ECE 1659H Assignment 2 Solutions

Winter 2023

Instructor: J. W. Simpson-Porco

Department of Electrical and Computer Engineering
University of Toronto

Problem 1 (Block Matrices and Davison’s Integral Controller)

Consider the real symmetric block matrix

e Sn+p

| Qi1+ €eQ2 €S
M_l eST eR

where @1, R < 0 and € > 0. Prove that there exists ¢* > 0 such that M < 0 for all € € (0, *).

As an important application of this result, consider the LTI control system

& = Ax + Bu

y=Cx
where z € R", u € R™ and y € RP. Assume that p < m and that A is Hurwitz. Let G(s) =
C(sI — A)™!'B be the transfer function, with Gy = G(0) € RP*™ denoting the DC gain of G(s),

and assume that G(0) has full row rank. Consider the reference-tracking integral controller
n=y—r, u=—eky  K=Gj(GGy)™"
where r € RP is constant and € > 0. Use your previous result to show that there exists ¢* > 0 such

that the closed-loop system is internally exponentially stable for all € € (0, €*).

Hint: Consider the change of state variables € = x — eA"'BKn and B = en, and then write down
the Lyapunov LMI for your transformed system.

Solution: Since Q1 < 0 it follows by continuity of the mapping € — @1 + €Q2 that Q1 + eQ2 < 0
will be invertible for sufficiently small e. In this case, by Schur’s Lemma we have that M < 0 if
and only if

€R—€2S(Q1 +€Q2)'1ST <0

which holds for € > 0 if and only if

R—eS(Q1+4€Q2)7 ST <0.

This expression is a continuous function of € and is negative definite at ¢ = 0. By continuity then,
there exists €* > 0 such that R — eS(Q1 + ¢Q2)~1ST < 0 for all € € (0,¢*), which shows the result.

Now consider the control problem. The closed-loop system is described by

-
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Consider now the change of variables
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Since GoK = GoGJ (GoGl)~! = I this further simplifies to

-1

Since A is Hurwitz, there exists P > 0 such that ATP + PA < 0. Consider the Lyapunov matrix

P O
7):[01

eC —el

B lA—eAlBKC’ eAlBK] H
B B

We compute that

P 0| |[A—€eA'BKC €A 'BK
PA_[O I][ eC —el ]
_ |PA—ePAT'BKC ¢PA™'BK
o eC —el

and therefore

AP PA [ATP +PA—e(PA'BKC+CTKTBTATP) ¢(CT + PAlBK)]

e(CT + PA~'BK)T —2¢l

It follows from the first result that ATP + P.A < 0, and which completes the proof.

Problem 2 (Discrete-Time Lyapunov LMI)

Consider the LTI discrete-time system autonomous system
z(k+1) = Axz(k), z(0) =x9 € R".

where kK = 0,1,2,... is a discrete time index. The origin of this system is exponentially stable if
there exist constants M > 0 and 7 € (0, 1) such that

(k)2 < MA*||2(0)]2-

for all (0) € R™. It is well-known that the origin of the system is exponentially stable if and
only if all eigenvalues of A € R™*™ have magnitude strictly less than one; you can take this as a
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given in this problem. By mirroring the continuous-time proof from class, prove that the origin is
exponentially stable if and only if there exists a matrix P > 0 such that

ATPA-P<O0.
Apply your result in MATLAB to check whether or not all eigenvalues of the matrix

1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3

A:

have modulus less than one.

Hint: One approach is to construct a candidate Lyapunov solution via an infinite sum. To argue
that this candidate is well-defined, you can use the fact that given any A € R™"™ and any € > 0,
there exists a submultiplicative matriz norm || - || such that ||A|| < p(A) + € where p(A) = max{|}| :
A € eig(A)} is the spectral radius of A.

