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Our 20th Century Bulk Power System

A large-scale, nonlinear, hybrid, stochastic, distributed, cyber-physical ..
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What kind of control is used? |
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Bulk Power System Control Architecture & Objectives

Hierarchy by spatial /temporal scales and physics

Tertiary Control Dispatch
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Bulk Power System Control Architecture & Objectives

Hierarchy by spatial /temporal scales and physics

Tertiary Control Dispatch
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Bulk Power System Control Architecture & Objectives

Hierarchy by spatial /temporal scales and physics
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( Power Network

Tertiary Control Dispatch 3. Tertiary control (offline)
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Bulk Power System Control Architecture & Objectives

Hierarchy by spatial /temporal scales and physics

Tertiary Control Dispatch
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( Power Network

3. Tertiary control (offline)

o Goal: optimize operation
o Strategy: centralized & forecast

2. Secondary control (minutes)

o Goal: restore frequency
o Strategy: centralized

1. Primary control (real-time)

o Goal: stabilize freq. and volt.
o Strategy: decentralized

Q: Is this hierarchical
architecture still appropriate
for new applications?
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Power electronics are game changers . ..

synchronous generator

\
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sensing and actuation floods the edge of the grid
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Power electronics are game changers . ..

5

synchronous generator power inverters

(%)
QO

sensing and actuation floods the edge of the grid

o -

Generation Transmission M ‘ m _1:‘.;, L g
distribution distribution

If central control authority fades . ..how to coordinate new actuators? J




My Perspective: Distributed Control Systems

local subsystems and control

{Simple Models} U {Analysis} U {Optimization} U {Control}
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Smart Grid Project Samples

Quadratic Droop Control (TAC) Power Flow Solns. (Nat. Comms.)

Optimal Distrib. Volt/Var (cbc) Wide-Area Monitoring (T5¢)
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Microgrids

Structure

e low-voltage, small footprint
e grid-connected or islanded
e autonomously managed

Applications
e hospitals, military, campuses, large
vehicles, & remote locations

Benefits
e naturally distributed for renewables
e scalable, efficient & redundant
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Microgrids

Structure

e low-voltage, small footprint
e grid-connected or islanded
e autonomously managed

Applications
e hospitals, military, campuses, large
vehicles, & remote locations

Benefits
e naturally distributed for renewables
e scalable, efficient & redundant

Operational challenges
e low inertia & uncertainty

e plug'n’play & no central authority )
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Modeling I: AC circuits
O Loads (e) and Inverters (m)
@ Quasi-Synchronous: w ~ w* = V; = E;e/

© Load Model: Constant powers P¥, Qf

© Coupling Laws: Kirchoff and Ohm: Yj; = G;; + jB;;
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Modeling I: AC circuits
O Loads (e) and Inverters (m)
@ Quasi-Synchronous: w ~ w* = V; = E;e/

© Load Model: Constant powers P¥, Qf

© Coupling Laws: Kirchoff and Ohm: Yj; = G;; + jB;;

o active power:  P; = 3 BiEiE;sin(0; — 0;) + GjE;Ej cos(0; — 0;)
o reactive power: Qi = —)_: BjE;Ejcos(0; — 0;) + GjEiEjsin(0; — 6;)
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Modeling I: AC circuits
O Loads (e) and Inverters (m)
@ Quasi-Synchronous: w ~ w* = V; = E;e/

© Load Model: Constant powers P¥, Qf

© Coupling Laws: Kirchoff and Ohm: Yj; = G;; + jB;;
@ Line Characteristics: Gjj/Bjj = const.
O Decoupling: P; =~ P;(0) & Q; =~ Q;(E)

e trigonometric active power flow: P;(0) = >, Bjsin(6; —6;)

* quadratic reactive power flow:  Q;(E) = —>_; BjEE;
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Modeling Il: Inverter-interfaced sources

also applies to frequency-responsive loads

Power inverters are . ..

DC. PWM
o interface between AC grid

LCL
CALA AL B
and DC or variable AC sources

Assumptions:

e Fast, stable inner/outer loops
(voltage/current /impedance)
e Good harmonic filtering

e Balanced 3-phase operation
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Modeling Il: Inverter-interfaced sources

Power inverters are . ..

