Distributed Control of Inverter-Based Power Grids

Workshop on Communications, Computation and Control for Resilient Smart Energy Systems ACM e-Energy 2016

John W. Simpson-Porco

Our 20th Century Bulk Power System

A large-scale, nonlinear, hybrid, stochastic, distributed, cyber-physical ...

What kind of control is used?

Hierarchy by spatial/temporal scales and physics

- 3. Tertiary control (offline)
 - Goal: optimize operation
 - Strategy: centralized & forecast
- 2. Secondary control (minutes)
 - Goal: restore frequency
 - Strategy: centralized

1. Primary control (real-time)

- Goal: stabilize freq. and volt.
- Strategy: decentralized

Hierarchy by spatial/temporal scales and physics

- 3. Tertiary control (offline)
 - Goal: optimize operation
 - Strategy: centralized & forecast
- 2. Secondary control (minutes)
 - Goal: restore frequency
 - Strategy: centralized
- 1. Primary control (real-time)
 - Goal: stabilize freq. and volt.
 - Strategy: decentralized

Hierarchy by spatial/temporal scales and physics

- 3. Tertiary control (offline)
 - Goal: optimize operation
 - Strategy: centralized & forecast
- 2. Secondary control (minutes)
 - Goal: restore frequency
 - Strategy: centralized
- 1. Primary control (real-time)
 - Goal: stabilize freq. and volt.
 - Strategy: decentralized

Hierarchy by spatial/temporal scales and physics

- 3. Tertiary control (offline)
 - Goal: optimize operation
 - Strategy: centralized & forecast
- 2. Secondary control (minutes)
 - Goal: restore frequency
 - Strategy: centralized
- 1. Primary control (real-time)
 - Goal: stabilize freq. and volt.
 - Strategy: decentralized

Power electronics are game changers

synchronous generator

Power electronics are game changers

synchronous generator power inverters

Power electronics are game changers ...

synchronous generator power inverters

sensing and actuation floods the edge of the grid

Power electronics are game changers

synchronous generator

power inverters

sensing and actuation floods the edge of the grid

scaling

Power electronics are game changers ...

synchronous generator

power inverters

sensing and actuation floods the edge of the grid

If central control authority fades ... how to coordinate new actuators?

scaling

My Perspective: Distributed Control Systems

 $\{\mathsf{Simple Models}\} \cup \{\mathsf{Analysis}\} \cup \{\mathsf{Optimization}\} \cup \{\mathsf{Control}\}$

Microgrids

Structure

- low-voltage, small footprint
- grid-connected or islanded
- autonomously managed

Applications

• hospitals, military, campuses, large vehicles, & remote locations

Benefits

- naturally distributed for renewables
- scalable, efficient & redundant

Operational challenges

- low inertia & uncertainty
- plug'n'play & no central authority

Microgrids

Structure

- low-voltage, small footprint
- grid-connected or islanded
- autonomously managed

Applications

• hospitals, military, campuses, large vehicles, & remote locations

Benefits

- naturally distributed for renewables
- scalable, efficient & redundant

Operational challenges

- low inertia & uncertainty
- plug'n'play & no central authority

- Modeling I: AC circuits
- Loads (●) and Inverters (■)
- **2** Quasi-Synchronous: $\omega \simeq \omega^* \Rightarrow V_i = E_i e^{j\theta_i}$
- **Solution** Load Model: Constant powers P_i^* , Q_i^*

- **Output** Coupling Laws: Kirchoff and Ohm: $Y_{ij} = G_{ij} + jB_{ij}$
- **(3)** Line Characteristics: $G_{ij}/B_{ij} = \text{const.}$ (today, lossless $G_{ij} = 0$)
- **O Decoupling:** $P_i \approx P_i(\theta) \& Q_i \approx Q_i(E)$ (normal operating conditions)

- Modeling I: AC circuits
- Loads (●) and Inverters (■)
- **2** Quasi-Synchronous: $\omega \simeq \omega^* \Rightarrow V_i = E_i e^{j\theta_i}$
- **Solution** Load Model: Constant powers P_i^* , Q_i^*

- Coupling Laws: Kirchoff and Ohm: $Y_{ij} = G_{ij} + jB_{ij}$
- **(3)** Line Characteristics: $G_{ij}/B_{ij} = \text{const.}$ (today, lossless $G_{ij} = 0$)
- **O Decoupling:** $P_i \approx P_i(\theta) \& Q_i \approx Q_i(E)$ (normal operating conditions)

- active power: $P_i = \sum_j B_{ij} E_i E_j \sin(\theta_i \theta_j) + G_{ij} E_i E_j \cos(\theta_i \theta_j)$
- reactive power: $Q_i = -\sum_j B_{ij} E_i E_j \cos(\theta_i \theta_j) + G_{ij} E_i E_j \sin(\theta_i \theta_j)$

- Modeling I: AC circuits
- Loads (●) and Inverters (■)
- **2** Quasi-Synchronous: $\omega \simeq \omega^* \Rightarrow V_i = E_i e^{j\theta_i}$
- **Solution** Load Model: Constant powers P_i^* , Q_i^*

- Coupling Laws: Kirchoff and Ohm: $Y_{ij} = G_{ij} + jB_{ij}$
- **5** Line Characteristics: $G_{ij}/B_{ij} = \text{const.}$ (today, lossless $G_{ij} = 0$)
- **Obsolution** Decoupling: $P_i \approx P_i(\theta) \& Q_i \approx Q_i(E)$ (normal operating conditions)

