Input/Output Analysis of Primal-Dual Gradient Algorithms

> 54th Annual Allerton Conference Monticello, IL

John W. Simpson-Porco

synchronous generator

synchronous generator power inverters

synchronous generator

power inverters

location & distributed implementation

synchronous generator

power inverters

scaling

location & distributed implementation

synchronous generator

power inverters

scaling

location & distributed implementation

Central control authority is fading ... how to coordinate new actuators?

Optimal Distributed Frequency Regulation

via primal-dual algorithms

Popular Idea: {Grid Dynamics} ∪ {Dist. Controller} = Distributed <u>Online</u> Optimization Algorithm

(many other approaches exist, but today we'll focus on these)

Optimal Distributed Frequency Regulation

via primal-dual algorithms

Popular Idea: {Grid Dynamics} \cup {Dist. Controller}

= Distributed Online Optimization Algorithm

(many other approaches exist, but today we'll focus on these)

Optimal Distributed Frequency Regulation

via primal-dual algorithms

Popular Idea: {Grid Dynamics} ∪ {Dist. Controller} = Distributed <u>Online</u> Optimization Algorithm

(many other approaches exist, but today we'll focus on these)

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) = \sum_{i=1}^n f_i(x_i) \\ \text{subject to} & Sx = b \,, \end{array}$$

x ∈ ℝⁿ is our decision variable, f_i(x_i) is strictly convex, differentiable
S ∈ ℝ^{r×n} with r < n is full rank

Each variable $x_i \in \mathbb{R}$ belongs to **agent**.

The constraint matrix *S* couples the agents together.

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) = \sum_{i=1}^n f_i(x_i) \\ \text{subject to} & Sx = b \,, \end{array}$$

x ∈ ℝⁿ is our decision variable, f_i(x_i) is strictly convex, differentiable
S ∈ ℝ^{r×n} with r < n is full rank

Each variable $x_i \in \mathbb{R}$ belongs to **agent**.

The constraint matrix *S* couples the agents together.

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) = \sum_{i=1}^n f_i(x_i) \\ \text{subject to} & Sx = b \,, \end{array}$$

x ∈ ℝⁿ is our decision variable, f_i(x_i) is strictly convex, differentiable
S ∈ ℝ^{r×n} with r < n is full rank

Each variable $x_i \in \mathbb{R}$ belongs to **agent**.

The constraint matrix *S* couples the agents together.

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) = \sum_{i=1}^n f_i(x_i) \\ \text{subject to} & Sx = b \,, \end{array}$$

x ∈ ℝⁿ is our decision variable, f_i(x_i) is strictly convex, differentiable
S ∈ ℝ^{r×n} with r < n is full rank

Each variable $x_i \in \mathbb{R}$ belongs to **agent**.

The constraint matrix *S* couples the agents together.

Key Idea: Write an algorithm which seeks the KKT points of

$$L(x,\nu) = f(x) + \nu^{\mathsf{T}}(Sx - b).$$

Opposite of S Dynamics are distributed with sparsity of S

- ② Converges to unique primal-dual optimizer $(x^*,
 u^*)$ [Feijer '10, Cherukuri '15]
- In control though, stability is just the first step...

Key Idea: Write an algorithm which seeks the KKT points of

$$L(x,\nu) = f(x) + \nu^{\mathsf{T}}(Sx - b).$$

Oynamics are distributed with sparsity of S

- ② Converges to unique primal-dual optimizer $(x^*,
 u^*)$ [Feijer '10, Cherukuri '15]
- In control though, stability is just the first step...

Key Idea: Write an algorithm which seeks the KKT points of

$$L(x,\nu) = f(x) + \nu^{\mathsf{T}}(Sx - b).$$

Opposite the second second

- ② Converges to unique primal-dual optimizer $(x^*,
 u^*)$ [Feijer '10, Cherukuri '15]
- In control though, stability is just the first step...