DC PWM
——
o interface between AC grid

LCL

B I A
and DC or variable AC sources

@ operated as controllable ideal

& -
T
(et

voltage sources

. fre
Tiwj = u; q

- volt
, TiEi=uy; ]

Nl

1@N &
~~

e Fast, stable inner/outer loops
Fei0+et) (voltage/current /impedance)
J e Good harmonic filtering

e Balanced 3-phase operation

<L
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Open-Loop System & Control Objectives

Frequency Open-Loop Voltage Open-Loop
Inverter Dynamics (i € Z): Inverter Dynamics (i € Z):
Wi — 9 freq i E — uvolt

ZBUsm(e 0;) Qi :—ZJB,-J-E,-EJ-

Power Balance (i € £): Power Balance: (i € £)

o:Pi‘—ZJ,B,-jsin(e;—ej)J 0:Q7+ZJBUE,.EJ. J

Primary Control Objectives:
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Open-Loop System & Control Objectives

Frequency Open-Loop Voltage Open-Loop
Inverter Dynamics (i € Z): Inverter Dynamics (i € Z):
Wi — 9 freq i E — uvolt

ZBUsm(Q 0;) Qi :—ZJB,-J-E,-EJ-

Power Balance (i € £): Power Balance: (i € £)

o:Pi‘—ZjB,-jsin(e;—ej)J 0:@7+Zj3,.j5,.5j J

Primary Control Objectives:
@ Stabilization: Ensure stable frequency/voltage dynamics

@ Balance: Balance supply/demand for variable loads
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Open-Loop System & Control Objectives

Frequency Open-Loop Voltage Open-Loop
Inverter Dynamics (i € Z): Inverter Dynamics (i € 7):
wh = = ufreq miE; = uf°t
Pi(0) = Zj Bjjsin(6; — 0;) Qi(E) = — ZJ B EiE;
Power Balance (i € £): Power Balance: (i € £)
o:Pi‘—ZjB,-jsin(e;—ej) J 0:@7+Zj3,.j5,.5j |

Primary Control Objectives:
@ Stabilization: Ensure stable frequency/voltage dynamics
@ Balance: Balance supply/demand for variable loads
© Load Sharing: Power injections proportional to unit capacities

9/29



Primary Droop Control

“Grid-forming” decentralized control

Key Idea: emulate generator speed & AVR control J
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Primary Droop Control

“Grid-forming” decentralized control

Key Idea: emulate generator speed & AVR control J

Frequency Droop Control Voltage Droop Control
wi =w* —m;Pi(0) | 7iE; = —(E — E*) — mQi(E) |
AW AL
* Prl}?za T PI 7111.
w OOI]tI.Oj 5* ary, C"Ilt oy
1
Wss EZ
P Q
P P - Q Q2 -
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Primary Droop Control

“Grid-forming” decentralized control

Key Idea: emulate generator speed & AVR control

Frequency Droop Control

Quad. Voltage Droop Control

Wi = w* — m,-P,-(H)

J

Wss

\ W

7 121111-

IQ&OO”“‘W

Y
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GEE —Ei(Ei—E*)—niQi(E) |
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Spring Network Interpretations of Equilibria

Frequency Droop Control

0= P;k = Zj B,:,'Sin(e,' = ej)J
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Spring Network Interpretations of Equilibria

Frequency Droop Control Voltage Droop Control

OZP?—ZJ-BUsin(@—@J-)J 0= Q'+, BjEE J
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Spring Network Interpretations of Equilibria

Frequency Droop Control

Voltage Droop Control

0= P;k = Zj B,:,'Sin(e,' = aj)J

0= + 5, BiEE |

Voltage
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Droop Control Stability Conditions

Frequency Droop Control

0=P — Z,- Bjsin(6; — 0))
é,‘ = —mj Zj B,‘j sin(9,- — 0_,)
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Droop Control Stability Conditions

Frequency Droop Control

0=P — Z,- Bjsin(6; — 0))
é,‘ = —mj Zj B,‘j sin(9,- — 9_,)

Theorem: Frequency Stability

3! loc. exp. stable angle
equilibrium 60 iff

(ATP);

for all lines (7, /) of microgrid.