- Modeling I: AC circuits
- Loads (●) and Inverters (■)
- **2** Quasi-Synchronous: $\omega \simeq \omega^* \Rightarrow V_i = E_i e^{j\theta_i}$
- **Solution** Load Model: Constant powers P_i^* , Q_i^*

- **5** Line Characteristics: $G_{ij}/B_{ij} = \text{const.}$ (today, lossless $G_{ij} = 0$)
- **Obsolution** Decoupling: $P_i \approx P_i(\theta)$ & $Q_i \approx Q_i(E)$ (normal operating conditions)

• trigonometric active power flow: $P_i(\theta) = \sum_i B_{ij} \sin(\theta_i - \theta_j)$

• quadratic reactive power flow: $Q_i(E) = -\sum_i B_{ij} E_i E_i$

Modeling II: Inverter-interfaced sources

also applies to frequency-responsive loads

Power inverters are ...

- interface between AC grid and DC or variable AC sources
- operated as controllable ideal voltage sources

Assumptions:

- Fast, stable inner/outer loops (voltage/current/impedance)
- Good harmonic filtering
- Balanced 3-phase operation

Modeling II: Inverter-interfaced sources

also applies to frequency-responsive loads

Power inverters are ...

- interface between AC grid and DC or variable AC sources
- operated as controllable ideal voltage sources

$$au_i \dot{\omega}_i = u_i^{ ext{freq}}, \quad au_i \dot{E}_i = u_i^{ ext{volt}}$$

Assumptions:

- Fast, stable inner/outer loops (voltage/current/impedance)
- Good harmonic filtering
- Balanced 3-phase operation

Open-Loop System & Control Objectives	
Frequency Open-Loop	Voltage Open-Loop
Inverter Dynamics ($i \in \mathcal{I}$):	Inverter Dynamics $(i \in \mathcal{I})$:
$\omega_i = \dot{ heta}_i = u_i^{ ext{freq}} \ P_i(heta) = \sum_j B_{ij} \sin(heta_i - heta_j)$	$ au_i \dot{E}_i = u_i^{ ext{volt}} \ Q_i(E) = -\sum_j B_{ij} E_i E_j$
Power Balance $(i \in \mathcal{L})$:	Power Balance: $(i \in \mathcal{L})$
$0 = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$	$0 = Q_i^* + \sum_j B_{ij} E_i E_j$

- **1** Stabilization: Ensure stable frequency/voltage dynamics
- 2 Balance: Balance supply/demand for variable loads
- Output Description State St

Open-Loop System & Control Objectives	
Frequency Open-Loop	Voltage Open-Loop
Inverter Dynamics ($i \in \mathcal{I}$):	Inverter Dynamics $(i \in \mathcal{I})$:
$\omega_i = \dot{ heta}_i = u_i^{ ext{freq}} \ P_i(heta) = \sum_j B_{ij} \sin(heta_i - heta_j)$	$ au_i \dot{E}_i = u_i^{ m volt} \ Q_i(E) = -\sum_j B_{ij} E_i E_j$
Power Balance $(i \in \mathcal{L})$:	Power Balance: $(i \in \mathcal{L})$
$0 = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$	$0 = Q_i^* + \sum_j B_{ij} E_i E_j$

- **1** Stabilization: Ensure stable frequency/voltage dynamics
- Balance: Balance supply/demand for variable loads
- Output Description State St

Open-Loop System & Control Objectives	
Frequency Open-Loop	Voltage Open-Loop
Inverter Dynamics ($i \in \mathcal{I}$):	Inverter Dynamics $(i \in \mathcal{I})$:
$\omega_i = \dot{ heta}_i = u_i^{ ext{freq}} \ P_i(heta) = \sum_j B_{ij} \sin(heta_i - heta_j)$	$ au_i \dot{E}_i = u_i^{ m volt} \ Q_i(E) = -\sum_j B_{ij} E_i E_j$
Power Balance $(i \in \mathcal{L})$:	Power Balance: $(i \in \mathcal{L})$
$0 = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$	$0 = Q_i^* + \sum_j B_{ij} E_i E_j$

- **1** Stabilization: Ensure stable frequency/voltage dynamics
- **2** Balance: Balance supply/demand for variable loads
- Output Description State St

Open-Loop System & Control Objectives	
Frequency Open-Loop	Voltage Open-Loop
Inverter Dynamics ($i \in \mathcal{I}$):	Inverter Dynamics $(i \in \mathcal{I})$:
$\omega_i = \dot{ heta}_i = u_i^{ ext{freq}} \ P_i(heta) = \sum_j B_{ij} \sin(heta_i - heta_j)$	$ au_i \dot{E}_i = u_i^{ m volt} \ Q_i(E) = -\sum_j B_{ij} E_i E_j$
Power Balance $(i \in \mathcal{L})$:	Power Balance: $(i \in \mathcal{L})$
$0 = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$	$0 = Q_i^* + \sum_j B_{ij} E_i E_j$

- **1** Stabilization: Ensure stable frequency/voltage dynamics
- **2** Balance: Balance supply/demand for variable loads
- **Solution** Load Sharing: Power injections proportional to unit capacities

Primary Droop Control

"Grid-forming" decentralized control

Key Idea: emulate generator speed & AVR control

Primary Droop Control

"Grid-forming" decentralized control

Primary Droop Control

"Grid-forming" decentralized control

Frequency Droop ControlVoltage Droop Control
$$0 = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$$
 $0 = Q_i^* + \sum_j B_{ij} E_i E_j$

Droop Control Stability Conditions

Frequency Droop Control $0 = P_i^* - \sum_i B_{ij} \sin(\theta_i - \theta_j)$ $\dot{\theta}_i = -m_i \sum_i B_{ij} \sin(\theta_i - \theta_j)$

for all load buses *i* of microgrid.

