√

91 ≈ 9.54, ∥A∥1 = 9, ∥A∥2 =

√
91
2 +

√
8065
2 ≈ 9.51, ∥A∥∞ = 15.

(iv): Let m = n = 1 and consider the matrix A = 1. Then ∥A∥F = 1. But A + A = 2 which has
Frobenius norm larger than one. So, we have summed two vectors in the set and obtained a vector
outside the set. Therefore, the specified set is not a subspace.
(v): We compute that

∥A + B∥2
F + ∥A − B∥2

F = ⟨A + B, A + B⟩ + ⟨A − B, A − B⟩
= ⟨A, A⟩ + ⟨A, B⟩ + ⟨B, A⟩ + ⟨B, B⟩ + ⟨A, A⟩ − ⟨A, B⟩ − ⟨B, A⟩ + ⟨B, B⟩

= 2
(
∥A∥2

F + ∥B∥2
F

)
from which the result follows.
(vi): A randomly generated example which verifies the claim is

A =
[
5 2
0 3

]
, B =

[
8 0
0 1

]
.

Problem 4 (Prove Lemma 2.1)

Solution: Let A, B : V → V be bounded operators, and compute that

∥AB∥V→V = sup
v∈V\{0}

∥A(B(v))∥V
∥v∥V

= sup
v∈V\{0}
B(v) ̸=0

∥A(B(v))∥V
∥B(v)∥V

· ∥B(v)∥V
∥v∥V

≤ sup
w∈V\{0}

∥A(w)∥V
∥w∥V

· sup
v∈V\{0}

∥B(v)∥V
∥v∥V

= ∥A∥ · ∥B∥

which shows the result.
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Problem 5 (Trace Operator)

Let Mn,n(C) denote the Hilbert space of complex n × n matrices. The trace operator is defined as
the map trace : Mn,n(C) → C given by trace(A) =

∑n
i=1 Aii.

(i) Show that trace is a linear operator.

(ii) Show that trace(AB) = trace(BA) for compatible A, B.

Solution: (i): First note that trace(0) = 0. Let A, B ∈ Mn,n(C) and let α1, α2 ∈ C. Then

trace(α1A + α2B) =
∑n

i=1
α1Aii + α2Bii

= α1
∑n

i=1
Aii + α2

∑n

i=1
Bii

= α1trace(A) + α2trace(B)

which shows linearity. (ii): Let A, B ∈ Mn,n(C). Note that (AB)ik =
∑n

j=1 AijBjk. Then

trace(AB) =
∑n

i=1

∑n

j=1
AijBji

=
∑n

i=1

∑n

j=1
BjiAij

=
∑n

j=1

∑n

i=1
BjiAij

= trace(BA).

Problem 6 (A convolution operator)

Let ℓ(Z≥0;R) denote the vector space of all real-valued discrete-time signals (. . . , h(−1), h(0), h(1), . . .)
which equal zero for all times n < 0. Let h ∈ ℓ(Z≥0;R) be such a discrete-time signal, and consider
the operator

Convh : ℓ(Z≥0;R) → ℓ(Z≥0;R), Convh(u)(n) =
∞∑

k=−∞
h(n − k)u(k) =

n∑
k=0

h(n − k)u(k).

It is obvious that Convh defines a linear operator. Show that if h ∈ ℓ1(Z≥0;R), then Convh :
ℓ∞(Z≥0;R) → ℓ∞(Z≥0;R) is a bounded linear operator satisfying ∥Convh∥∞→∞ ≤ ∥h∥1.
Solution: For u ∈ ℓ∞(Z≥0;R) we compute that

∥Convh(u)∥∞ = sup
n≥0

∣∣∣∣∣
n∑

k=0
h(n − k)u(k)

∣∣∣∣∣
≤ sup

n≥0

n∑
k=0

|h(n − k)||u(k)|

≤ sup
n≥0

n∑
k=0

|h(n − k)| · sup
k≥0

|u(k)|

= ∥u∥∞

∞∑
k=0

|h(k)|

= ∥h∥1∥u∥∞.
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from which the result follows.