Necessary and Sufficient
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Droop Control Stability Conditions

Frequency Droop Control Voltage Droop Control
0="P; — Z,- Bjjsin(6; — 6;) 0=Q + Zj BjEEj
é,‘ = —m; Zj Bi sin(9,- — 0_,) T,'E' = —E,'(E,' — E*) + n; Zj BjEiE;

Theorem: Frequency Stability

3! loc. exp. stable angle
equilibrium 60 iff

(ATP);

for all lines (7, /) of microgrid.

Necessary and Sufficient
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Droop Control Stability Conditions

Frequency Droop Control Voltage Droop Control
0="P; — Z,- Bjjsin(6; — 6;) 0=Q + Zj BjEEj
é,‘ = —m; Zj Bi sin(9,- — 0_,) TiE; = —E,'(E,' — E*) + n; Zj BjEiE;

Theorem: Frequency Stability Theorem: Voltage Stability
3! loc. exp. stable angle 3! loc. exp. stable voltage
equilibrium e iff equilibrium point E if

ATP); —1

% <1 (Ei)z(BredQL)i <1
for all lines (7, /) of microgrid. for all load buses i of microgrid.
Necessary and Sufficient Tight and Sufficient

12/29



Open Problems in Primary Control Stability

@ Analysis of standard voltage droop controller
@ Coupled droop equilibrium and unbal 3-phase analysis
© Design or adaptation for non-uniform R/X ratios

Q Limits of decentralized control based on (wj, V;, P;, Q;)

@ Stability of inverters + synchronverters
@ Interaction between droop and DR/battery management
© Multi-harmonic extensions

@ Regulation vs. mechanism design
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Secondary Control for Optimal Frequency Regulation

Problem: Usually wg # w*, and AW
system subject to many disturbances
P,y
* 1y,
w %O“arl.oj
wSS
P
P P -
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Secondary Control for Optimal Frequency Regulation

Problem: Usually wg # w*, and

system subject to many disturbances

Droop Control + Sec. Input
wj = w* — m,-(P,-(9) — P,>I< — p,')

|

Active Power Flow

Pi(6) = ijl By sin(0; — 6;),

Problem: Update p; online, in a
model-free manner s.t.

(i) wes =0
(i) “optimality” or power sharing

(iii) reject unknown disturbances

L X%

e
.

Wss

| ]

Py Py

Opt. Freq. Reg. Problem
minimize Zi Ji(pi)

subject to Z (PF+pi)=0

EiSPiSPi
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Optimal Frequency Regulation Problem

(for strictly feasible inequality constraints)

TS ZIGI Ji(pi)
subject to 27_1('07 +pi)=0

e Ji(p;) is ith agent's cost (disutility) for off-nominal generation

o Network-wide balance -7 ; (P + p;) = 0 ensures wgs = 0.
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Optimal Frequency Regulation Problem

(for strictly feasible inequality constraints)

TS ZIGI Ji(pi)
subject to Z?_I(P}k +pi)=0

e Ji(p;) is ith agent's cost (disutility) for off-nominal generation

o Network-wide balance -7 ; (P + p;) = 0 ensures wgs = 0.

e Lagrangian: L(p,p) = ZJ/‘(PI) - )\Z(P;k + Pi)J

Economic Dispatch Criteria: ~ VJi(pi) = A | (equal marginal costs)

Big Big Problem: Solution requires knowledge of all J;(-) and all P,
including potentially unknown loads!
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Architectures for frequency regulation

Problem: steady-state frequency deviation (wss # w*)

Solution: integral control on frequency error
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Isolated Systems J
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Architectures for frequency regulation

Problem: steady-state frequency deviation (wss # w*)

Solution: integral control on frequency error

Isolated Systems

Interconnected Systems ) |

o

e
=1
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o
o
=

e
o
<

o
o
>

e

14
o
&

Inverter Injections (p.u.)

o
o o
3 =

1§
o
®

1§
o
=)

Inverter Injections (p.u.)
° °
& <

S
0.04 0.04 P'
0.03 0.03
5 10 15 20 5 10 15 20
Time (s) Time (s)