Tight and Sufficient

Necessary and Sufficient

Droop Control Stability Conditions

Frequency Droop Control	Voltage Droop Control
$0 = P_i^* - \sum_j B_{ij} \sin(heta_i - heta_j)$ $\dot{ heta}_i = -m_i \sum_j B_{ij} \sin(heta_i - heta_j)$	$0 = Q_i^* + \sum_j B_{ij} E_i E_j$ $\tau_i \dot{E}_i = -E_i (E_i - E^*) + n_i \sum_j B_{ij} E_i E_j$
Theorem: Frequency Stability (JWSP, FD, & FB '12) \exists ! loc. exp. stable angle equilibrium θ_{eq} iff	Theorem: Voltage Stability (JWSP, FD, & FB '15) \exists ! loc. exp. stable voltage equilibrium point E_{eq} if
$\boxed{\frac{(A^{\dagger}P)_{ij}}{B_{ij}} < 1}$ for all lines (i,j) of microgrid.	$rac{4}{(E^*)^2}(B_{ m red}^{-1}Q_L)_i < 1$ for all load buses i of microgrid.
Necessary and Sufficient	Tight and Sufficient

Droop Control Stability Conditions

Frequency Droop Control	Voltage Droop Control
$0 = P_i^* - \sum_j B_{ij} \sin(heta_i - heta_j)$ $\dot{ heta}_i = -m_i \sum_j B_{ij} \sin(heta_i - heta_j)$	$0 = Q_i^* + \sum_j B_{ij} E_i E_j$ $\tau_i \dot{E}_i = -E_i (E_i - E^*) + n_i \sum_j B_{ij} E_i E_j$
Theorem: Frequency Stability (JWSP, FD, & FB '12) \exists ! loc. exp. stable angle equilibrium θ_{eq} iff	Theorem: Voltage Stability (JWSP, FD, & FB '15) \exists ! loc. exp. stable voltage equilibrium point E_{eq} if
$\boxed{\frac{(A^{\dagger}P)_{ij}}{B_{ij}} < 1}$ for all lines (i,j) of microgrid.	$rac{4}{(E^*)^2}(B_{ m red}^{-1}Q_L)_i < 1$ for all load buses i of microgrid.
Necessary and Sufficient	Tight and Sufficient
Droop Control Stability Conditions

Frequency Droop Control	Voltage Droop Control
$0 = P_i^* - \sum_j B_{ij} \sin(heta_i - heta_j)$ $\dot{ heta}_i = -m_i \sum_j B_{ij} \sin(heta_i - heta_j)$	$0 = Q_i^* + \sum_j B_{ij} E_i E_j$ $\tau_i \dot{E}_i = -E_i (E_i - E^*) + n_i \sum_j B_{ij} E_i E_j$
Theorem: Frequency Stability (JWSP, FD, & FB '12) $\exists ! \text{ loc. exp. stable angle}$ equilibrium θ_{eq} iff $(A^{\dagger}P)_{ij} < 1$	Theorem: Voltage Stability (JWSP, FD, & FB '15) \exists ! loc. exp. stable voltage equilibrium point E_{eq} if
$\overline{B_{ij}} < 1$ for all lines (i, j) of microgrid.	$\frac{\overline{(E^*)^2}(B_{\text{red}}(Q_L)_i < 1)}{\text{for all load buses } i \text{ of microgrid.}}$ Tight and Sufficient

Open Problems in Primary Control Stability

- Analysis of standard voltage droop controller
- Oupled droop equilibrium and unbal 3-phase analysis
- **③** Design or adaptation for non-uniform R/X ratios
- **4** Limits of decentralized control based on $(\omega_i, V_i, P_i, Q_i)$

- **1** Stability of inverters + synchronverters
- Interaction between droop and DR/battery management
- Multi-harmonic extensions
- Regulation vs. mechanism design

Problem: Usually $\omega_{ss} \neq \omega^*$, and system subject to many disturbances

Droop Control + Sec. Input $\omega_i = \omega^* - m_i(P_i(\theta) - P_i^* - p_i)$

Active Power Flow

$$P_i(\theta) = \sum_{j=1}^n B_{ij} \sin(\theta_i - \theta_j),$$

Problem: Update *p_i* online, in a model-free manner s.t.

(i) $\omega_{\rm ss} = 0$

(ii) "optimality" or power sharing(iii) reject unknown disturbances

Opt. Freq. Reg. Problem minimize $\sum_{i \in \mathcal{I}} J_i(p_i)$ subject to $\sum_{i=1}^{n} (P_i^* + p_i) = 0$ $\underline{p}_i \leq p_i \leq \overline{p}_i$

Problem: Usually $\omega_{ss} \neq \omega^*$, and system subject to many disturbances

Droop Control + Sec. Input

$$\omega_i = \omega^* - m_i (P_i(\theta) - P_i^* - p_i)$$

Active Power Flow

$$P_i(\theta) = \sum_{j=1}^n B_{ij} \sin(\theta_i - \theta_j),$$

Problem: Update *p_i* online, in a model-free manner s.t.