Key Idea: Write an algorithm which seeks the KKT points of

$$L(x,\nu) = f(x) + \nu^{\mathsf{T}}(Sx - b).$$

Saddle Point Algorithm [Kose '56, Arrow *et al.* '58] $\tau_{x}\dot{x} = -\nabla_{x}L(x,\nu) \implies \tau_{x}\dot{x} = -\nabla f(x) - S^{\mathsf{T}}\nu,$ $\tau_{\nu}\dot{\nu} = \nabla_{\nu}L(x,\nu) \implies \tau_{\nu}\dot{\nu} = Sx - b,$

1 Dynamics are **distributed** with sparsity of *S*

- 2 Converges to unique primal-dual optimizer (x^*, ν^*) [Feijer '10, Cherukuri '15]
- In control though, *stability is just the first step...*

Key Idea: Write an algorithm which seeks the KKT points of

$$L(x,\nu) = f(x) + \nu^{\mathsf{T}}(Sx - b).$$

Saddle Point Algorithm [Kose '56, Arrow *et al.* '58] $\tau_{x}\dot{x} = -\nabla_{x}L(x,\nu) \qquad \implies \qquad \tau_{x}\dot{x} = -\nabla f(x) - S^{\mathsf{T}}\nu,$ $\tau_{\nu}\dot{\nu} = \nabla_{\nu}L(x,\nu) \qquad \implies \qquad \tau_{\nu}\dot{\nu} = Sx - b,$

- **1** Dynamics are **distributed** with sparsity of *S*
- 2 Converges to unique primal-dual optimizer (x^*, ν^*) [Feijer '10, Cherukuri '15]
- In control though, stability is just the first step...

Key Idea: Write an algorithm which seeks the KKT points of

$$L(x,\nu) = f(x) + \nu^{\mathsf{T}}(Sx - b).$$

Saddle Point Algorithm [Kose '56, Arrow *et al.* '58] $\tau_{x}\dot{x} = -\nabla_{x}L(x,\nu) \qquad \implies \qquad \tau_{x}\dot{x} = -\nabla f(x) - S^{\mathsf{T}}\nu,$ $\tau_{\nu}\dot{\nu} = \nabla_{\nu}L(x,\nu) \qquad \implies \qquad \tau_{\nu}\dot{\nu} = Sx - b,$

- Opposite the second second
- 2 Converges to unique primal-dual optimizer (x^*, ν^*) [Feijer '10, Cherukuri '15]
- In control though, stability is just the first step...

Incorporating Disturbances into Primal-Dual Dynamics Inspired by [Bloch *et al.* '92], [Wang & Elia, '10] and [Stegink, *et al.* '15],

Primal-Dual System $\Sigma_{pd}: \begin{cases} \tau_x \dot{x} = -\nabla f(x) - S^{\mathsf{T}} \nu + w_p \\ \tau_\nu \dot{\nu} = Sx - b + w_d \\ y_p = x \\ y_d = \nu \end{cases}$

 Σ_{pd} defines an I/O mapping Σ_{pd} : $(w_p, w_d) \rightarrow (x, \nu)$.

What can we say about this mapping?

Incorporating Disturbances into Primal-Dual Dynamics Inspired by [Bloch *et al.* '92], [Wang & Elia, '10] and [Stegink, *et al.* '15],

Primal-Dual System $\Sigma_{pd}: \begin{cases} \tau_x \dot{x} = -\nabla f(x) - S^{\mathsf{T}} \nu + w_p \\ \tau_\nu \dot{\nu} = Sx - b + w_d \\ y_p = x \\ y_d = \nu \end{cases}$

 Σ_{pd} defines an I/O mapping $\Sigma_{\mathrm{pd}} : (w_p, w_d) \rightarrow (x, \nu)$.

What can we say about this mapping?

Incorporating Disturbances into Primal-Dual Dynamics Inspired by [Bloch *et al.* '92], [Wang & Elia, '10] and [Stegink, *et al.* '15],

Primal-Dual System $\Sigma_{pd}: \begin{cases} \tau_x \dot{x} = -\nabla f(x) - S^{\mathsf{T}} \nu + w_p \\ \tau_\nu \dot{\nu} = Sx - b + w_d \\ y_p = x \\ y_d = \nu \end{cases}$

 Σ_{pd} defines an I/O mapping Σ_{pd} : $(w_p, w_d) \rightarrow (x, \nu)$.

What can we say about this mapping?

Nonlinear Control System $\Sigma:\begin{cases} \dot{x} = F(x) + G(x)w\\ y = H(x) \end{cases}$ Unforced Equilibrium $0 = F(x^*)$ $y^* = H(x^*)$

Passivity
System
$$\Sigma$$
 is (output-strictly) *passive* if $\exists V : \mathbb{R}^n \to \mathbb{R}_{>0}$,
 $V(x^*) = 0$, and $(\rho > 0) \ \rho \ge 0$ such that
 $\dot{V} \le -\rho \|y - y^*\|_2^2 + (y - y^*)^{\mathsf{T}} w$.