Solution: We first show that all eigenvalues of A having modulus strictly less than one implies
that for any Q > O there exists a solution P > 0 to the Lyapunov equation ATPA — P = —Q. We
claim that the solution P > 0 is given explicitly by

P= 3 (AHTQ(4").
k=0

Since all eigenvalues of A have modulus strictly less than one, there exists a matrix norm || - || such
that ||A|| < 1. We therefore compute that

S (A4)TQ(AH)

k=0

1Pl = <[Ql Z 1A%* < [l Z 1A% = Rl ——7 IIAII

so P is well-defined. Note that P is a sum of symmetric matrices, and hence is symmetric. Moreover,
we compute that

ATPA _p= i(Ak+1)TQAk+1 o i(Ak)TQAk
k=0 k=0
_ Z ((Ak+1)TQAk+1 _ (Ak)TQAk)
k=0

=—Q

so the candidate solution satisfies the equation. Next, we show that P is positive definite. Let
v € R™ be non-zero, and compute that

v Py =" 0" (AMTQAM =" (AM)TQ(Apv) = Z
k=0 k=0

where w(k) = A¥v. Since Q = 0, all terms in the sum are nonnegative. Moreover, since w(1) =
v #£ 0, at least one term is strictly positive, so we conclude that the sum is positive, and therefore
vTPv >0 for all v # 0, so P = 0. It now follows in particular that ATPA — P <0
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To complete the chain of implications we now show the Lyapunov LMI implies exponential stability.
Let P > 0 be such that ATPA — P < 0. This strict LMI holds if and only if there exists a value
p € (0,1) such that

ATPA—P < —p*P.

Now consider the function V(z) = 2T Pz. Along trajectories of the system x(k + 1) = Az(k), we

compute that
V(z(k+1) = V(z(k) = z(k + 1)"Pz(k + 1) — (k)" Pz(k)

(Az(k))TP(Ax(k)) — z(k)" Px(k)
(k)" [ATPA — P| 2 (k)
—p*a(k)TPx(k)

= —p*V(x(k)).

IN

We therefore find that V' satisfies
V(z(k+1)) < (1 - p*)V(a(k)
for some p € (0, 1), and therefore by iteration that
V(x(k)) < (1 - p*) vV (2(0)).

Since P > 0, we have that
allzl3 < V() < Bllzl3

for some «, 5 > 0. Therefore,

=

lz(R)[I3 < = (1 = p*)*[|lz(0) 3

o
and hence

[(k)[l2 < \/E(l = 022 |2(0) |2

which shows exponential stability of the origin.

One can spot immediately in fact that the given matrix A does not have all eigenvalues with
modulus less than one; it has a right-eigenvector (1,1,1,1) corresponding to eigenvalue A\ = 1.
Indeed, your solver will spit back that the problem is infeasible.

Problem 3 (Simultaneous Stabilization of LTI Systems)

Suppose you are given N linear time-invariant systems of the form
& = Ajx; + Biug, i=1,...,N,

where z1,...,xxy € R" are the states and uy,...,uy € R™ are the inputs. Your goal is to design a
single state feedback gain K such that the feedback law u; = Kx; exponentially stabilizes the ith
system for all 7 € {1,...,N}.

(i) Formulate this design problem using linear matrix inequalities. If instead you believe you
cannot formulate this stabilization problem as an LMI problem, explain why.
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(ii) Are you conditions sufficient, or necessary and sufficient? If they are merely sufficient, indicate
clearly at which step conservatism has been introduced into the design procedure.

(iii) Create a non-trivial! example to which you can apply your method, and do so using MATLAB

or your preferred solver. Provide solver output indicating that your method was successful.

Solution: (i): The closed-loop systems are described by
;= (A + BiK)x;, i=1,...,N.

Stability of all these systems is equivalent to the existence of matrices P, > 0 such that
Py(A; + B;K) + (A; + B;K)"P; < 0

in which case Vj(z;) = x] Piz; defines a quadratic Lyapunov function for the ith system. Let us
assume the existence of a common Lyapunov function, i.e., there exists a matrix P > 0 such that
P, =P forallie{l,...,N}. It follows that the existence of P >~ 0 satisfying

P(A; + B;K) + (A; + BiK)TP <0

is sufficient for stability. Performing a congruence transformation with X = P~!, this is equivalent
to
(A; + BiK)X + X(A; + B;K)T <0

Defining Z = K X one finally obtains the linear matrix inequality: find X > 0 such that
A X + XAl +BZ+Z"Bf <o,

and the controller K can be recovered as K = ZX 1.

