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Electricity & The Power Grid

o Electricity is the foundation
of technological civilization
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Bulk Power System Control Architecture & Objectives

Hierarchy by physics and spatial /temporal/centralization scales
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Bulk Power System Control Architecture & Objectives

Hierarchy by physics and spatial /temporal/centralization scales

. - Y _ . . i i
\ f \ Q: Is this layered & hierarchical
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architecture still appropriate
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Two Major Trends

Trend 1: Physical Volatility

© bulk distributed generation, (de)regulation

@ growing demand & old infrastructure

=

lowered inertia &
robustness margins
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Two Major Trends
Trend 1: Physical Volatility

© bulk distributed generation, (de)regulation

@ growing demand & old infrastructure

robustness margins

= lowered inertia & }

Trend 2: Technological Advances

@ flexible loads, sensors & actuators

@ control of cyber-physical systems

[
= cyber-coordination layer for smart gridJ \J'/
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QOutline

Introduction & Project Samples

Primary Control
Tertiary control
Secondary Control
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Smart Grid Project Samples

Cooperative Inverter Control Voltage Stability/Collapse

Optimal/Sparse Voltage Support Power Flow Approximations

Approximation Error
s,
s,
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Microgrids

Structure

e |ow-voltage distribution networks
e small-footprint & islanded

e autonomously managed

Applications
e hospitals, military, campuses, large
vehicles, & isolated communities |

Benefits
e naturally distributed for renewables
e scalable, efficient, & reliable
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Microgrids

Structure

e |ow-voltage distribution networks
e small-footprint & islanded

e autonomously managed

Applications
e hospitals, military, campuses, large
vehicles, & isolated communities |

Benefits
e naturally distributed for renewables
e scalable, efficient, & reliable

Operational challenges
e fast dynamics & low inertia

e plug'n’play & no central authority )
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Modeling I: AC circuits
O Loads (e) and Inverters ()
@ Quasi-Synchronous: w ~ w* = V; = Ejel’

© Load Model: ZIP Loads

@ Coupling Laws: Kirchoff and Ohm
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Modeling I: AC circuits
O Loads (e) and Inverters ()
@ Quasi-Synchronous: w ~ w* = V; = Ejel’

© Load Model: ZIP Loads

@ Coupling Laws: Kirchoff and Ohm

o active power:  P; = 3 BiEiE;sin(0; — 0;) + GjE;Ej cos(6; — 0;)
o reactive power: Q; = — ). BjEiEjcos(0; — 0;) + G;EiEjsin(6; — 0))
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Modeling I: AC circuits
O Loads (e) and Inverters (m)
@ Quasi-Synchronous: w ~ w* = V; = Ejel’

© Load Model: ZIP Loads (today, constant power)

@ Coupling Laws: Kirchoff and Ohm

@ ldentical Line Materials: R;j/Xj = const. (today, lossless Rj;/X;; = 0)

O Decoupling: P; ~ P;(0) & Q; = Q;(E) (normal operating conditions)
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Modeling I: AC circuits
O Loads (e) and Inverters ()
@ Quasi-Synchronous: w ~ w* = V; = Ejel’

© Load Model: ZIP Loads

@ Coupling Laws: Kirchoff and Ohm

@ Identical Line Materials: R;;/X; = const.

O Decoupling: P; =~ P;(0) & Q; =~ Q;(E)

o trigonometric active power flow:  P;(0) = 3. Bjsin(0; — 6;)

* quadratic reactive power flow:  Q;(E) = —>_; BjEE;
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Modeling Il: Inverter-interfaced distributed gen.

also applies to frequency-responsive loads

Power inverters are . .. DC PWM LCL
o interface between AC grid

x4z,
and DC or variable AC sources

. A llNgs
Gt
AVES €5 G

Assumptions:

e Fast, stable inner-loops
(voltage/current/impedance)

e Balanced 3-phase operation
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Modeling Il: Inverter-interfaced distributed gen.

also applies to frequency-responsive loads

Power inverters are . .. bc PWM LCL
o interface between AC grid 1 1 1 N .
and DC or variable AC sources - M-
@ operated as controllable ideal E% fi /
voltage sources 1 o
freq volt
wi=u; ", T E = u; J
' u Assumptions:
1@ % +i(9+m) e Fast, stable inner-loops
Ee (voltage/current/impedance)
II{”J = e Balanced 3-phase operation
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Open-Loop System & Control Objectives