(a) Decentralized control

(b) Centralized control
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Architectures for frequency regulation

Problem: steady-state frequency deviation (wss # w*)

Solution: integral control on frequency error

Interconnected Systems

Isolated Systems J

e Centralized automatic
. *ion control (AGC)

e Decentralized Pl control
(is aus mode)
a,

Can we strike a middle ground between these two approaches? )
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Distributed Averaging PI (DAPI) Frequency Control

wi =w* — m;i(P;(0) — P — pi)

kipi = (wi — w®)
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Distributed Averaging PI (DAPI) Frequency Control

Wi

kipi =

w* = mj(Pi(0) — P — pi)
(wi =)= Y a5 (mipi — m;p))

Jj Cinverters

.

.. ‘-\\Secondary

Control

> P

Py P,
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Distributed Averaging PI (DAPI) Frequency Control

w
Py
wi = w* = mi(P(8) — P - p) L e,
kipi = (i —w*)= Y ay - (mipi —mip) | | e e
j Cinverters h S Control
o ﬁ

: : > P

@ Power sharing: VJi(pi) = m;p; PP

@ no tuning, no model dependence
© weak comm. requirements

@ enforces equal marginal costs

Keep It Simple )
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Distributed Averaging PI (DAPI) Frequency Control

w
Py
wi =" = mi(Pi(6) = P} = p) L e,
kipi = (i —w*)= Y ay - (mipi —mip) | | e .
j Cinverters h T Control
. 5 > P
@ Power sharing: VJi(pi) = m;p; PP

@ no tuning, no model dependence
© weak comm. requirements

@ enforces equal marginal costs

Keep It Simple |

Theorem: Stability of DAPI
[JWSP, FD, & FB, '13]

DAPI-Controlled System Stable
T

Droop-Controlled System Stable

17/29



DAPI as Passivity-Based Control

T

Communication Network

Secondary Control

Wi

> kipi = (wi —w") — ZjeI aij(mipi — m;p;)
Primary Control
0; = wi—w" =-—mi(P(0) — P —pi)
The Grid

Pi(0) =) _ Bijsin(0: —0;)

pi

P;(0)
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DAPI as Passivity-Based Control
Communication Network

I Secondary Control l

kipi = (wi —w") — ZjeI aij(mipi — m;p;)  —

Y

Wi Pi

Primary Control

6, = wi—w = —mi(P0) - P} —p)

The Grid Fi(6)

Pi(0) =) _ Bijsin(0: —0;)

y

Build grid controls via time-seale-separation passivity. )
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DAPI Control From The Utility Side

Question

With this distributed controller, what does
the microgrid look like from “the outside”?
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DAPI Control From The Utility Side

Question

With this distributed controller, what does
the microgrid look like from “the outside”?

It looks like there is no microgrid.J

@ Different units respond uniformly to disturbances and commands
@ Microgrid acts as a single entity, a rigid formation of devices

@ Coordination complexity hidden “behind the transformer”
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Disturbance Rejection of Distributed Frequency Control

For real-time implementation . ..what about 1/0 performance?J

Wi

Comm Net

DAPI Control

Droop Control

The Grid

pi

Pi(0)
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System norms quantify amplification from disturbances (sensor noise,
faults, uncertainty, etc.) to controlled outputs
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DAPI Control
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Disturbance Rejection of Distributed Frequency Control

For real-time implementation . ..what about 1/0 performance?J

System norms quantify amplification from disturbances (sensor noise,
faults, uncertainty, etc.) to controlled outputs

—» DAPI Control

Droop Control |[<€—— dp

The Grid
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Quick Review: The H, System Norm

Exp. Stable Linear System
x = Ax + Bd

z = Cx

— G(s)=C(sl —A)'B

161, 2 57 [ Tr [67(=jw)6Gw)] dw J

Useful Interpretations:

(i) Steady-state output variance lim; ., E[z(t)Tz(t)] when d noise

(i) “Average” gain over all frequencies from d(-) to z(-)

If (A, C) observable

ATY + YA+ CTC=0

= |63, = T(BTYB) J




‘H,-Performance of Distributed Frequency Control
Linearized, Network-Reduced, Simplified

0; = wj

Comm Net

Twi = —w — m;j(Pi(0) — pi) + midp,j

II DAPI Control .