Finite L_2 -Gain System Σ has finite L_2 -gain $\|\Sigma_{pd}\|_{L_2} \leq \gamma$ if for all $w \in L_2$ $\|v - v^*\|_{L_2} \leq \gamma \|v\|_{L_2}$

Nonlinear Control System $\Sigma:\begin{cases} \dot{x} = F(x) + G(x)w\\ y = H(x) \end{cases}$ Unforced Equilibrium $0 = F(x^*)$ $y^* = H(x^*)$

Passivity System Σ is (output-strictly) passive if $\exists V : \mathbb{R}^n \to \mathbb{R}_{>0}$, $V(x^*) = 0$, and $(\rho > 0) \ \rho \ge 0$ such that $\dot{V} \le -\rho \|y - y^*\|_2^2 + (y - y^*)^{\mathsf{T}} w$.

Finite L_2 -Gain System Σ has *finite* L_2 -gain $\|\Sigma_{\mathrm{pd}}\|_{L_2} \leq \gamma$ if for all $w \in L_2$

Nonlinear Control System $\Sigma : \begin{cases} \dot{x} = F(x) + G(x)w \\ y = H(x) \end{cases}$ Unforced Equilibrium $0 = F(x^*)$ $y^* = H(x^*)$

Passivity System Σ is (output-strictly) passive if $\exists V : \mathbb{R}^n \to \mathbb{R}_{>0}$, $V(x^*) = 0$, and $(\rho > 0) \ \rho \ge 0$ such that $\dot{V} \le -\rho ||y - y^*||_2^2 + (y - y^*)^{\mathsf{T}} w$.

Finite L_2 -Gain System Σ has finite L_2 -gain $\|\Sigma_{pd}\|_{L_2} \le \gamma$ if for all $w \in L_2$ $\|y - y^*\|_{L_2} \le \gamma \|w\|_{L_2}$

Nonlinear Control System $\Sigma : \begin{cases} \dot{x} = F(x) + G(x)w \\ y = H(x) \end{cases}$ Unforced Equilibrium $0 = F(x^*)$ $y^* = H(x^*)$

 Σ has finite L_2 -gain less than or equal to 1/
ho: $\|\Sigma_{
m pd}\|_{L_2} \leq rac{1}{
ho}$

Result 1: L₂-Gain of Primal-Dual System

I/O Primal-Dual System $\Sigma_{pd}: \begin{cases} \tau_x \dot{x} = -\nabla f(x) - S^{\mathsf{T}} \nu + w_p \\ \tau_\nu \dot{\nu} = Sx - b + w_d \\ y_p = x \\ y_d = \nu \end{cases}$

Theorem 1

Let (x*, ν*) be the optimizer. The following statements hold:
(i) If each f_i(x_i) is strictly convex, then Σ_{pd} is passive at (x*, ν*)
(ii) If each f_i(x_i) is m_i-strongly convex, then the L₂-gain ||Σ_{pd}||_{L₂} of the map w_p → y_p satisfies

$$\|\mathbf{\Sigma}_{\mathrm{pd}}\|_{L_2} \leq rac{1}{m_{\min}}$$

Decompose Primal-Dual Algorithm Into Subsystems

Theorem 1

Let (x^*, ν^*) be the optimizer. The following statements hold:

- (i) If each $f_i(x_i)$ is strictly convex, then $\Sigma_{\rm pd}$ is passive at (x^*, ν^*)
- (ii) If each $f_i(x_i)$ is m_i -strongly convex, then the map $w_p \mapsto y_p$ has finite L_2 -gain $\leq \frac{1}{m_{\min}}$ at (x^*, ν^*)

Key Insights

- **1** L_2 -gain independent of S, τ_x, τ_ν
- **2** L_2 -gain independent of # agents
- **3** As $m_{\min} \rightarrow 0 \ldots \otimes \otimes !!$

Theorem 1

Let (x^*, ν^*) be the optimizer. The following statements hold:

- (i) If each $f_i(x_i)$ is strictly convex, then $\Sigma_{\rm pd}$ is passive at (x^*, ν^*)
- (ii) If each $f_i(x_i)$ is m_i -strongly convex, then the map $w_p \mapsto y_p$ has finite L_2 -gain $\leq \frac{1}{m_{\min}}$ at (x^*, ν^*)