(i) $\omega_{\rm ss} = 0$

(ii) "optimality" or power sharing(iii) reject unknown disturbances

Opt. Freq. Reg. Problem minimize $\sum_{i \in \mathcal{I}} J_i(p_i)$ subject to $\sum_{i=1}^{n} (P_i^* + p_i) = 0$ $\underline{p}_i \leq p_i \leq \overline{p}_i$

Problem: Usually $\omega_{ss} \neq \omega^*$, and system subject to many disturbances

Droop Control + Sec. Input

$$\omega_i = \omega^* - m_i(P_i(\theta) - P_i^* - p_i)$$

Active Power Flow

$$P_i(\theta) = \sum_{j=1}^n B_{ij} \sin(\theta_i - \theta_j),$$

Problem: Update p_i online, in a model-free manner s.t.

(i) $\omega_{\rm ss} = 0$

(ii) "optimality" or power sharing(iii) reject unknown disturbances

Opt. Freq. Reg. Problem minimize $\sum_{i \in \mathcal{I}} J_i(p_i)$ subject to $\sum_{i=1}^{n} (P_i^* + p_i) = 0$ $\underline{P}_i \leq p_i \leq \overline{p}_i$

Problem: Usually $\omega_{ss} \neq \omega^*$, and system subject to many disturbances

Droop Control + Sec. Input

$$\omega_i = \omega^* - m_i(P_i(\theta) - P_i^* - p_i)$$

Active Power Flow

$$P_i(\theta) = \sum_{j=1}^n B_{ij} \sin(\theta_i - \theta_j),$$

Problem: Update p_i online, in a model-free manner s.t.

(i) $\omega_{\rm ss} = 0$

(ii) "optimality" or power sharing(iii) reject unknown disturbances

Opt. Freq. Reg. Problem minimize $\sum_{i \in \mathcal{I}} J_i(p_i)$ subject to $\sum_{i=1}^n (P_i^* + p_i) = 0$ $\underline{P}_i \leq p_i \leq \overline{p}_i$

Problem: Usually $\omega_{ss} \neq \omega^*$, and system subject to many disturbances

Droop Control + Sec. Input

$$\omega_i = \omega^* - m_i(P_i(\theta) - P_i^* - p_i)$$

Active Power Flow

$$P_i(\theta) = \sum_{j=1}^n B_{ij} \sin(\theta_i - \theta_j),$$

Problem: Update p_i online, in a model-free manner s.t.

(i) $\omega_{\rm ss} = 0$

(ii) "optimality" or power sharing(iii) reject unknown disturbances

Opt. Freq. Reg. Problem minimize $\sum_{i \in \mathcal{I}} J_i(p_i)$ subject to $\sum_{i=1}^n (P_i^* + p_i) = 0$ $\underline{p}_i \leq p_i \leq \overline{p}_i$

(for strictly feasible inequality constraints)

$$egin{array}{lll} {
m minimize} & \sum_{i \in \mathcal{I}} J_i(p_i) \ {
m subject to} \sum_{i=1}^n (P_i^* + p_i) = 0 \end{array}$$

- $J_i(p_i)$ is *i*th agent's cost (disutility) for off-nominal generation
- Network-wide balance $\sum_{i=1}^{n} (P_i^* + p_i) = 0$ ensures $\omega_{ss} = 0$.

• Lagrangian:
$$L(p, \mu) = \sum J_i(p_i) - \lambda \sum (P_i^* + p_i)$$

Economic Dispatch Criteria:

$$\nabla J_i(p_i) = \lambda$$
 (equal marginal costs)

(for strictly feasible inequality constraints)

$$egin{array}{lll} {
m minimize} & \sum_{i \in \mathcal{I}} J_i(p_i) \ {
m subject to} \sum_{i=1}^n (P_i^* + p_i) = 0 \end{array}$$

- $J_i(p_i)$ is *i*th agent's cost (disutility) for off-nominal generation
- Network-wide balance $\sum_{i=1}^{n} (P_i^* + p_i) = 0$ ensures $\omega_{ss} = 0$.

• Lagrangian:
$$L(p,\mu) = \sum J_i(p_i) - \lambda \sum (P_i^* + p_i)$$

Economic Dispatch Criteria:

$$\nabla J_i(p_i) = \lambda$$
 (equal marginal costs)

(for strictly feasible inequality constraints)

$$egin{array}{lll} {
m minimize} & \sum_{i \in \mathcal{I}} J_i(p_i) \ {
m subject to} \sum_{i=1}^n (P_i^* + p_i) = 0 \end{array}$$

- $J_i(p_i)$ is *i*th agent's cost (disutility) for off-nominal generation
- Network-wide balance $\sum_{i=1}^{n} (P_i^* + p_i) = 0$ ensures $\omega_{ss} = 0$.

• Lagrangian:
$$L(p,\mu) = \sum J_i(p_i) - \lambda \sum (P_i^* + p_i)$$

Economic Dispatch Criteria:

$$\nabla J_i(p_i) = \lambda$$
 (equal marginal costs)

(for strictly feasible inequality constraints)

$$egin{array}{lll} {
m minimize} & \sum_{i \in \mathcal{I}} J_i(p_i) \ {
m subject to} \sum_{i=1}^n (P_i^* + p_i) = 0 \end{array}$$

- $J_i(p_i)$ is *i*th agent's cost (disutility) for off-nominal generation
- Network-wide balance $\sum_{i=1}^{n} (P_i^* + p_i) = 0$ ensures $\omega_{ss} = 0$.

