
ECE 1659H Assignment 4 Solutions
Winter 2023

Instructor: J. W. Simpson-Porco

Department of Electrical and Computer Engineering
University of Toronto

Problem 1 (Anti-Windup Control System)

Consider the control system shown in Figure 1, where the single-input single-output plant P :
L2e[0, ∞) → L2e[0, ∞) is represented by the transfer function

P (s) = 50 (s2 + 2s + 1)(s + 200)
(s2 + 5s + 50)(s + 10)2 .

The system is controlled by a standard PI controller

C(s) = K

(
1 + 1

Tis

)
.

The objective of this control system is for y to track the reference value r.
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Figure 1: A feedback system with anti-windup control; note carefully the minus signs.

The system is subject to actuator saturation

u = sat(ũ) =


ũ if |ũ| ≤ 1
1 if ũ > 1
−1 if ũ < −1

and to help compensate for this, a standard tracking-type anti-windup controller with time constant
Tt is added in addition to the PI controller. When the output u saturates, there will be a deviation
between ũ and u, which is fed back to reduce the integrator state and prevent the so-called wind-up
phenomena; see, for example, this link for more information on this (completely standard) control
scheme. The transfer function 1

τs+1 in the feedback path models sensor dynamics, and effectively
acts as a delay the feedback loop.
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https://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/astrom-ch6.pdf


The default parameters are

K = 0.07, Ti = 0.11, Tt = 0.11, τ = 0.001.

(i) To begin to get a feel for the dynamics in this system, simulate it in MATLAB (or even easier
Simulink) and plot the response of the output and control signals for the following reference
command:

r(t) =


0 if t < 1
1 if 1 ≤ t < 5
2 if 5 ≤ t < 10
−2 if t ≥ 10.

By incrementing τ and re-simulating, roughly determine the critical value of τ at which you
observe sustained oscillations in the response.
Solution: The response for the default parameters is shown below (I don’t claim this is a
particularly well-tuned response; the control signal is quite sluggish
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The next plot shows the response when τ = 0.04; we see what effectively sustained oscillations,
and the response would no longer be considered stable by any sane engineer.
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(ii) Let (A, B, C) denote the system matrices for a minimal state-space realization of P (s). De-
termine the state-space realization of the system M for which the system in Figure 1 can be
written in the standard form

Mqp Mqw

Mzp Mzw

∆

q p

wz

where ∆ is the unit deadzone nonlinearity. Take w = r as the exogenous input and the true
tracking error z = y − r as the performance output.
Solution: We let

ẋ = Ax + Bu

y = Cx
(1)

denote a minimal state-space realization of P (s). The nonlinearity is described by the rela-
tionship

u = sat(ũ) = ũ − dz(ũ).

We therefore let q = ũ and p = dz(q) = ∆(q), so the above relationship becomes

u = ũ − p. (2)
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The sensor model has a minimal realization

ξ̇ = −1
τ

ξ + 1
τ

y

ym = ξ

or, substituting the plant output
ξ̇ = −1

τ
ξ + 1

τ
Cx

ym = ξ
(3)

The PI controller with backtracking is described by

ũ = K(r − ym) + η

η̇ = K

Ti
(r − ym) − 1

Tt
(ũ − u).

As the reference is the only exogenous input here, we take w = r. Substituting into the PI
equations, we obtain

ũ = K(w − ξ) + η

η̇ = K

Ti
(w − ξ) − 1

Tt
p.

Substituting into the plant dynamics (1), we obtain

ẋ = Ax + B(ũ − p)
= Ax + B[K(w − ξ) + η] − Bp

= Ax − BKξ + Bη − Bp + BKw

As our performance output, it is natural to select the true error z = y−r = Cx−w. Combining
all our state-space equations, we have that the desired model M is described byẋ

ξ̇
η̇

 =

 A −BK B
1
τ C − 1

τ 0
0 −K

Ti
0


x

ξ
η

+

−B BK
0 0

− 1
Tt

K
Ti

[p
w

]
[
q
z

]
=
[

0 −K 1
C 0 0

]x
ξ
η

+
[
0 K
0 −1

] [
p
w

]

More explicitly still, we have the submatrices

 A Bp Bw

Cq Dqp Dqw

Cz Dzp Dzw

 =


A −BK B −B BK

1
τ C − 1

τ 0 0 0
0 −K

Ti
0 − 1

Tt
K
Ti

0 −K 1 0 K
C 0 0 0 −1



(iii) Perform a robust stability analysis of this system, and in particular, determine the largest
value of τ for which you can certify that the system is robustly stable. Compare this value to
your value obtained in part (i), and explain your observations.
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Solution: The deadzone nonlinearity is sector-bounded in the sector [0, 1], and hence for any
σ ≥ 0 satisfies the pointwise quadratic constraint[

q(t)
p(t)

]T [
0 σ
σ −2σ

]
︸ ︷︷ ︸

Π(σ)

[
q(t)
p(t)

]
≥ 0.