Key Insights • L_2 -gain independent of S, τ_x, τ_ν • L_2 -gain independent of # agents • As $m_{\min} \rightarrow 0 \dots \circledast \circledast !!$

Theorem 1

Let (x^*, ν^*) be the optimizer. The following statements hold:

- (i) If each $f_i(x_i)$ is strictly convex, then $\Sigma_{\rm pd}$ is passive at (x^*, ν^*)
- (ii) If each $f_i(x_i)$ is m_i -strongly convex, then the map $w_p \mapsto y_p$ has finite L_2 -gain $\leq \frac{1}{m_{\min}}$ at (x^*, ν^*)

Key Insights L₂-gain independent of S, τ_x, τ_ν L₂-gain independent of # agents As m_{min} → 0 ... ☺☺!!

Theorem 1

Let (x^*, ν^*) be the optimizer. The following statements hold:

- (i) If each $f_i(x_i)$ is strictly convex, then $\Sigma_{\rm pd}$ is passive at (x^*, ν^*)
- (ii) If each $f_i(x_i)$ is m_i -strongly convex, then the map $w_p \mapsto y_p$ has finite L_2 -gain $\leq \frac{1}{m_{\min}}$ at (x^*, ν^*)

Key Insights

- **1** L_2 -gain independent of S, τ_x, τ_ν
- **2** L_2 -gain independent of # agents

Theorem 1

Let (x^*, ν^*) be the optimizer. The following statements hold:

- (i) If each $f_i(x_i)$ is strictly convex, then $\Sigma_{\rm pd}$ is passive at (x^*, ν^*)
- (ii) If each $f_i(x_i)$ is m_i -strongly convex, then the map $w_p \mapsto y_p$ has finite L_2 -gain $\leq \frac{1}{m_{\min}}$ at (x^*, ν^*)

Key Insights

- **1** L_2 -gain independent of S, τ_x, τ_ν
- **2** L_2 -gain independent of # agents
- As $m_{\min} \rightarrow 0 \ldots \odot \odot !!$

Augmented Lagrangians and Primal-Dual

One interpretation: penalize constraint violation during transients

Augmented Lagrangian
$$L_{\mathcal{K}}(x,\nu) = f(x) + \nu^{\mathsf{T}}(Sx - b) + \frac{\mathcal{K}}{2} \|Sx - b\|_{2}^{2}$$

Augmented Primal-Dual System

$$\tau_x \dot{x} = -\nabla f(x) - S^{\mathsf{T}} \nu - KS^{\mathsf{T}}(Sx - b)$$

$$\tau_\nu \dot{\nu} = Sx - b$$

I/O Augmented Primal-Dual System $\Sigma_{apd}: \begin{cases} \tau_{x} \dot{x} = -\nabla f(x) - S^{\mathsf{T}} \nu - KS^{\mathsf{T}} (Sx - b) + w_{p} \\ \tau_{\nu} \dot{\nu} = Sx - b \\ y_{p} = x \end{cases}$

Augmented Lagrangians and Primal-Dual

One interpretation: penalize constraint violation during transients

Augmented Lagrangian
$$L_{\mathcal{K}}(x,\nu) = f(x) + \nu^{\mathsf{T}}(Sx - b) + \frac{\mathcal{K}}{2} \|Sx - b\|_{2}^{2}$$

Augmented Primal-Dual System $\tau_x \dot{x} = -\nabla f(x) - S^{\mathsf{T}} \nu - KS^{\mathsf{T}} (Sx - b)$ $\tau_\nu \dot{\nu} = Sx - b$

I/O Augmented Primal-Dual System $\Sigma_{apd}: \begin{cases} \tau_x \dot{x} = -\nabla f(x) - S^{\mathsf{T}} \nu - KS^{\mathsf{T}}(Sx - b) + w_p \\ \tau_\nu \dot{\nu} = Sx - b \\ y_p = x \end{cases}$

Augmented Lagrangians and Primal-Dual

One interpretation: penalize constraint violation during transients

Augmented Lagrangian
$$L_{K}(x,\nu) = f(x) + \nu^{\mathsf{T}}(Sx - b) + \frac{K}{2} \|Sx - b\|_{2}^{2}$$

Augmented Primal-Dual System $\tau_{x}\dot{x} = -\nabla f(x) - S^{\mathsf{T}}\nu - KS^{\mathsf{T}}(Sx - b)$ $\tau_{\nu}\dot{\nu} = Sx - b$