• Lagrangian:
$$L(p,\mu) = \sum J_i(p_i) - \lambda \sum (P_i^* + p_i)$$

Economic Dispatch Criteria:

$$\nabla J_i(p_i) = \lambda$$
 (equal marginal costs)

- **Problem:** steady-state frequency deviation ($\omega_{ss} \neq \omega^*$)
- Solution: integral control on frequency error

Problem: steady-state frequency deviation ($\omega_{ss} \neq \omega^*$)

Solution: integral control on frequency error

Interconnected Systems	Isolated Systems
• Centralized automatic generation control (AGC)	• Decentralized PI control (isochronous mode)
$P_{\rm G}$ \rightarrow $\begin{array}{c} control \\ area \\ P_{\rm tie} \end{array}$ $\begin{array}{c} remainder \\ control \\ areas \\ P_{\rm L} \end{array}$	

Problem: steady-state frequency deviation ($\omega_{ss} \neq \omega^*$)

Solution: integral control on frequency error

Interconnected Systems	Isolated Systems
• Centralized automatic +ion control (AGC) Centralized & ter in microsrids P _L	• Decentralized PI control (isochronous mode)

- **Problem:** steady-state frequency deviation ($\omega_{ss} \neq \omega^*$)
- Solution: integral control on frequency error

- **Problem:** steady-state frequency deviation ($\omega_{ss} \neq \omega^*$)
- Solution: integral control on frequency error

Problem: steady-state frequency deviation ($\omega_{ss} \neq \omega^*$)

Solution: integral control on frequency error

Problem: steady-state frequency deviation ($\omega_{ss} \neq \omega^*$)

Solution: integral control on frequency error

Can we strike a middle ground between these two approaches?

$$\omega_i = \omega^* - m_i (P_i(\theta) - P_i^* - p_i)$$
$$k_i \dot{p}_i = (\omega_i - \omega^*) - \sum_{j \subseteq \text{inverters}} a_{ij} \cdot (m_i p_i - m_j p_j)$$

1 Power sharing: $\nabla J_i(p_i) = m_i p_i$

- 2 no tuning, no model dependence
- o weak comm. requirements
- enforces equal marginal costs (share burden of sec. control)

Keep It Simple

Theorem: Stability of DAPI [JWSP, FD, & FB, '13] DAPI-Controlled System Stable Droop-Controlled System Stable

$$\omega_i = \omega^* - m_i (P_i(\theta) - P_i^* - p_i)$$

$$k_i \dot{p}_i = (\omega_i - \omega^*) - \sum_{j \subseteq \text{inverters}} a_{ij} \cdot (m_i p_i - m_j p_j)$$

- Power sharing: $\nabla J_i(p_i) = m_i p_i$
- 2 no tuning, no model dependence
- o weak comm. requirements
- enforces equal marginal costs (share burden of sec. control)

Keep It Simple

Theorem: Stability of DAPI [JWSP, FD, & FB, '13] DAPI-Controlled System Stable Droop-Controlled System Stable

$$\omega_i = \omega^* - m_i (P_i(\theta) - P_i^* - p_i)$$

$$k_i \dot{p}_i = (\omega_i - \omega^*) - \sum_{j \subseteq \text{inverters}} a_{ij} \cdot (m_i p_i - m_j p_j)$$

- Power sharing: $\nabla J_i(p_i) = m_i p_i$
- Ino tuning, no model dependence
- Weak comm. requirements
- enforces equal marginal costs (share burden of sec. control)

Keep It Simple

Theorem: Stability of DAPI [JWSP, FD, & FB, '13] DAPI-Controlled System Stable \$\$ Droop-Controlled System Stable

$$\omega_i = \omega^* - m_i (P_i(\theta) - P_i^* - p_i)$$

$$k_i \dot{p}_i = (\omega_i - \omega^*) - \sum_{j \subseteq \text{inverters}} a_{ij} \cdot (m_i p_i - m_j p_j)$$

- Power sharing: $\nabla J_i(p_i) = m_i p_i$
- Ino tuning, no model dependence
- Weak comm. requirements
- enforces equal marginal costs (share burden of sec. control)

Keep It Simple

Theorem: Stability of DAPI [JWSP, FD, & FB, '13] DAPI-Controlled System Stable \$\$\$\$ Droop-Controlled System Stable

DAPI as Passivity-Based Control

DAPI as Passivity-Based Control

Build grid controls via time-scale separation passivity.

DAPI Control From The Utility Side

Question

With this distributed controller, what does the microgrid look like from "the outside"?

It looks like there is no microgrid.

- Different units respond uniformly to disturbances and commands
- Microgrid acts as a single entity, a rigid formation of devices
- Coordination complexity hidden "behind the transformer"

DAPI Control From The Utility Side

Question

With this distributed controller, what does the microgrid look like from "the outside"?

It looks like there is no microgrid.

- Different units respond uniformly to disturbances and commands
- Microgrid acts as a single entity, a rigid formation of devices
- Coordination complexity hidden "behind the transformer"

DAPI Control From The Utility Side

Question

With this distributed controller, what does the microgrid look like from "the outside"?