Frequency Open-Loop

Voltage Open-Loop

Inverter Dynamics:

Wi = 9 freq

Z Bijsin(0; —

3

Load Active Power Balance:

0=P; = Bjsin(6
J

0;) J

Primary Control Objectives:

Inverter Dynamics:
T,'E,' = u,‘-ml‘C

Qi(E) =) BiEiE;

Load Reactive Power Balance:

0=Q; —Zj BjEiE; J

© Stabilization: Balance system for variable loads

@ Load Sharing: Power injection proportional to unit capacity
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Decentralized Primary Control (aka Droop Control)
A grid-forming control strategy

Key Idea: emulate self-organizing generator dynamics J
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Decentralized Primary Control (aka Droop Control)

A grid-forming control strategy

Key Idea: emulate self-organizing generator dynamics J

Frequency Droop Control

Voltage Droop Control

wj = w* — m,-P,-(H) J

Aw

Wss

Y

Py Py

TiE = —(E—E*)— niQi(E) |

AE
Lrip,
0,
Ey
Ey
Q1 Q2 -

10/23



Spring Network Interpretations of Equilibria

Frequency Droop Control Voltage Droop Control

OZP?—ZJ-BUSin(H,'—Qj)J OZQ;‘_ZjBijEiEj J
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Spring Network Interpretations of Equilibria

Frequency Droop Control Voltage Droop Control

O:P;“—ZJ.B,-jsin(G,-—Gj)J OZQ;k_ZjBijEiEj J
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Spring Network Interpretations of Equilibria
Voltage Droop Control

Frequency Droop Control

0=Qr—2;BiEE |

0="FP— Zj Bijj sin(6; — QJ)J

Voltage
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Droop Control Stability Conditions

Frequency Droop Control

0="P; — Zj By sin(6; — 6;)
é,‘ = —mj Zj B,'j sin(@,- — 91)

12/23



Droop Control Stability Conditions

Frequency Droop Control Voltage Droop Control
0="P; — Zj By sin(6; — 0;) 0=0Q — Zj B;EiE;
é,‘ = —mj Zj B,'j sin(@,- — 91) T,'E' = —(E,' — E,-*) — nj Zj B,JE,E_,

Theorem: Frequency Stability

3! loc. exp. stable angle
equilibrium 60 iff

(edge power flow);;

Bjj

for all branches of microgrid.

nec. and suff.
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Droop Control Stability Conditions

Frequency Droop Control

Voltage Droop Control

0="P; — Zj Bjsin(6; — 6;)
é,‘ = —m Zj B,'j sin(@,- — 91)

0=@Qr — Zj S
T,'E' = —(E,' — E,-*) — n; Zj B,JE,E_,

Theorem: Frequency Stability

3! loc. exp. stable angle
equilibrium 60 iff

(edge power flow);;

Bjj

Theorem: Voltage Stability

3! loc. exp. stable voltage
equilibrium point E.q if

4 -load-(impedance)

for all branches of microgrid.

(nominal voltage)?

for all load buses of microgrid.

nec. and suff.

suff. and tight

12/23






Objective |: decentralized proportional load sharing

1) Inverters have injection constraints: 0 < P;() < P;

2) Load must be serviceable: 0 < ‘Zloads Pf <D inverters P

3) Fairness: load should be shared proportionally: P;(6) / P; = P;(0) / P;

source # 1 source # 2
= load
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Objective |: decentralized proportional load sharing

1) Inverters have injection constraints: 0 < P;(0) < P;

2) Load must be serviceable: 0 < ’Zloads Pl <> iverters Pi

3) Fairness: load should be shared proportionally: P;(0) / P; = P;(0) / P;

Theorem (Load Sharing)

If we select the controller gains such that | m;P; = mjl_aj , then

(i) Proportional load sharing: P;(0) / P; = P;(6) / P;

(i) Constraints met: 0 < P;(9) < P;
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What if we don't like “sharing”?

