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Electricity & The Power Grid

(commons.wikimedia.org, mapssite.blogspot.com)

Electricity is the foundation
of technological civilization

Hierarchical grid:
generate/transmit/consume

Challenges: multi-scale,
nonlinear, & complex

What are the control strategies?
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Bulk Power System Control Architecture & Objectives
Hierarchy by physics and spatial/temporal/centralization scales

3. Tertiary control (offline)

Goal: optimize operation

Strategy: centralized & forecast

2. Secondary control (minutes)

Goal: maintain operating point

Strategy: centralized

1. Primary control (real-time)

Goal: stabilization & load sharing

Strategy: decentralized

Q: Is this layered & hierarchical

architecture still appropriate

for tomorrow’s power system?
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Two Major Trends

(New York Magazine)

Trend 1: Physical Volatility

1 bulk distributed generation, (de)regulation

2 growing demand & old infrastructure

⇒ lowered inertia &
robustness margins

Trend 2: Technological Advances

1 flexible loads, sensors & actuators
(spinning reserves, PMUs, FACTS)

2 control of cyber-physical systems

⇒ cyber-coordination layer for smart grid

(Electronic Component News)
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Outline

Introduction & Project Samples

Distributed Control in Microgrids
Primary Control
Tertiary control
Secondary Control
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Smart Grid Project Samples

Cooperative Inverter Control
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Microgrids

Structure
• low-voltage distribution networks

• small-footprint & islanded

• autonomously managed

Applications
• hospitals, military, campuses, large

vehicles, & isolated communities

Benefits
• naturally distributed for renewables

• scalable, efficient, & reliable

Operational challenges
• fast dynamics & low inertia

• plug’n’play & no central authority
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Modeling I: AC circuits

1 Loads ( ) and Inverters ( )

2 Quasi-Synchronous: ω ' ω∗ ⇒ Vi = Eie
jθi

3 Load Model: ZIP Loads (today, constant power)

4 Coupling Laws: Kirchoff and Ohm

5 Identical Line Materials: Rij/Xij = const. (today, lossless Rij/Xij = 0)

6 Decoupling: Pi ≈ Pi (θ) & Qi ≈ Qi (E ) (normal operating conditions)

• active power: Pi =
∑

j BijEiEj sin(θi − θj) + GijEiEj cos(θi − θj)
• reactive power: Qi = −∑j BijEiEj cos(θi − θj) + GijEiEj sin(θi − θj)
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6 Decoupling: Pi ≈ Pi (θ) & Qi ≈ Qi (E ) (normal operating conditions)

• trigonometric active power flow: Pi (θ) =
∑

j Bij sin(θi − θj)
• quadratic reactive power flow: Qi (E ) = −∑j BijEiEj
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Modeling II: Inverter-interfaced distributed gen.
also applies to frequency-responsive loads

Power inverters are . . .

interface between AC grid
and DC or variable AC sources

operated as controllable ideal
voltage sources

ωi = ufreqi , τi Ėi = uvolti

}DC }PWM LCL }

Eei(θ+ωt)

Assumptions:

• Fast, stable inner-loops
(voltage/current/impedance)

• Balanced 3-phase operation
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Open-Loop System & Control Objectives

Frequency Open-Loop

Inverter Dynamics:

ωi = θ̇i = ufreqi

Pi (θ) =
∑

j
Bij sin(θi − θj)

Load Active Power Balance:

0 = P∗i −
∑

j
Bij sin(θi − θj)

Voltage Open-Loop

Inverter Dynamics:

τi Ėi = uvolti

Qi (E ) =
∑

j
BijEiEj

Load Reactive Power Balance:

0 = Q∗i −
∑

j
BijEiEj

Primary Control Objectives:

1 Stabilization: Balance system for variable loads

2 Load Sharing: Power injection proportional to unit capacity
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Decentralized Primary Control (aka Droop Control)
A grid-forming control strategy

Key Idea: emulate self-organizing generator dynamics

Frequency Droop Control

ωi = ω∗ −miPi (θ)

Voltage Droop Control

τi Ėi = −(Ei −E ∗)−niQi (E )
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Spring Network Interpretations of Equilibria

Frequency Droop Control

0 = P∗i −
∑

j Bij sin(θi − θj)

Voltage Droop Control

0 = Q∗i −
∑

j BijEiEj
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Droop Control Stability Conditions
Frequency Droop Control

0 = P∗
i −

∑
j
Bij sin(θi − θj)

θ̇i = −mi

∑
j
Bij sin(θi − θj)

Theorem: Frequency Stability

(J. Simpson-Porco, F.D., & F.B., ’12)

∃! loc. exp. stable angle
equilibrium θeq iff

(edge power flow)ij
Bij

< 1

for all branches of microgrid.

nec. and suff.