It looks like there is no microgrid.

- Different units respond uniformly to disturbances and commands
- Microgrid acts as a single entity, a rigid formation of devices
- Coordination complexity hidden "behind the transformer"

Disturbance Rejection of Distributed Frequency Control

For real-time implementation ... what about I/O performance?

System norms quantify amplification from **disturbances** (sensor noise, faults, uncertainty, etc.) to **controlled outputs**

Disturbance Rejection of Distributed Frequency Control

For real-time implementation ... what about I/O performance?

System norms quantify amplification from **disturbances** (sensor noise, faults, uncertainty, etc.) to **controlled outputs**

Disturbance Rejection of Distributed Frequency Control

For real-time implementation ... what about I/O performance?

System norms quantify amplification from **disturbances** (sensor noise, faults, uncertainty, etc.) to **controlled outputs**

Quick Review: The \mathcal{H}_2 System Norm

Exp. Stable Linear System

$$\dot{x} = Ax + Bd$$

 $z = Cx$
 $G(s) = C(sI - A)^{-1}B$

$$\|G\|_{\mathcal{H}_2}^2 \triangleq \frac{1}{2\pi} \int_{\mathbb{R}} \operatorname{Tr} \left[G^{\mathsf{T}}(-j\omega) G(j\omega) \right] \, \mathrm{d}\omega$$

Useful Interpretations:

- (i) **Steady-state output variance** $\lim_{t\to\infty} \mathbb{E}[z(t)^{\mathsf{T}}z(t)]$ when *d* noise
- (ii) "Average" gain over all frequencies from $d(\cdot)$ to $z(\cdot)$

If
$$(A, C)$$
 observable
 $A^{\mathsf{T}}Y + YA + C^{\mathsf{T}}C = 0$
 \Rightarrow
 $\|G\|_{\mathcal{H}_2}^2 = \operatorname{Tr}(B^{\mathsf{T}}YB)$

Linearized, Network-Reduced, Simplified

$$G: \begin{cases} \dot{\theta}_{i} = \omega_{i} \\ \tau \dot{\omega}_{i} = -\omega - m_{i}(P_{i}(\theta) - p_{i}) + m_{i}d_{p,i} \\ k\dot{p}_{i} = -\omega_{i} - \gamma \sum_{j=1}^{n} a_{ij}(m_{i}p_{i} - m_{j}p_{j} - d_{c,j}) \\ z_{\omega,i} = \omega_{i} \\ z_{2,i} = \sum_{i=1}^{n} a_{ij}(m_{i}p_{i} - m_{j}p_{j}) \end{cases} \xrightarrow{\text{Comm Net}}_{q_{i}}$$

Theorem: High-Gain Performance

In the high-gain limit $\gamma \to \infty$, we have

$$\frac{1}{n} \|G\|_{d_p \to \omega}^2 = \frac{m^2}{\tau} \qquad \qquad \frac{1}{n} \|G\|_{d_c \to \omega}^2 = \frac{m^2}{2\tau} \cdot \frac{n-1}{n} \\ \|G\|_{d_p \to z_2} = 0 \qquad \qquad \|G\|_{d_c \to z_2} = +\infty$$

Linearized, Network-Reduced, Simplified

$$G: \begin{cases} \dot{\theta}_{i} = \omega_{i} \\ \tau \dot{\omega}_{i} = -\omega - m_{i}(P_{i}(\theta) - p_{i}) + m_{i}d_{p,i} \\ k\dot{p}_{i} = -\omega_{i} - \gamma \sum_{j=1}^{n} a_{ij}(m_{i}p_{i} - m_{j}p_{j} - d_{c,j}) \\ z_{\omega,i} = \omega_{i} \\ z_{2,i} = \sum_{j=1}^{n} a_{ij}(m_{i}p_{i} - m_{j}p_{j}) \end{cases} \xrightarrow{\text{Comm Net}}_{q_{i}}$$

Theorem: High-Gain Performance In the high-gain limit $\gamma \to \infty$, we have

$$\frac{1}{n} \|G\|_{d_p \to \omega}^2 = \frac{m^2}{\tau} \qquad \qquad \frac{1}{n} \|G\|_{d_c \to \omega}^2 = \frac{m^2}{2\tau} \cdot \frac{n-1}{n} \\ \|G\|_{d_p \to z_2} = 0 \qquad \qquad \|G\|_{d_c \to z_2} = +\infty$$

Linearized, Network-Reduced, Simplified

$$G: \begin{cases} \dot{\theta}_{i} = \omega_{i} \\ \tau \dot{\omega}_{i} = -\omega - m_{i}(P_{i}(\theta) - p_{i}) + m_{i}d_{p,i} \\ k\dot{p}_{i} = -\omega_{i} - \gamma \sum_{j=1}^{n} a_{ij}(m_{i}p_{i} - m_{j}p_{j} - d_{c,j}) \\ z_{\omega,i} = \omega_{i} \\ z_{2,i} = \sum_{j=1}^{n} a_{ij}(m_{i}p_{i} - m_{j}p_{j}) \end{cases} \xrightarrow{\text{Comm Net}}_{q_{i}}$$