I/O Augmented Primal-Dual System $\Sigma_{apd} : \begin{cases} \tau_x \dot{x} = -\nabla f(x) - S^{\mathsf{T}} \nu - KS^{\mathsf{T}}(Sx - b) + w_p \\ \tau_\nu \dot{\nu} = Sx - b \\ y_p = x \end{cases}$

Decompose Primal-Dual Algorithm Into Subsystems

Result 2: L₂-Gain of Augmented Primal-Dual System

I/O Augmented Primal-Dual System

$$\Sigma_{apd}: \begin{cases} \tau_x \dot{x} = -\nabla f(x) - S^{\mathsf{T}} \nu - KS^{\mathsf{T}}(Sx - b) + w_p \\ \tau_\nu \dot{\nu} = Sx - b \\ y_p = x \end{cases}$$

Theorem 2

Let (x^*, ν^*) be the optimizer. If each $f_i(x_i)$ is m_i -strongly convex, then the L_2 -gain $\|\Sigma_{apd}\|_{L_2}$ of the map $\Sigma_{apd} : w_p \to y_p$ satisfies

$$\|\mathbf{\Sigma}_{ ext{apd}}\|_{L_2} \leq rac{1}{\lambda_{\min}\left(M + \mathcal{K} S^{ op} S
ight)}$$

around the optimizer, where $M = \text{diag}(m_1, \ldots, m_n)$.

Result 2: L₂-Gain of Augmented Primal-Dual System

Theorem 2

Let (x^*, ν^*) be the optimizer. If each $f_i(x_i)$ is m_i -strongly convex, then the L_2 -gain $\|\Sigma_{apd}\|_{L_2}$ of the map $\Sigma_{apd} : w_p \to y_p$ satisfies

$$\|\Sigma_{\mathrm{apd}}\|_{L_2} \leq rac{1}{\lambda_{\min}\left(M + KS^{\mathsf{T}}S
ight)}$$

around the optimizer, where $M = \text{diag}(m_1, \ldots, m_n)$.

Idea: Increase K to decrease L_2 -gain?

Agreement Constraints $x_i = x_j$ $S = E^{\mathsf{T}}$, E incidence matrix of acyclic graph, $L = S^{\mathsf{T}}S$ $\lim_{K \to \infty} \frac{1}{\lambda_{\min}(M + KL)} = \frac{1}{m_{\text{avg}}}$

Conclusions

Passivity/L₂-Framework for Primal-Dual Input/Output Performance:

- **(**) L_2 -gain $\leq 1/m_{\min}$, strong convexity important
- Augmentation reduces L₂-gain . . . sometimes

For quadratic costs, \mathcal{H}_2 -norm results (CDC, Las Vegas)

What's next?

- Inequality constraints
- Other distributed optimization algorithms
- I L2 small-gain provides solid ground for interconnection
- Beyond PI controllers . . .

Conclusions

Passivity/L₂-Framework for Primal-Dual Input/Output Performance:

- L_2 -gain $\leq 1/m_{\min}$, strong convexity important
- Augmentation reduces L₂-gain . . . sometimes

For quadratic costs, \mathcal{H}_2 -norm results (CDC, Las Vegas)

What's next?

- Inequality constraints
- Other distributed optimization algorithms
- **1** L₂ small-gain provides solid ground for **interconnection**
- Beyond PI controllers

I Swept Something Under The Rug ...

A More General Picture

https://ece.uwaterloo.ca/~jwsimpso/ jwsimpson@uwaterloo.ca appendix

(Simplified, Linearized, and Network-Reduced)

Grid: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, B)$

Swing Dynamics $\dot{\theta}_i = \omega_i$ $M_i \dot{\omega}_i = -D_i \omega_i + P_i^* - P_{e,i}(\theta) + p_i$

(Linearized) Power Flow

$$P_{e,i}(\theta) = \sum_{j=1}^{n} B_{ij}(\theta_i - \theta_j),$$

Problem: How to pick controls p_i for (i) $\omega_{ss} = 0$ (ii) optimality?