We therefore apply the LMI resulting Theorem 9.1 from the notes, and seek to certify whether
there exists P ≻ 0 and σ ≥ 0 satisfying[

In 0
A Bp

]T [
0 P
P 0

] [
In 0
A Bp

]
+
[
Cq Dqp

0 Inp

]T

Π(σ)
[
Cq Dqp

0 Inp

]
≺ 0.

The LMI is feasible at the nominal parameters, which certifies stability of the nominal system.
The LMI is feasible up to a value of τ = 0.0103, after which numerical difficulties and infea-
sibility follow quickly. This is substantially lower than the value we found of 0.04 at which
sustained oscillations occur. The gap between these two values arises because the LMI is only
a sufficient condition for stability of the feedback system, and is not necessary.

1 plant_ss = minreal(ss(P));
2 A = plant_ss.A;
3 B = plant_ss.B;
4 C = plant_ss.C;
5 n_plant = size(A,1);
6

7 calA = [A,-B*K,B;1/tau*C,-1/tau,0;zeros(1,n_plant),-K/Ti,0];
8 calB = [-B,B*K;0,0;-1/Tt,K/Ti];
9 calBp = calB(:,1);

10 calBw = calB(:,2);
11 calC = [zeros(1,n_plant),-K,1;C,0,0];
12 calCq = calC(1,:);
13 calCz = calC(2,:);
14 calD = [0,K;0,-1];
15 calDqp = calD(1,1);
16 calDqw = calD(1,2);
17 calDzp = calD(2,1);
18 calDzw = calD(2,2);
19

20 alpha = 0;
21 beta = 1;
22

23 n = size(calA,1);
24 n_p = size(calBp,2);
25 n_w = size(calBw,2);
26 n_z = size(calCz,1);
27 n_q = size(calCq,1);
28

29 P = sdpvar(n,n); sigma_sec = sdpvar(1,1);
30 small = 1e-5;
31

32 Lyap = [eye(n),zeros(n,n_p);calA,calBp]'*[zeros(n),P;P,zeros(n)]*...
33 [eye(n),zeros(n,n_p);calA,calBp];
34 Pi = sigma_sec*[-2*alpha*beta,alpha+beta;alpha+beta,-2];
35 Diss = [calCq,calDqp;zeros(n_p,n),eye(n_p)]'*Pi*...
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36 [calCq,calDqp;zeros(n_p,n),eye(n_p)];
37

38 Constraints = [P ≥ small*eye(n), sigma_sec ≥ 0, Lyap + Diss ≤ ...
-small*eye(n+n_p)];

39 Cost = 0;
40 options = sdpsettings('solver','sdpt3','verbose',1);
41 sol = optimize(Constraints,Cost,options);
42

43 sol.info

(iv) Perform a robust L2 performance analysis of this system. In particular, produce a plot of
the least upper L2-gain bound you can certify from w to z, as a function of τ ∈ [0.001, 0.01].
Interpret your result.
Solution: We now follow Theorem 9.2 and seek to satisfy the LMI described there. Since the
performance LMI is sufficient for feasibility of the stability LMI, we know that the performance
LMI will be feasible up to at most the value τ = 0.0103. The plot obtained is shown below.
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We observe that the best certifiable value of γ is blowing up as τ approaches the point where
the LMI becomes infeasible. The interpretation of this of course is that the system is no longer
certifiably stable at this point, so the induced L2-performance becomes arbitrarily bad.

1 tau_list = linspace(0.001,0.01,50)';
2

3 gamma = zeros(length(tau_list),1);
4 for k=1:length(tau_list)
5

6 tau = tau_list(k);
7

8 calA = [A,-B*K,B;1/tau*C,-1/tau,0;zeros(1,n_plant),-K/Ti,0];
9

10 KYP = [eye(n),zeros(n,n_p),zeros(n,n_w);
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11 calA, calBp, calBw;
12 calCq, calDqp, calDqw;
13 zeros(n_p,n), eye(n_p), zeros(n_p,n_w);
14 calCz,calDzp, calDzw;
15 zeros(n_w,n), zeros(n_w,n_p), eye(n_w)];
16

17 P = sdpvar(n,n); sigma_sec = sdpvar(1,1); gamsq = sdpvar(1,1);
18 small = 1e-5;
19 Pi = sigma_sec*[-2*alpha*beta,alpha+beta;alpha+beta,-2];
20 Pi_p = blkdiag(eye(n_z),-gamsq*eye(n_w));
21 Middle = blkdiag([zeros(n),P;P,zeros(n)],Pi,Pi_p);
22