proportional load sharing is not always the right objective

EE—

source # 3

010010100110
110110101011
10001

1001010

= load 14/23



Objective Il: optimal economic dispatch

minimize the total accumulated generation

minimize gen | yerm (o) = % vaerters ai[Pi(0)]?
subject to
load power balance: 0= P — Pi(0)
branch flow constraints: |0; — 0] < vij <m/2
inverter injection constraints: P:(9) € [0, Pi]
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Objective Il: optimal economic dispatch

minimize the total accumulated generation

minimize gen | yerm (o) = 5 vaerters ai[Pi(0)]?
subject to
load power balance: 0= P — Pi(0)
branch flow constraints: 6; — 0] < vjj <m/2
inverter injection constraints: P:(9) € [0, Pi]

Conventional: Offline, Centralized, Model & Load Forecast
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Objective Il: optimal economic dispatch

minimize the total accumulated generation

minimize gen | yerm (o) = % vaerters ai[Pi(0)]?
subject to
load power balance: 0= P — Pi(0)
branch flow constraints: 6; — 0] < vjj <m/2
inverter injection constraints: P:(9) € [0, Pi]

Conventional: Offline, Centralized, Model & Load Forecast

Autonomous Microgrid: On-line, decentralized, no model, no forecasts

15/23



Objective Il: decentralized economic dispatch optimization

Insight:  droop-controlled microgrid = decentralized primal algorithm )
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Objective Il: decentralized economic dispatch optimization

Insight: droop-controlled microgrid = decentralized primal algorithm )

Dispatch through droop control

The following statements are equivalent:

(i) econ. dispatch with cost coeffs. «; is feasible w/ global
minimizer 6*;

(i) 3 droop coefficients m; s.t. the microgrid possesses a unique & loc.
exp. stable operating point 6*

If (i) & (ii) are true, then P;(6%)=(w* —wes)/m;, & | 2 = Y|
mj mj
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Objective Il: decentralized economic dispatch optimization

Insight: droop-controlled microgrid = decentralized primal algorithm )

Dispatch through droop control

The following statements are equivalent:

(i) econ. dispatch with cost coeffs. «; is strictly feasible w/ global
minimizer 6*;

(ii) 3 droop coefficients m; s.t. the microgrid possesses a unique & loc.
exp. stable operating point §* satisfying P;(6*) € [0, P;).

If (i) & (ii) are true, then P;(6*)=(w* —wes)/m;, & | 2 = Y|
mj mj

@ similar results for constrained case — though not fully decentralized

16 /23






Secondary frequency control in power networks

Problem: steady-state frequency deviation (wss # w*)

Solution: integral control on frequency error
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Secondary frequency control in power networks

Problem: steady-state frequency deviation (wss # w*)

Solution: integral control on frequency error

Interconnected Systems

J

Isolated Systems J

e Centralized automatic
generation control (AGC)
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Secondary frequency control in power networks

Problem: steady-state frequency deviation (wss # w*)

Solution: integral control on frequency error

Interconnected Systems

J

Isolated Systems J

e C ~-tralized automatic
. control (AGC)

e Decentralized Pl control
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Secondary frequency control in power networks

Problem: steady-state frequency deviation (wss # w*)

Solution: integral control on frequency error

Interconnected Systems

Isolated Systems J

e C ~-tralized automatic
. control (AGC)

e De’ -tralized PI control
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Secondary frequency control in power networks

Problem: steady-state frequency deviation (wss # w*)

Solution: integral control on frequency error

Interconnected Systems

J

Isolated Systems J

e C ~-tralized automatic
. control (AGC)

e De’ -tralized PI control

Microgrids require distributed (!) secondary control strategies. J

17/23



Distributed Averaging PI (DAPI) Frequency Control

Wi = w* — m,-P,-(9) — Q,’
k,'Q,' = (w,- — w*)
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Distributed Averaging PI (DAPI) Frequency Control

wj = W = m,-P,-(H) — Q,’

k;Q,' = (w,- — w*)— Z a,-j . (Q, — QJ)

Jj Cinverters - Secondary

~

Control

> P
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Distributed Averaging PI (DAPI) Frequency Control

wj = W = m,-P,-(G) — Q,‘

k;Q,' = (w,- — w*)— z a,-j . (Q, — QJ)