Voltage Droop Control

0 = Q∗
i −

∑
j
BijEiEj

τi Ėi = −(Ei − E∗
i ) − ni

∑
j
BijEiEj

Theorem: Voltage Stability

(J. Simpson-Porco, F.D., & F.B., ’14)

∃! loc. exp. stable voltage
equilibrium point Eeq if

4 · load·(impedance)
(nominal voltage)2 < 1

for all load buses of microgrid.

suff. and tight
12 / 23
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Objective I: decentralized proportional load sharing

1) Inverters have injection constraints: 0 ≤ Pi (θ) ≤ P i

2) Load must be serviceable: 0 ≤
∣∣∣∑loads P

∗
j

∣∣∣ ≤∑inverters P j

3) Fairness: load should be shared proportionally: Pi (θ) /P i = Pj(θ) /P j

load

source # 2source # 1

P1

P 1

P2

P 2
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2) Load must be serviceable: 0 ≤
∣∣∣∑loads P

∗
j

∣∣∣ ≤∑inverters P j

3) Fairness: load should be shared proportionally: Pi (θ) /P i = Pj(θ) /P j

Theorem (Load Sharing) [J. Simpson-Porco, FD, & F. Bullo, ’12]

If we select the controller gains such that miP i = mjP j , then

(i) Proportional load sharing: Pi (θ) /P i = Pj(θ) /P j

(ii) Constraints met: 0 ≤ Pi (θ) ≤ P i

13 / 23



What if we don’t like “sharing”?
proportional load sharing is not always the right objective

load

source # 2source # 1

source # 3

14 / 23



Objective II: optimal economic dispatch
minimize the total accumulated generation

minimize θ∈Tn , u∈RnI f (θ) =
1

2

∑
inverters

αi [Pi (θ)]2

subject to

load power balance: 0 = P∗i − Pi (θ)

branch flow constraints: |θi − θj | ≤ γij < π/2

inverter injection constraints: Pi (θ) ∈
[
0,P i

]

Conventional: Offline, Centralized, Model & Load Forecast

Autonomous Microgrid: On-line, decentralized, no model, no forecasts
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Objective II: decentralized economic dispatch optimization

Insight: droop-controlled microgrid = decentralized primal algorithm

Dispatch through droop control [H. Bouattour, FD, J. Simpson-Porco, & F. Bullo, ’13]

The following statements are equivalent:

(i) econ. dispatch with cost coeffs. αi is strictly feasible w/ global
minimizer θ∗;

(ii) ∃ droop coefficients mi s.t. the microgrid possesses a unique & loc.
exp. stable operating point θ∗ satisfying Pi (θ

∗) ∈
[
0,P i

)
.

If (i) & (ii) are true, then Pi (θ
∗)=(ω∗−ωss)/mi , &

αi

mi
=
αj

mj
.

similar results for constrained case — though not fully decentralized
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Secondary frequency control in power networks

Problem: steady-state frequency deviation (ωss 6= ω∗)

Solution: integral control on frequency error

ωsync

centralized &

not applicable

in microgrids

does not maintain

load sharing or

economic optimality

Microgrids require distributed (!) secondary control strategies.
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Problem: steady-state frequency deviation (ωss 6= ω∗)

Solution: integral control on frequency error

Interconnected Systems

• Centralized automatic
generation control (AGC)

control

area

remainder

control

areas

P
T

PL

Ptie

PG

Isolated Systems

• Decentralized PI control

342 Power System Dynamics
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Figure 9.8 Supplementary control added to the turbine governing system.

shown by the dashed line, consists of an integrating element which adds a control signal !Pω that is
proportional to the integral of the speed (or frequency) error to the load reference point. This signal
modifies the value of the setting in the Pref circuit thereby shifting the speed–droop characteristic
in the way shown in Figure 9.7.