23 Constraints = [P ≥ small*eye(n), sigma_sec ≥ 0, gamsq ≥ 0, ...
KYP'*Middle*KYP ≤ -small*eye(n+n_p+n_w)];

24 Cost = gamsq;
25 options = sdpsettings('solver','sdpt3','verbose',1);
26 sol = optimize(Constraints,Cost,options);
27

28 gamma(k) = sqrt(value(Cost));
29 myInfo(k) = sol.problem;
30

31 end
32

33 figure('Position', [300, 200, 500, 295]);
34 plot(tau_list,gamma,'b','linewidth',2);
35 set(gca, 'FontSize', 16);
36 ylabel('$\inf \gamma$','interpreter','latex','FontSize',24);
37 xlabel('$\tau$','interpreter','latex','FontSize',20);
38 xlim([0.001,0.01])
39 box on
40 grid on

Problem 2 (Analysis of The (Scalar) Gradient Method)

A continuously differentiable function f : R → R is called strongly convex with parameter m > 0 if

(∇f(x) − ∇f(y))(x − y) ≥ m(x − y)2

for all x, y ∈ R, and is called strongly smooth with parameter L > 0 if

(∇f(x) − ∇f(y))2 ≤ L2(x − y)2

for all x, y ∈ R. If both these inequalities hold, then necessarily one has that L ≥ m. Any such
function essentially looks like a “bowl”, and has a unique minimum value f⋆ which is achieved by a
unique minimizer x⋆ ∈ R satisfying ∇f(x⋆) = 0. The classical gradient method is the discrete-time
dynamical system

xk+1 = xk − α∇f(xk), k ∈ {0, 1, 2, . . .},

which attempts to iteratively compute the minimizer by moving in the direction of steepest descent.
The quantity α > 0 is the step size of the method.
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(i) Show that the error ek = xk − x⋆ obeys the nonlinear difference equation

ek+1 = ek − αΦ(ek)

where Φ(e) = ∇f(e + x⋆).
Solution: We compute directly that

ek+1 = xk+1 − x⋆ = xk − x⋆ − α∇f(xk)
= ek − α∇f(ek + x⋆)
= ek − αΦ(ek).

(ii) Express this nonlinear system in the form of the feedback interconnection shown in the diagram
below where M is a stable discrete-time LTI system and ∆ is a static memoryless nonlinearity

∆

M

0 e

p

satisfying |∆(e)| ≤ γ|e| for some γ ≥ 0 that you will determine. You may place any restrictions
on α that you wish.
Solution: There are many possible choices for how to define the operator ∆ here, which
will lead to results of varying conservatism when the small gain theorem is applied in the
subsequent step; we show one approach. We always have that L ≥ m, and if L = m the
function ∇f must be affine. In this case, the gradient dynamics are in fact a scalar linear
system and the analysis is rather trivial, so we assume without loss of generality that L > m.
Define

∆(e) = 2
L − m

(
Φ(e) − m + L

2 e

)
(4)

and set p = ∆(e). Rearranging this formula, we have that

Φ(e) = (L − m)
2 ∆(e) + m + L

2 e.

With this, the e-dynamics can be written as

M :
ek+1 = ek − α

(
L − m

2 ∆(e) + m + L

2 e

)
=
(
1 − αm+L

2

)
ek − αL−m

2 pk

subject to the interconnection pk = ∆(ek). Note that with α⋆
1 ≜ 4

m+L , if α ∈ (0, α⋆
1), the A

matrix of the LTI system is Schur stable, so we make this assumption. Next, note that

|∆(e)|2 = 4
(L − m)2

(
Φ(e) − m + L

2 e

)2

= 4
(L − m)2

(
Φ(e)2 + (m + L)2

4 e2 − (m + L)Φ(e)e
)

.
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To obtain the best possible upper bound on this quantity requires a bit of care. First, from
strong convexity we have that

Φ(e)e = ∇f(e + x⋆)e = (∇f(x) − ∇f(x⋆))(x − x⋆)
≥ m(x − x⋆)2 = me2.

Similarly, due to L-smoothness we have

Φ(e)e ≤ |Φ(e)e| = |Φ(e)||e| ≤ Le2,

so we conclude that
(Le − Φ(e))e ≥ 0
(me − Φ(e))e ≤ 0.

These two inequalities are satisfied if and only if

(Le − Φ(e))(me − Φ(e)) ≤ 0

from which it follows that

Φ(e)e ≥ mL

m + L
e2 + 1

m + L
Φ(e)2.