(ii): The conditions are only sufficient; conservatism has been introduced by requiring that the
systems be stable with a common Lyapunov function V(£) = €T X 1€,

(iii): Any example is fine. The following code generated a feasible example for me after a few runs

clc
clear all
close all

© W N s W N
o\
o\

n=23; m=2; N = 4;
A = rand(n,n,N);
B = rand(n,m,N);
10 Al = A(:,:,1); Bl = B(:,:,1);
11 A2 = A(:,:,2); B2 = B(:,:,2);
12 A3 = A(:,:,3); B3 = B(:,:,3);
13 A4 = A(:,:,4); B4 = B(:,:,4);
14
15 %% Define SDP Problem
16 X = sdpvar(n,n); Z = sdpvar(m,n);
17 small = le-5;
18 Constraints = [X > smallxeye(n), Al*xX+X*xAl'+BlxZ+Z'«Bl' < -smallxeye(n),

Note that if all A; are Hurwitz, then the problem is solved by K = 0, so this case is not particularly interesting.
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19 A2xX+X*xA2'"+B2*xZ+Z'xB2' < —-smallxeye(n),
20 A3xX+X*A3'"'"+B3*xZ+Z'+xB3' < —-smallxeye (n),
21 AdxX+X*xA4'"+B4*xZ+Z2'+xB4"' < —-smallxeye(n)];

22 Cost = 0;

23

24 %% Solve

25 options = sdpsettings('solver', 'sdpt3', 'verbose',1l);
26 sol = optimize (Constraints,Cost,options);

27

28 value (X) %print value

29

30 %% Check

31

32 K = value (Z)+xinv (value (X)) ;

33 A_cl = blkdiag(Al+B1«*K,A2+B2xK,A3+B3*K,A4+B4+K) ;

Problem 4 (Passive Systems and PI Control)

An LTI system
& = Ax + Bu

z=Cx

with state x € R", input v € RP, and output z € RP is said to be input-strictly passive if it
is dissipative with positive-definite storage function V(z) = x'" Pz with P > 0 and supply rate
s(u,z) = 2"u — vu'u where v > 0. Assume that A is Hurwitz, that (C, A) is observable, and that
CA™'B is invertible.

Consider now such a system with a proportional-integral controller

n=z-r, u=—Kin—Ky(z—r)
where 7 is a constant reference signal and K, K; > 0.
(i) Show that for any r € RP, the closed-loop system possess a unique equilibrium point (z,7)
satisfying z = Cx = r.

(ii) Show that (z,7) is exponentially stable.

Solution: (i): After eliminating, closed-loop equilibrium points are determined by the equations
0=Czx—r
0= Axr — BKin.

Since A is Hurwitz, it is invertible, and we can further reduce this to
CA™'BKij=r

Since Kj >~ 0, we conclude that this equation is solvable for each r € RP if and only if the square
matrix CA~!B is invertible, which is true by assumption. Therefore, the unique equilibrium is
given by

n=K YCA'B)™r, z = A 'BK7.
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with associated control signal © = —K;n and plant output z = Cz.

(ii): Given the equilibrium from part (i), we introduce the deviation variables

T=x—Z
n=mn-1n
U=u—"1u
Z=z—2z,
which leads to the dynamics
= Az + Bu
S (1)
z=0Cx
and the controller )
=

2
i = —Kii — K 2. @)

1
051

1 and positive
5 —vl

By assumption (1) is dissipative with quadratic supply rate matrix II; = [

definite storage function V(&) = &' P7.

