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Power electronics are changing the power grid . . .

synchronous generator

power inverters scaling

location & distributed implementation

Central control authority is fading . . . how to coordinate new actuators?
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Optimal Distributed Frequency Regulation
via primal-dual algorithms

Popular Idea: {Grid Dynamics} ∪ {Dist. Controller}
= Distributed Online Optimization Algorithm

(many other approaches exist, but today we’ll focus on these)
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A Distributed Optimization Problem

minimize
x∈Rn

f (x) =
∑n

i=1
fi (xi )

subject to Sx = b ,

x ∈ Rn is our decision variable, fi (xi ) is strictly convex, differentiable

S ∈ Rr×n with r < n is full rank

Each variable xi ∈ R belongs to agent.

The constraint matrix S couples the agents together.

We want the agents to cooperatively solve this problem.
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The Primal-Dual / Saddle Point Algorithm
Key Idea: Write an algorithm which seeks the KKT points of

L(x , ν) = f (x) + νT(Sx − b) .

Saddle Point Algorithm [Kose ’56, Arrow et al. ’58]

τx ẋ = −∇xL(x , ν)

τν ν̇ = ∇νL(x , ν)
=⇒

τx ẋ = −∇f (x)− STν ,

τν ν̇ = Sx − b ,

1 Dynamics are distributed with sparsity of S

2 Converges to unique primal-dual optimizer (x∗, ν∗) [Feijer ’10, Cherukuri ’15]

3 In control though, stability is just the first step. . .

What about sensitivity to disturbances?
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Incorporating Disturbances into Primal-Dual Dynamics
Inspired by [Bloch et al. ’92], [Wang & Elia, ’10] and [Stegink, et al. ’15],

Primal-Dual System

Σpd :


τx ẋ = −∇f (x)− STν + wp

τν ν̇ = Sx − b + wd

yp = x

yd = ν

Σpd defines an I/O mapping Σpd : (wp,wd)→ (x , ν).

What can we say about this mapping?
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Quick Review: Passivity and L2-Gains

Nonlinear Control System

Σ :

{
ẋ = F (x) + G (x)w

y = H(x)

Unforced Equilibrium

0 = F (x∗)

y∗ = H(x∗)

Passivity

System Σ is (output-strictly) passive if ∃ V : Rn → R>0,
V (x∗) = 0, and (ρ > 0) ρ ≥ 0 such that

V̇ ≤ −ρ‖y − y∗‖22 + (y − y∗)Tw .

Finite L2-Gain

System Σ has finite L2-gain ‖Σpd‖L2 ≤ γ if for all w ∈ L2

‖y − y∗‖L2 ≤ γ‖w‖L2
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Quick Review: Passivity and L2-Gains

Nonlinear Control System

Σ :

{
ẋ = F (x) + G (x)w

y = H(x)

Unforced Equilibrium

0 = F (x∗)

y∗ = H(x∗)

Σ is output-strictly passive

V̇ ≤ −ρ‖y − y∗‖22
+ (y − y∗)Tw

⇒
Σ has finite L2-gain less
than or equal to 1/ρ:

‖Σpd‖L2 ≤
1

ρ
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Result 1: L2-Gain of Primal-Dual System

I/O Primal-Dual System

Σpd :


τx ẋ = −∇f (x)− STν + wp

τν ν̇ = Sx − b + wd

yp = x

yd = ν

Theorem 1

Let (x∗, ν∗) be the optimizer. The following statements hold:

(i) If each fi (xi ) is strictly convex, then Σpd is passive at (x∗, ν∗)

(ii) If each fi (xi ) is mi -strongly convex, then the L2-gain ‖Σpd‖L2
of the map wp 7→ yp satisfies

‖Σpd‖L2 ≤
1

mmin
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Decompose Primal-Dual Algorithm Into Subsystems
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L2-Gain Analysis of Primal-Dual System

Theorem 1

Let (x∗, ν∗) be the optimizer. The following statements hold:

(i) If each fi (xi ) is strictly convex, then Σpd is passive at (x∗, ν∗)

(ii) If each fi (xi ) is mi -strongly convex, then the map wp 7→ yp
has finite L2-gain ≤ 1

mmin
at (x∗, ν∗)