Inserting this into our inequality for |∆(e)|, we find that

|∆(e)|2 ≤ 4
(L − m)2

(
Φ(e)2 + (m + L)2

4 e2 − mLe2 − Φ(e)2
)

= 4
(L − m)2

(
(m + L)2

4 e2 − 4mL

4 e2
)

= e2

and therefore |∆(e)| ≤ |e|.

(iii) Use the small gain theorem and your LMI from Assignment 3 Problem 3 to derive sufficient
conditions on α to ensure stability.
Solution: By the small-gain theorem, the closed-loop system will be stable if the product of
the ℓ2 gains of M and ∆ is strictly less than one. We therefore want the ℓ2 gain of M to be
strictly less than 1. The LMI of Assignment 3 said that the induced ℓ2-gain of M would be
less than γ if there exists P ≻ 0 such that[

I 0
A B

]T [
−P 0
0 P

] [
I 0
A B

]
−
[
C D
0 I

]T [
−I 0
0 γ2I

] [
C D
0 I

]
≺ 0

Specializing this to the current scenario, we are asking for the existence of a constant p > 0
such that[

1 0(
1 − αm+L

2

)
−αL−m

2

]T [
−p 0
0 p

] [
1 0(

1 − αm+L
2

)
−αL−m

2

]
−
[
1 0
0 1

]T [
−1 0
0 1

] [
1 0
0 1

]
≺ 0
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or more simply p[1 −
(
1 − αm+L

2

)2
] − 1 αL−m

2 p
(
1 − αm+L

2

)
αL−m

2 p
(
1 − αm+L

2

)
1 − α2 (L−m)2

4 p

 ≻ 0.

We can simplify our lives here by selecting p to equalize the (1,1) and (2,2) elements of this
matrix. It is not completely obvious that this is a good decision at this point, as it could
lead to conservatism in the selection of α, or even to an inequality that is infeasible for all α.
The rationale however is that the (2,2) element is a decreasing function of α, while the (1,1)
element is an increasing function of α, so it seems reasonable to try to equalize the positivity
between the (1,1) and (2,2) blocks. Thus, if we require that

p

[
1 −

(
1 − αm+L

2

)2
]

− 1 = 1 − α2 (L − m)2

4 p

then we find that the required value of p is

p = 2
α

1
L + m − αmL

which is well-defined only under the condition that

α ∈ (0, α⋆
2), α⋆

2 ≜
L + m

mL
.

With this particular choice of p, the inequality becomes1 − α (L−m)2

2
1

L+m−αmL
L−m

L+m−αmL

(
1 − αm+L

2

)
L−m

L+m−αmL

(
1 − αm+L

2

)
1 − α (L−m)2

2
1

L+m−αmL

 ≻ 0.

Since α ∈ (0, α⋆
2) we can multiply through by L + m − αmL > 0 and to obtainL + m − αmL − α (L−m)2

2 (L − m)
(
1 − αm+L

2

)
(L − m)

(
1 − αm+L

2

)
L + m − αmL − α (L−m)2

2

 ≻ 0.

which after simplification becomesL + m − α
2 (L2 + m2) (L − m)

(
1 − αm+L

2

)
(L − m)

(
1 − αm+L

2

)
L + m − α

2 (L2 + m2)

 ≻ 0.

Assuming now that
α ∈ (0, α⋆

3), α⋆
3 ≜ (0, 2(L+m)

L2+m2 )

the (1,1) block is positive definite, and the overall matrix is positive definite if and only if the
determinant is positive. Some algebra shows that this simplifies to the inequality

(αL − 2)(αm − 2) > 0

which, since L > m, holds if and only if α ∈ (0, 2/L). Thus, we have established that if

α ∈ (0, min{α⋆
1, α⋆

2, α⋆
3, 2/L})
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then the equilibrium x⋆ is globally exponentially stable. Note that

α⋆
1 = 4

m + L
= 2

L
+ 2(L − m)

L(m + L) >
2
L

and
α⋆

2 = L + m

mL
= 2

L
+ L − m

mL
>

2
L

and
α⋆

3 = 2L + 2m

L2 + m2 = 2
L

+ 2m(L − m)
L3 + m2L

>
2
L

so the inequality α ∈ (0, 2/L) implies all the other inequalities that we used. Thus, α ∈
(0, 2/L) is a sufficient condition for stability of gradient descent, and in fact this is the standard
maximum permissible step size, which can be found in any optimization book containing an
analysis of the gradient method with fixed step size.
n.b.: The solution pathway I took here was obviously not painless; it is likely there are other
choices one could have made which may have simplified the calculations. If you have a simpler
approach, feel free to share it on Piazza!
n.b.: The same analysis works with almost no changes in the vector case, and the same
condition results.
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