Droop Control |<€——d;

i n
G:q kpi=—wi=7) _ aj(mipi—mp;— dc;)

Zw,i = Wi 0;

The Grid

n
| 2 = > i ajj(mip; — mjp;)
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‘H,-Performance of Distributed Frequency Control
Linearized, Network-Reduced, Simplified

9,-:w,-

Comm Net

Twi = —w — m;j(Pi(0) — pi) + midp,j

II DAPI Control .

Droop Control |€—— dp

i n
G:q kpi=—wi=7) _ aj(mipi—mp;— dc;)

Zy,i = Wj ’

The Grid

n
| 2i=) iy @(mipi = m;p))

Theorem: High-Gain Performance
In the high-gain limit v — oo, we have
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‘H,-Performance of Distributed Frequency Control
Linearized, Network-Reduced, Simplified

9,-:w,-

Comm Net

Twi = —w — m;j(Pi(0) — pi) + midp,j

II DAPI Control .

Droop Control |€—— dp

i n
G:q kpi=—wi=7) _ aj(mipi—mp;— dc;)

Zy,i = Wj ’

The Grid

n
| 2 = Zj:l ai(mip; — m;p;)
Theorem: High-Gain Performance
In the high-gain limit v — oo, we have

1 5 m?
N6lG, 0 = —
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‘Ho-Performance of Distributed Frequency Control

Linearized, Network-Reduced, Simplified
0; = wj

Twi = —w — m;j(Pi(0) — pi) + midp,j

Zy,i = Wj

n
| 2= iy @(mipi = m;p))

Theorem: High-Gain Performance
In the high-gain limit v — oo, we have
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. n
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0;

Comm Net
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‘H,-Performance of Distributed Frequency Control
Linearized, Network-Reduced, Simplified

éi = Wwj
Twi = —w — m;j(Pi(0) — pi) + midp,j
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n
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Theorem: High-Gain Performance
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Distributed Averaging Pl (DAPI) Voltage Control [rie 15

Problem: steady-state voltage deviations (E; # E)
Goals: Voltage regulation E; — E, "load” sharing Q;/QF = Qj/Qf
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Distributed Averaging Pl (DAPI) Voltage Control [rie 15

Problem: steady-state voltage deviations (E; # E)
Goals: Voltage regulation E; — E, "load” sharing Q;/QF = Qj/Qf

Bad News: These goals are fundamentally conflicting.

We propose a heuristic compromise.

TiEi = —(E,' — Ei*) — n,-Q,-(E) — €

kié = Bi(Ei— Ef)— ) by- <gj;Qf>

*
j Cinverters QJ

Tuning Intuition:
Q B > ; bj = voltage regulation
@ i < ) ;bj = Q-Sharing
© "Smart Tuning”
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DAPI Voltage Control — Performance [tie '15]

TiEi = —(E,' s E*) = n,-Q,-(E) — €
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From Hierarchical Control to DAPI Control

flat hierarchy, distributed, no time-scale separations, & model-free
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From Hierarchical Control to DAPI Control

flat hierarchy, distributed, no time-scale separations, & model-free

Tertiary Control Dispatch Sensing/Communication Layer
I -
r B
l’I‘ransceiver ‘ I Transceiver l I Transceiver |
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Experimental Validation of DAPI Control

Experiments @ Aalborg University Intelligent Microgrid Laboratory
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Experiments @ Aalborg University Intelligent Microgrid Laboratory

@ t < 7: Droop Control
@ t =7: DAPI Control
© t = 22: Remove Load 2
©Q t = 36: Attach Load 2
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Experimental Validation of DAPI Control
Experiments @ Aalborg University Intelligent Microgrid Laboratory
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DAPI Activated Power Sharing
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Experiments — Plug-and-Play Operation

Unit 3 (green) disconnected then reconnected
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Summary

Distributed Inverter Control
e Primary control stability
e Distributed controllers
e Controller performance

e Extensive validation

Future Work
e More detailed models

e More systematic designs

More optimal control

Monitoring <= Feedback

Distributed control security

LV markets for control
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