OFR Problem
minimize
$$\sum_{i=1}^{n} \frac{1}{2} k_i p_i^2$$

subject to $\sum_{i=1}^{n} (P_i^* + p_i) = 0$
 $\underline{p}_i \leq p_i \leq \overline{p}_i$

(Simplified, Linearized, and Network-Reduced)

Grid: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, B)$

Swing Dynamics

 $\dot{ heta}_i = \omega_i$ $M_i \dot{\omega}_i = -D_i \omega_i + P_i^* - P_{e,i}(\theta) + p_i$

(Linearized) Power Flow

$$P_{e,i}(\theta) = \sum_{j=1}^{n} B_{ij}(\theta_i - \theta_j),$$

Problem: How to pick controls p_i for (i) $\omega_{ss} = 0$ (ii) optimality?

$\underset{p \in \mathbb{R}^n}{\text{minimize}} \sum_{i=1}^n \frac{1}{2} k_i p_i^2$
subject to $\sum_{i=1}^n (P_i^* + p_i) = 0$
$\underline{p}_i \leq p_i \leq \overline{p}_i$

(Simplified, Linearized, and Network-Reduced)

Grid: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, B)$

Swing Dynamics

 $\dot{ heta}_i = \omega_i$ $M_i \dot{\omega}_i = -D_i \omega_i + P_i^* - P_{e,i}(\theta) + p_i$

(Linearized) Power Flow $P_{e,i}(\theta) = \sum_{j=1}^{n} B_{ij}(\theta_i - \theta_j),$

Problem: How to pick controls p_i for (i) $\omega_{ss} = 0$ (ii) optimality?

OFR Problem
minimize
$$\sum_{i=1}^{n} \frac{1}{2} k_i p_i^2$$

subject to $\sum_{i=1}^{n} (P_i^* + p_i) = 0$
 $\underline{p}_i \leq p_i \leq \overline{p}_i$

(Simplified, Linearized, and Network-Reduced)

Grid: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, B)$

Swing Dynamics

 $\dot{ heta}_i = \omega_i$ $M_i \dot{\omega}_i = -D_i \omega_i + P_i^* - P_{e,i}(\theta) + p_i$

(Linearized) Power Flow

$$P_{e,i}(\theta) = \sum_{j=1}^{n} B_{ij}(\theta_i - \theta_j),$$

Problem: How to pick controls p_i for (i) $\omega_{ss} = 0$ (ii) optimality?

OFR Problem
minimize
$$\sum_{i=1}^{n} \frac{1}{2} k_i p_i^2$$

subject to $\sum_{i=1}^{n} (P_i^* + p_i) = 0$
 $\underline{p}_i \leq p_i \leq \overline{p}_i$

(Simplified, Linearized, and Network-Reduced)

Grid: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, B)$

Swing Dynamics

 $\dot{ heta}_i = \omega_i$ $M_i \dot{\omega}_i = -D_i \omega_i + P_i^* - P_{e,i}(\theta) + p_i$

(Linearized) Power Flow

$$P_{e,i}(\theta) = \sum_{j=1}^{n} B_{ij}(\theta_i - \theta_j),$$

Problem: How to pick controls p_i for (i) $\omega_{ss} = 0$ (ii) optimality?

OFR Problem
minimize
$$\sum_{i=1}^{n} \frac{1}{2} k_i p_i^2$$

subject to $\sum_{i=1}^{n} (P_i^* + p_i) = 0$
 $\underline{p}_i \leq p_i \leq \overline{p}_i$

(Simplified, Linearized, and Network-Reduced)

Grid: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, B)$

Swing Dynamics

 $\dot{ heta}_i = \omega_i$ $M_i \dot{\omega}_i = -D_i \omega_i + P_i^* - P_{e,i}(\theta) + p_i$

(Linearized) Power Flow

$$P_{e,i}(\theta) = \sum_{j=1}^{n} B_{ij}(\theta_i - \theta_j),$$

Problem: How to pick controls p_i for (i) $\omega_{ss} = 0$ (ii) optimality?

OFR Problem
minimize
$$\sum_{i=1}^{n} \frac{1}{2} k_i p_i^2$$

subject to $\sum_{i=1}^{n} (P_i^* + p_i) = 0$
 $\underline{p}_i \leq p_i \leq \overline{p}_i$

Smart Grid Project Samples Distributed Inverter Control

Voltage Collapse (Nat. Comms.)

Optimal Distrib. Volt/Var (CDC)

Wide-Area Monitoring (TSG)

Some Intuition

To first order

$$f(x) = f(x^*) + \nabla f(x^*)^{\mathsf{T}}(x - x^*).$$

Therefore

$$\|f(x) - f(x^*)\|_{L_2} \leq \frac{m_{\max}}{m_{\min}} \cdot \text{(size of disturbance)}$$