Theorem: High-Gain Performance

In the high-gain limit $\gamma \to \infty,$ we have

$$\frac{1}{n} \|G\|_{d_p \to \omega}^2 = \frac{m^2}{\tau} \qquad \qquad \frac{1}{n} \|G\|_{d_c \to \omega}^2 = \frac{m^2}{2\tau} \cdot \frac{n-1}{n} \\ \|G\|_{d_p \to z_2} = 0 \qquad \qquad \|G\|_{d_c \to z_2} = +\infty$$

Linearized, Network-Reduced, Simplified

$$G: \begin{cases} \dot{\theta}_{i} = \omega_{i} \\ \tau \dot{\omega}_{i} = -\omega - m_{i}(P_{i}(\theta) - p_{i}) + m_{i}d_{p,i} \\ k\dot{p}_{i} = -\omega_{i} - \gamma \sum_{j=1}^{n} a_{ij}(m_{i}p_{i} - m_{j}p_{j} - d_{c,j}) \\ z_{\omega,i} = \omega_{i} \\ z_{2,i} = \sum_{j=1}^{n} a_{ij}(m_{i}p_{i} - m_{j}p_{j}) \end{cases} \xrightarrow{\text{Comm Net}} q_{d_{i}}$$

Theorem: High-Gain Performance

In the high-gain limit $\gamma \to \infty,$ we have

$$\frac{1}{n} \|G\|_{d_p \to \omega}^2 = \frac{m^2}{\tau} \qquad \qquad \frac{1}{n} \|G\|_{d_c \to \omega}^2 = \frac{m^2}{2\tau} \cdot \frac{n-1}{n} \\ \|G\|_{d_p \to z_2} = 0 \qquad \qquad \|G\|_{d_c \to z_2} = +\infty$$
\mathcal{H}_2 -Performance of Distributed Frequency Control

Linearized, Network-Reduced, Simplified

$$G: \begin{cases} \dot{\theta}_{i} = \omega_{i} \\ \tau \dot{\omega}_{i} = -\omega - m_{i}(P_{i}(\theta) - p_{i}) + m_{i}d_{p,i} \\ k\dot{p}_{i} = -\omega_{i} - \gamma \sum_{j=1}^{n} a_{ij}(m_{i}p_{i} - m_{j}p_{j} - d_{c,j}) \\ z_{\omega,i} = \omega_{i} \\ z_{2,i} = \sum_{j=1}^{n} a_{ij}(m_{i}p_{i} - m_{j}p_{j}) \end{cases} \xrightarrow{\text{Comm Net}} d_{c,j}$$

Theorem: High-Gain Performance

In the high-gain limit $\gamma \to \infty$, we have

$$\frac{1}{n} \|G\|_{d_p \to \omega}^2 = \frac{m^2}{\tau} \qquad \qquad \frac{1}{n} \|G\|_{d_c \to \omega}^2 = \frac{m^2}{2\tau} \cdot \frac{n-1}{n} \\ \|G\|_{d_p \to z_2} = 0 \qquad \qquad \|G\|_{d_c \to z_2} = +\infty$$

\mathcal{H}_2 -Performance of Distributed Frequency Control

Linearized, Network-Reduced, Simplified

$$G: \begin{cases} \dot{\theta}_{i} = \omega_{i} \\ \tau \dot{\omega}_{i} = -\omega - m_{i}(P_{i}(\theta) - p_{i}) + m_{i}d_{p,i} \\ k\dot{p}_{i} = -\omega_{i} - \gamma \sum_{j=1}^{n} a_{ij}(m_{i}p_{i} - m_{j}p_{j} - d_{c,j}) \\ z_{\omega,i} = \omega_{i} \\ z_{2,i} = \sum_{j=1}^{n} a_{ij}(m_{i}p_{i} - m_{j}p_{j}) \end{cases} \xrightarrow{\text{Comm Net}}_{q_{i}}$$

Theorem: High-Gain Performance

In the high-gain limit $\gamma \to \infty,$ we have

$$\frac{1}{n} \|G\|_{d_p \to \omega}^2 = \frac{m^2}{\tau} \qquad \qquad \frac{1}{n} \|G\|_{d_c \to \omega}^2 = \frac{m^2}{2\tau} \cdot \frac{n-1}{n} \\ \|G\|_{d_p \to z_2} = 0 \qquad \qquad \|G\|_{d_c \to z_2} = +\infty$$

Problem: steady-state voltage deviations $(E_i \neq E_i^*)$ **Goals:** Voltage regulation $E_i \rightarrow E_i^*$, "load" sharing $Q_i/Q_i^* = Q_j/Q_i^*$

Bad News: These goals are *fundamentally* conflicting. We propose a **heuristic compromise**.

$$\tau_i \dot{E}_i = -(E_i - E_i^*) - n_i Q_i(E) - e_i$$

$$\kappa_i \dot{e}_i = \beta_i (E_i - E_i^*) - \sum_{j \in \text{ inverters}} b_{ij} \cdot \left(\frac{Q_i}{Q_j^*} - \frac{Q_j}{Q_j^*}\right)$$

Tuning Intuition:

Image: Smart Tuning

Problem: steady-state voltage deviations $(E_i \neq E_i^*)$ **Goals:** Voltage regulation $E_i \rightarrow E_i^*$, "load" sharing $Q_i/Q_i^* = Q_j/Q_i^*$

Bad News: These goals are *fundamentally* conflicting.