Jj Cinverters o
" Control
Wss \\ ﬁ
@ no tuning, no model dependence P P > P

@ weak comm. requirements

© preserves optimal dispatch

Simple & Plug’'n’play J
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Distributed Averaging PI (DAPI) Frequency Control

wj = W = m,-P,-(G) — Q,‘

k;Q,' = (w,- — w*)— z a,-j . (Q, — QJ)

Jj Cinverters

@ no tuning, no model dependence

@ weak comm. requirements

© preserves optimal dispatch

Simple & Plug’'n’play J

UJSS

w
A Iy “"ha
Zy Oo,,,
[“ss. % ol
RN
*
..-\_\‘Secon%ﬂyt 1
ﬁ Ontro,
> P

Theorem: Stability of DAPI
[J. Simpson-Porco, FD, & F. Bullo, '12]

DAPI Stable
0

Primary Droop Stable
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Distributed Averaging P1 (DAPI) Voltage Control

Goals: Voltage regulation E; — E*, load sharing Q;/Q} = Qj/Qj‘
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Distributed Averaging P1 (DAPI) Voltage Control
Goals: Voltage regulation E; — E*, load sharing Q;/Q} = Qj/Qj‘

Bad News: Unlike P/w, these goals are fundamentally conflicting.
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Distributed Averaging P1 (DAPI) Voltage Control

Goals: Voltage regulation E; — E*, load sharing Q;/Q} = Qj/Qj‘
Bad News: Unlike P/w, these goals are fundamentally conflicting.

Key Idea: Trade-off between voltage regulation / Q-Sharing

TiEi = —(E,' — E*) — n,-Q,-(E) — €

ki€ = Bi(Ei — E})
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Distributed Averaging P1 (DAPI) Voltage Control

Goals: Voltage regulation E; — E*, load sharing Q;/Q} = Qj/Qj‘

Bad News: Unlike P/w, these goals are fundamentally conflicting.

Key Idea: Trade-off between voltage regulation / Q-Sharing

TiEi = —(E,' — E*) — n,-Q,-(E) — €

rié = Bi(Ei — E)— ) by (gj;—@>

k
Jj Cinverters Qj
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Distributed Averaging P1 (DAPI) Voltage Control

Goals: Voltage regulation E; — E*, load sharing Q;/Q} = Qj/Qj‘

Bad News: Unlike P/w, these goals are fundamentally conflicting.

Key Idea: Trade-off between voltage regulation / Q-Sharing

TiEi = —(E,' — E*) — n,-Q,-(E) — €

rié = Bi(Ei — E)— ) by (3;—@)

k
Jj Cinverters Qj

Tuning Intuition:
O B > >_; bj = voltage regulation
@ 3 < > ;bj = Q-Sharing

19/23



Plug'n’play architecture

flat hierarchy, distributed, no time-scale separations, & model-free

Tertiary Control Dispatch
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Plug'n’play architecture

flat hierarchy, distributed, no time-scale separations, & model-free

Tertiary Control Dispatch

Sensing/Communication Layer

Wl | -

r N
l’I‘ransceiver ‘ I e | I ianscoives | | Transceiver m Transceiver IG' Transceiver |
() ) () 0O 0 0
Secondary Secondary Secondary DAPI DAPI DAPI
Control Control Control Control Control Control
00 i 0 - vz B

Primary Primary Primary -I i ) H
Control Control Control @ ‘\\ /" % %

0

@) ) 0] 0]
y_ . k
[\" ( Power Networ

| _J

)

%)

J Y

Power Network J Physical Interactions
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Experimental Validation of DAPI Control
Experiments @ Aalborg University with Q. Shafiee, J. C. Vasquez & J. M. Guerrero
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Experimental Validation of DAPI Control

Experiments @ Aalborg University with Q. Shafiee, J. C. Vasquez & J. M. Guerrero
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Ongoing Theoretical and Practical Challenges

© Interaction w/ price dynamics
@ Cyber-security in DAPI control
© Performance limits of decentralized control

Q Large-scale study w/ NS-3 comm. & more detailed load models
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Summary

mﬁ;\ 8
5]
[t

Distributed Inverter Control

i

Primary control stability

\
e Distributed Pl controllers ﬂ‘ } E‘
. . . 4 \
° Prlmary/tertlary connections
e Experiments: “It works. Really.”

’

More Results (not shown)

e More voltage control/opt.

e Accurate approximations
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