Consider the storage function candidate W (7)) = 7" K;7j. We compute that

W (n(t)) = 20" Kif)
=2 K;Z
=2(—K; '+ Kp2) K2

=—(a+ Kp2) Z

>
| —
w2
| I
_|
=
I\
1

so we now have a dissipation inequality for (2). Following our discussion of interconnections of
dissipative systems from the notes, we compute that

0 I 0 Il |0 3I ~K, —3I| |-K, 0
I O]HQ[I o]“l;z —VI]+_{—%I o =0 —u|="

IT; +

By assumption (C, A) is observable. Moreover, since Kj > 0, one may apply any desired observabil-
ity test to check that (2) is also observable. We conclude that the origin of the closed-loop system
(1)=(2) in deviation variables is exponentially stable, which shows the desired result. This result
is a special case of a more general result that states, roughly speaking, that the negative feedback
interconnection of two input-strictly passive systems is stable.
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Problem 5 (Numerical Problem)

Consider the LTT system

T = Ax + Bw
z=Cx+ Dw
where
-1 0 0 1 0 1
0O -1 4 -3 0 0 -1 010 0 1
A= 1 -3 -1 -3|’° B= -1 0}’ C_[O 10 11’ D_[O 01
0 4 2 -1 0 0

Write a program to compute the smallest value v > 0 such that the system is input-strictly
dissipative with respect to the supply rate s(w,z) = —||z]|3 + 7?||w||3. Your answer is your code
and your numerical value.

Solution: The smallest such v is 1.3791; here is some sample code

clc
clear all
close all

r

~.

© W N s W N
o
o

-1,0,0,1;0,-1,4,-3;1,-3,-1,-3;0,4,2,-11;
O 1 0,0;-1,0;0,01;
,1,0; 0,1,0,17;
;170,075

=
o

H
=
gQw»o 3 3
I

4;
2;
= 2;
[
[
(-
[0

=
w N

%% Define SDP Problem
P = sdpvar(n,n); gamsqg = sdpvar(l,1);
small = le-5;

e
N O O s

18 Lyap = [eye(n),zeros(n,m};A,B]'*[zeros(n),P;P,zeros(n)J*[eye(n),zeros(n,m);A,BJ;
19 Pi = [— p),zeros (p,m); zeros (m, p) ,gamsgxeye (m) ] ;

20 Diss = [C D zeros (m,n),eye(m) ] '"«Pix[C,D; zeros (m,n),eye(m)];

21

22 Constraints = [P > smallxeye(n), Lyap - Diss < smallxeye (n+m)];
23 Cost = gamsgqg;

24

25 %% Solve

26 options = sdpsettings('solver', 'sdpt3', 'verbose',1l);

27 sol = optimize (Constraints,Cost,options);

28

29 gamma = sqgrt (value (gamsq)) Sprint value
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Problem 6 (A Small-Gain Theorem)

Following the discussion of interconnected systems on slides 5-112/5-113, suppose that the systems
are dissipative with respect to the % supply rates

si(wr, 21) = =zl +E w3
sa(wa, z2) = — 2213 + 3 [[wa 3

respectively, where v1,v2 > 0. Show that the LMI on page 5-113 is feasible if and only if y1v2 < 1,
and hence conclude exponential stability of the origin under this small-loop-gain condition.

Solution: The LMI on 5-112/5-113 reduces to the following: find oy, as > 0 such that
~1, o0 1|[-1, o ]fo 1
] | A R

0

0 il
« —Ip 0 | +
oo Y m) 2

or more simply
’Y% I 0

0 —I, =< 0.

We may define o = ag/a; and divide the above by a1 > 0 to obtain the equivalent LMI: find o > 0

such that
[_gp yf(}m] +a l’)’%lp _(}m] _ [_(1 _0047%)[10 o —O'y%)lm < 0.
We therefore find that we need to find o > 0 satisfying
1—a’y§>0, a—’y%>0.
or equivalently .
2
1 <a< 2

or equivalently
7%722 <a<l

There obviously exists a > 0 satisfying this final inequality if and only if
772 < 1.

The interpretation of this condition is that 7; and 2 are bounds on the (induced £2) gain of each
system; the condition 12 < 1 requires the gain around the loop to be less than 1, so that signals
tend to decay to zero as they traverse the feedback loop multiple times.
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