We propose a heuristic compromise.

$$\tau_i \dot{E}_i = -(E_i - E_i^*) - n_i Q_i(E) - e_i$$
$$\kappa_i \dot{e}_i = \beta_i (E_i - E_i^*) - \sum_{j \in \text{ inverters}} b_{ij} \cdot \left(\frac{Q_i}{Q_i^*} - \frac{Q_j}{Q_j^*}\right)$$

Tuning Intuition:

Problem: steady-state voltage deviations $(E_i \neq E_i^*)$ **Goals:** Voltage regulation $E_i \rightarrow E_i^*$, "load" sharing $Q_i/Q_i^* = Q_j/Q_i^*$

Bad News: These goals are *fundamentally* conflicting. We propose a **heuristic compromise**.

$$\tau_i \dot{E}_i = -(E_i - E_i^*) - n_i Q_i(E) - e_i$$

$$\kappa_i \dot{e}_i = \beta_i (E_i - E_i^*) - \sum_{j \in \text{ inverters}} b_{ij} \cdot \left(\frac{Q_i}{Q_j^*} - \frac{Q_j}{Q_j^*}\right)$$

Tuning Intuition:

() $\beta_i \gg \sum_j b_{ij} \Longrightarrow$ voltage regulation

Problem: steady-state voltage deviations $(E_i \neq E_i^*)$ **Goals:** Voltage regulation $E_i \rightarrow E_i^*$, "load" sharing $Q_i/Q_i^* = Q_j/Q_i^*$

Bad News: These goals are *fundamentally* conflicting.

We propose a heuristic compromise.

$$\tau_i \dot{E}_i = -(E_i - E_i^*) - n_i Q_i(E) - e_i$$

$$\kappa_i \dot{e}_i = \beta_i (E_i - E_i^*) - \sum_{j \subseteq \text{inverters}} b_{ij} \cdot \left(\frac{Q_i}{Q_i^*} - \frac{Q_j}{Q_j^*} \right)$$

Tuning Intuition:

Problem: steady-state voltage deviations $(E_i \neq E_i^*)$ **Goals:** Voltage regulation $E_i \rightarrow E_i^*$, "load" sharing $Q_i/Q_i^* = Q_j/Q_i^*$

Bad News: These goals are *fundamentally* conflicting.

We propose a heuristic compromise.

$$\tau_i \dot{E}_i = -(E_i - E_i^*) - n_i Q_i(E) - e_i$$

$$\kappa_i \dot{e}_i = \beta_i (E_i - E_i^*) - \sum_{j \subseteq \text{inverters}} b_{ij} \cdot \left(\frac{Q_i}{Q_i^*} - \frac{Q_j}{Q_j^*} \right)$$

Tuning Intuition:

DAPI Voltage Control – Performance [TIE '15]

From Hierarchical Control to DAPI Control

flat hierarchy, distributed, no time-scale separations, & model-free

From Hierarchical Control to DAPI Control

flat hierarchy, distributed, no time-scale separations, & model-free

Experimental Validation of DAPI Control

Experiments @ Aalborg University Intelligent Microgrid Laboratory

Experimental Validation of DAPI Control

Experiments @ Aalborg University Intelligent Microgrid Laboratory

- **1** t < 7: Droop Control
- 2 t = 7: DAPI Control
- 3 t = 22: Remove Load 2
- t = 36: Attach Load 2

Experimental Validation of DAPI Control

Experiments @ Aalborg University Intelligent Microgrid Laboratory

Experiments – Plug-and-Play Operation

Unit 3 (green) disconnected then reconnected

Summary

Distributed Inverter Control

- Primary control stability
- Distributed controllers
- Controller performance
- Extensive validation

Future Work

- More detailed models
- More systematic designs
- More optimal control
- Monitoring \iff Feedback
- Distributed control security
- LV markets for control

Acknowledgements

Florian Dörfler

Francesco Bullo

Qobad Shafiee

Josep Guerrero

Questions

https://ece.uwaterloo.ca/~jwsimpso/ jwsimpson@uwaterloo.ca

supplementary slides

An incomplete literature review of a busy field

ntwk with unknown disturbances \cup integral control \cup distributed averaging

- all-to-all source frequency & injection averaging [Q. Shafiee, J. Vasquez, & J. Guerrero, '13] & [H. Liang, B. Choi, W. Zhuang, & X. Shen, '13] & [M. Andreasson, D. V. Dimarogonas, K. H. Johansson, & H. Sandberg, '12]
- optimality w.r.t. economic dispatch [E. Mallada & S. Low, '13] & [M. Andreasson, D. V. Dimarogonas, K. H. Johansson, & H. Sandberg, '13] & [X. Zhang and A. Papachristodoulou, '13] & [N. Li, L. Chen, C. Zhao & S. Low '13]
- ratio consensus & dispatch [S.T. Cady, A. Garcia-Dominguez, & C.N. Hadjicostis, '13]
- load balancing in Port-Hamiltonian networks [J. Wei & A. Van der Schaft, '13]
- passivity-based network cooperation and flow optimization [M. Bürger, D. Zelazo, & F. Allgöwer, '13, M. Bürger & C. de Persis '13, He Bai & S.Y. Shafi '13]
- distributed PI avg optimization [G. Droge, H. Kawashima, & M. Egerstedt, '13]
- PI avg consensus [R. Freeman, P. Yang, & K. Lynch '06] & [M. Zhu & S. Martinez '10]
- decentralized "practical" integral control [N. Ainsworth & S. Grijalva, '13]