Not all the generating units in a system that implements decentralized control need be equipped
with supplementary loops and participate in secondary control. Usually medium-sized units are
used for frequency regulation while large base load units are independent and set to operate at a pre-
scribed generation level. In combined cycle gas and steam turbine power plants the supplementary
control may affect only the gas turbine or both the steam and the gas turbines.

In an interconnected power system consisting of a number of different control areas, secondary
control cannot be decentralized because the supplementary control loops have no information as to
where the power imbalance occurs so that a change in the power demand in one area would result
in regulator action in all the other areas. Such decentralized control action would cause undesirable
changes in the power flows in the tie-lines linking the systems and the consequent violation of the
contracts between the cooperating systems. To avoid this, centralized secondary control is used.

In interconnected power systems, AGC is implemented in such a way that each area, or subsystem,
has its own central regulator. As shown in Figure 9.9, the power system is in equilibrium if, for each
area, the total power generation PT, the total power demand PL and the net tie-line interchange
power Ptie satisfy the condition

PT − (PL + Ptie) = 0. (9.8)

The objective of each area regulator is to maintain frequency at the scheduled level (frequency
control) and to maintain net tie-line interchanges from the given area at the scheduled values (tie-
line control). If there is a large power balance disturbance in one subsystem (caused for example by
the tripping of a generating unit), then regulators in each area should try to restore the frequency
and net tie-line interchanges. This is achieved when the regulator in the area where the imbalance
originated enforces an increase in generation equal to the power deficit. In other words, each
area regulator should enforce an increased generation covering its own area power imbalance and
maintain planned net tie-line interchanges. This is referred to as the non-intervention rule.

control
area

remainder
control
areas

PT

PL

Ptie

Figure 9.9 Power balance of a control area.

centralized &

not applicable

in microgrids

does not maintain

load sharing or

economic optimality

Microgrids require distributed (!) secondary control strategies.
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and net tie-line interchanges. This is achieved when the regulator in the area where the imbalance
originated enforces an increase in generation equal to the power deficit. In other words, each
area regulator should enforce an increased generation covering its own area power imbalance and
maintain planned net tie-line interchanges. This is referred to as the non-intervention rule.
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shown by the dashed line, consists of an integrating element which adds a control signal !Pω that is
proportional to the integral of the speed (or frequency) error to the load reference point. This signal
modifies the value of the setting in the Pref circuit thereby shifting the speed–droop characteristic
in the way shown in Figure 9.7.
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control cannot be decentralized because the supplementary control loops have no information as to
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Distributed Averaging PI (DAPI) Frequency Control

ωi = ω∗ −miPi (θ)− Ωi

ki Ω̇i = (ωi − ω∗)−
∑

j ⊆ inverters

aij · (Ωi − Ωj)

1 no tuning, no model dependence

2 weak comm. requirements

3 preserves optimal dispatch

Simple & Plug’n’play

Theorem: Stability of DAPI
[J. Simpson-Porco, FD, & F. Bullo, ’12]

DAPI Stable

m
Primary Droop Stable
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Distributed Averaging PI (DAPI) Voltage Control

Goals: Voltage regulation Ei → E ∗, load sharing Qi/Q
∗
i = Qj/Q

∗
j

Bad News: Unlike P/ω, these goals are fundamentally conflicting.

Key Idea: Trade-off between voltage regulation / Q-Sharing

τi Ėi = −(Ei − E ∗)− niQi (E )− ei

κi ėi = βi (Ei − E ∗i )−
∑

j ⊆ inverters

bij ·
(

Qi

Q∗i
− Qj

Q∗j

)

Tuning Intuition:

1 βi >>
∑

j bij =⇒ voltage regulation

2 βi <<
∑

j bij =⇒ Q-Sharing
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Plug’n’play architecture
flat hierarchy, distributed, no time-scale separations, & model-free
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Experimental Validation of DAPI Control
Experiments @ Aalborg University with Q. Shafiee, J. C. Vasquez & J. M. Guerrero
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Ongoing Theoretical and Practical Challenges

1 Interaction w/ price dynamics

2 Cyber-security in DAPI control

3 Performance limits of decentralized control

4 Large-scale study w/ NS-3 comm. & more detailed load models
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Summary

Distributed Inverter Control

• Primary control stability

• Distributed PI controllers

• Primary/tertiary connections

• Experiments: “It works. Really.”

More Results (not shown)

• More voltage control/opt.

• Accurate approximations
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