Problem 7 (The Discrete Lyapunov Operator)

Given a fixed matrix A ∈ Rn×n, define the discrete Lyapunov operator Ld : Sn → Sn by

Ld(P ) = ATPA − P

Show that Ld is a linear operator. Then, considering Sn as a Hilbert space with inner product
⟨·, ·⟩F, provide an upper bound on the induced norm ∥Ld∥Sn→Sn .
Solution: First note that Ld(0) = 0. Given P1, P2 ∈ Sn and α1, α2 ∈ R we compute that

Ld(α1P1 + α2P2) = AT(α1P1 + α2P2)A − (α1P1 + α2P2)
= α1(ATP1A − P1) + α2(ATP2A − P2)
= α1Ld(P1) + α2Ld(P2)

so Ld is indeed linear. Since Ld is a linear operator on the finite-dimensional space Sn, it is bounded.
To determine an upper bound on ∥L∥ we can compute that

∥Ld(P )∥F = ∥ATPA − P∥F

≤ ∥ATPA∥F + ∥P∥F

≤ ∥AT∥F∥P∥F∥A∥F + ∥P∥F

= (∥A∥2
F + 1)∥P∥F.

In the first inequality we used the triangle inequality, in the second we used the sub-multiplicative
property of ∥ · ∥F, and in the third we used that A and AT have the same singular values, so their
Frobenius norms are equal. Therefore, ∥Ld∥F→F ≤ ∥A∥2

F + 1.

Problem 8 (Positive Definite and Semidefinite Matrices)

In the following, assume all matrices have appropriately compatible dimensions. Some of the
following statements are true, and some of them are false. For each one, either prove the statement
or provide a counter-example.

(i) If A ≻ 0 and C ≻ 0, then
[

A B
BT C

]
≻ 0 for any matrix B of appropriate dimensions.

(ii) If A ≻ 0 and B ≻ 0, then AB ≻ 0.

(iii) If A ≻ 0, then Aii > 0 for all i ∈ {1, . . . , n}.

(iv) If A ≻ 0, then A is invertible and A−1 ≻ 0.

(v) If A ≻ 0 and T has full column rank, then TAT T ≻ 0
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Solution: (i): This is false; the matrix[
A B

BT C

]
=
[

1 −1
−1 1

]
satisfies the assumptions, but has a zero eigenvalue.
(ii): This is false; the matrix AB need not even be symmetric. For example,

A =
[
1 2
2 5

]
, B =

[
1 −1

−1 2

]
, AB =

[
−1 3
−3 8

]
.

(iii): This is true; if A ≻ 0, then by definition for any v ∈ Rn we have that vTAv > 0. In particular
then, take ei as the ith unit vector of Rn and note that

eT
i Aei = Aii > 0.

(iv): This is true; if A ≻ 0, then all of its eigenvalues are strictly positive, and hence non-zero, so A
is invertible. Let A = UΛU∗ denote the eigen-decomposition of A, where Λ ≻ 0 is diagonal. Since
U is unitary, we have that U−1 = U⋆. Therefore

A−1 = (U∗)−1Λ−1U−1 = UΛ−1U∗

It now follows by the results on similarity (or congruence) transforms that A−1 ≻ 0.
(v): This is false. For example, take

A = I1, T =
[
1
0

]
, TAT T =

[
1 0
0 0

]
.

Problem 9 (Riccati Map)

Given fixed matrices A ∈ Rn×n and B ∈ Rn×m, define the operator R : Sn → Sn+m by

R(P ) =
[
ATP + PA PB

BTP −I

]
Show that R is an affine mapping. What can you conclude about the image of Sn

>0 under R? What
can you conclude about the set of P satisfying R(P ) ≺ 0?
Solution: Let α1, α2 ∈ R be such that α1 + α2 = 1, and let P1, P2 ∈ Sn. Then

R(α1P1 + α2P2) =
[
AT(α1P1 + α2P2) + (α1P1 + α2P2)A (α1P1 + α2P2)B

BT(α1P1 + α2P2) −I

]

= α1

[
ATP1 + P1A P1B

BTP1 −I

]
+ α2

[
ATP2 + P2A P2B

BTP2 −I

]
= α1R(P1) + α2R(P2)

so R is indeed affine. Note that it is not linear, since R(0) ̸= 0. Since Sn
>0 is a convex set and R is

an affine map, we know that R(Sn
>0) is also a convex set. Since R(P ) ≺ 0 is a strict linear matrix

inequality, the set of matrices P ∈ Sn satisfying it is convex set.
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Problem 10 (Hurwitz Matrices)

Consider the set Hn of all n × n Hurwitz matrices

(i) Provide a counter-example to the claim that Hn is convex.