Key Insights
1 L2-gain independent of S , τx , τν
2 L2-gain independent of # agents

3 As mmin → 0 . . . //!!

Can we redesign to reduce the L2-gain?
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Augmented Lagrangians and Primal-Dual
One interpretation: penalize constraint violation during transients

Augmented Lagrangian

LK (x , ν) = f (x) + νT(Sx − b) +
K

2
‖Sx − b‖22

Augmented Primal-Dual System

τx ẋ = −∇f (x)− STν − KST(Sx − b)

τν ν̇ = Sx − b

I/O Augmented Primal-Dual System

Σapd :


τx ẋ = −∇f (x)− STν − KST(Sx − b) + wp

τν ν̇ = Sx − b

yp = x
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Decompose Primal-Dual Algorithm Into Subsystems
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Result 2: L2-Gain of Augmented Primal-Dual System

I/O Augmented Primal-Dual System

Σapd :


τx ẋ = −∇f (x)− STν − KST(Sx − b) + wp

τν ν̇ = Sx − b

yp = x

Theorem 2

Let (x∗, ν∗) be the optimizer. If each fi (xi ) is mi -strongly convex,
then the L2-gain ‖Σapd‖L2 of the map Σapd : wp → yp satisfies

‖Σapd‖L2 ≤
1

λmin (M + KSTS)

around the optimizer, where M = diag(m1, . . . ,mn).
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Theorem 2

Let (x∗, ν∗) be the optimizer. If each fi (xi ) is mi -strongly convex,
then the L2-gain ‖Σapd‖L2 of the map Σapd : wp → yp satisfies

‖Σapd‖L2 ≤
1

λmin (M + KSTS)

around the optimizer, where M = diag(m1, . . . ,mn).

Idea: Increase K to decrease L2-gain?

Agreement Constraints xi = xj

S = ET, E incidence matrix of acyclic graph, L = STS

lim
K→∞

1

λmin(M + KL)
=

1

mavg

14 / 18



Conclusions

Passivity/L2-Framework for Primal-Dual Input/Output Performance:

1 L2-gain ≤ 1/mmin, strong convexity important

2 Augmentation reduces L2-gain . . . sometimes

For quadratic costs, H2-norm results (CDC, Las Vegas)

What’s next?

1 Inequality constraints

2 Other distributed optimization algorithms

3 L2 small-gain provides solid ground for interconnection

4 Beyond PI controllers . . .
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I Swept Something Under The Rug . . .
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A More General Picture
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https://ece.uwaterloo.ca/~jwsimpso/

jwsimpson@uwaterloo.ca

https://ece.uwaterloo.ca/~jwsimpso//
https://ece.uwaterloo.ca/~jwsimpso/
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The Optimal Frequency Regulation Problem
(Simplified, Linearized, and Network-Reduced)

Grid: G = (V, E ,B)

Swing Dynamics

θ̇i = ωi

Mi ω̇i = −Diωi + P∗i − Pe,i (θ) + pi

(Linearized) Power Flow

Pe,i (θ) =
∑n

j=1
Bij(θi − θj) ,

Problem: How to pick controls pi
for (i) ωss = 0 (ii) optimality?
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Pgeneration

Pdemand
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OFR Problem

minimize
p∈Rn

∑n

i=1

1

2
kip

2
i

subject to
∑n

i=1
(P∗i + pi ) = 0

p
i
≤ pi ≤ pi

(Note: not “optimal control”, but “control to optimal steady-state”)
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OFR Problem

minimize
p∈Rn

∑n

i=1

1

2
kip

2
i

subject to
∑n

i=1
(P∗i + pi ) = 0

p
i
≤ pi ≤ pi

(Note: not “optimal control”, but “control to optimal steady-state”)



Smart Grid Project Samples
Distributed Inverter Control
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Wide-Area Monitoring (TSG)



Some Intuition

To first order
f (x) = f (x∗) +∇f (x∗)T(x − x∗) .

Therefore

‖f (x)− f (x∗)‖L2 ≤
mmax

mmin
· (size of disturbance)
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