(ii) Show that Hn ∩Sn is convex.

(iii) For a given stabilizable pair (A, B) ∈ Rn×n × Rn×m, consider the set of stabilizing state
feedback gains

K(A, B) = {K ∈ Rm×n | A + BK ∈ Hn}.

Provide a counter-example to the claim that K is convex. Comment on the implications of
this fact for the design of stabilizing feedback gains.

Solution: (i): Consider the matrices

M1 =
[
−1 5
0 −0.1

]
, M2 =

[
−0.1 0

5 −0.1

]
.

Note that since M1 and M2 are triangular, their eigenvalues are their diagonal entries, so both
matrices are Hurwitz. As a particular convex combination of these two matrices, we compute that

1
2M1 + 1

2M2 =
[
−0.55 2.5

2.5 −0.1

]

which has eigenvalues of −2.8351 and 2.1851, and is therefore not Hurwitz. Thus, the set of Hurwitz
matrices do not form a convex set.
(ii): Symmetry implies that the eigenvalues of any such matrix A ∈ Hn ∩Sn must be real, and
hence the set of symmetric Hurwitz matrices is nothing but the set of negative definite matrices.
In other words, A is symmetric and Hurwitz if and only if A ≺ 0, and we already know that this
is a convex set.
(iii): Consider the fully actuated system A = 02×2 and B = I2, and using the matrices from
part (i), let K1 = M1 and K2 = M2. By the same argument as in part (i), the set K is not
convex. The naive implication of this would seem to be that state-feedback controller design is a
non-convex problem and therefore inherently difficult. This is, of course, nonsense; we know that
state feedback design is actually quite a straightforward problem. The proper implication to draw
is that directly optimizing over the set of stabilizing state-feedback controller gains is an inherently
difficult problem.

Problem 11 (Other SDPs)

Look up an example of a semidefinite program which arises outside of systems and control, and
write a brief summary (no more than 1/2 page).
Solution: Any appropriate example is acceptable.

10 / 11



Problem 12 (A Small-Gain Theorem)

Let V be a normed vector space with Id : V → V denoting the identity operator on V, i.e., Id(v) = v
for all v ∈ V. Let M : V → V be a bounded operator satisfying ∥M∥V→V ≤ γ for some γ ∈ [0, 1).
Show that if (Id − M) : V → V is invertible, then (Id − M)−1 is a bounded operator and

∥(Id − M)−1∥V→V ≤ 1
1 − γ

.

Hint: For u, v ∈ V, the reverse triangle inequality says that ∥u − v∥V ≥ ∥u∥V − ∥v∥V.
Solution: Let x ∈ V. Using the reverse triangle inequality and gain bound on M , we can compute
that

∥(Id − M)(v)∥V = ∥v − M(v)∥V

≥ ∥v∥V − ∥M(v)∥V

≥ ∥v∥V − ∥M∥V→V∥v∥V

≥ ∥v∥V − γ∥v∥V

= (1 − γ)∥v∥V

where we note that 1 − γ > 0. By assumption, for an arbitrary w ∈ V the equation v = M(v) + w
— or equivalently (Id − M)(v) = w — has a unique solution given by v = (Id − M)−1(w). The
previous inequality is therefore precisely that

∥w∥V ≥ (1 − γ)∥(Id − M)−1(w)∥V

or
∥(Id − M)−1(w)∥V ≤ 1

1 − γ
∥w∥V

for all w ∈ V. Therefore,

sup
w∈V\{0}

∥(Id − M)−1(w)∥V
∥w∥V

= ∥(Id − M)−1∥V→V ≤ 1
1 − γ

.
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