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Power electronics are changing the power grid . ..

synchronous generator power inverters

location & distributed implementation

s

Generation Transmission M, ‘ m _l.u! L lag
distribution distribution

Central control authority is fading ... how to coordinate new actuators? J
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A Distributed Optimization Problem

minimize  f(x) = 27:1 fi(xi)
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x€eR"
subject to Sx = b,

@ x € R" is our decision variable, f;(x;) is strictly convex, differentiable

@ S e R™M with r < nis full rank

Each variable x; € R belongs to agent.
The constraint matrix S couples the agents together.

We want the agents to cooperatively solve this problem.
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Saddle Point Algorithm [Kose '56, Arrow et al. '58]

X = —VyL(x,v) Tex = —Vf(x) - STv,

0 = V,L(x,v) w0 =Sx—b,

@ Dynamics are distributed with sparsity of S
@ Converges to unique primal-dual optimizer (x*, v*) [Feijer 10, Cherukuri '15]

© In control though, stability is just the first step. ..

What about sensitivity to disturbances? )
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Incorporating Disturbances into Primal-Dual Dynamics
Inspired by [Bloch et al. '92], [Wang & Elia, '10] and [Stegink, et al. '15],

Primal-Dual System
X = —VF(x) = STv + w,
T,0 = Sx — b+ wy
Yp =X

Yd =V

zpd o
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Yp =X

Yd =V

Zpd a

’

Y ,q defines an 1/0O mapping L,q : (wp, wy) = (x, 7).

What can we say about this mapping? J
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Quick Review: Passivity and Ly-Gains

Nonlinear Control System Unforced Equilibrium

= x = F(x)+ G(x)w 0=F(x")
|y =H(x) y* = H(x")
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Quick Review: Passivity and Ly-Gains

Nonlinear Control System Unforced Equilibrium
5= R+ 6w 0= F(x)
’ y = H(x) _y* = H(X*)
> is output-strictly passive 2 has finite Lp-gain less
_ than or equal to 1/p:
V < —plly = y*l3 = .
+y—y)w 1=pallee < 2
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Result 1: L,-Gain of Primal-Dual System

|/O Primal-Dual System
X = —VF(x) = STv + w,
T,0 = Sx— b+ wy
Yp =X

Yd =V

Zpd a

Theorem 1
Let (x*,v*) be the optimizer. The following statements hold:
(i) If each fi(x;) is strictly convex, then ¥ ,q is passive at (x*,v*)

(ii) If each fi(x;) is mj-strongly convex, then the Lo-gain ||XpqlL,
of the map w,, — y, satisfies

[Zpall, <

min
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Decompose Primal-Dual Algorithm Into Subsystems

Eprimal
wy TzZ = =V f(x) + up Yp
+ A+ Yyp =<
Einter v
T —
ep=—STf4 ea=Sf,—b
Edual
Ya TV = Ug + X+ wy

Ya =V
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(i) If each fi(x;) is strictly convex, then ¥ ,q is passive at (x*,v*)

(i) If each fi(x;) is mj-strongly convex, then the map w, — y,
has finite Ly-gain < mL at (x*, %)

Key Insights
@ L,-gain independent of S, 7, 7,
@ L,-gain independent of # agents
Q As myj, — 0...06!1

Can we redesign to reduce the Ly-gain? |
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Augmented Lagrangians and Primal-Dual

One interpretation: penalize constraint violation during transients
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Augmented Lagrangians and Primal-Dual

One interpretation: penalize constraint violation during transients
Augmented Lagrangian

Lr(x,v) = f(x) + Z/T(Sx —b) + gHSX — bH%

Augmented Primal-Dual System
X = —VF(x) = STwv — KST(Sx — b)

T,0=5Sx—b

/O Augmented Primal-Dual System
X = =VF(x) — STv — KST(Sx — b) + w,
Za,pd: T,/I'/ZSX—b

Yp =X
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Decompose Primal-Dual Algorithm Into Subsystems

Eprimal
w, + T = =V f(z)+u, Yp
+ Yp = -
Eintelr v
ep =—S" fa ea=Sf,—b
Edual

T,,f/zud
Yya = v+ Kug
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Result 2: L,-Gain of Augmented Primal-Dual System

|/O Augmented Primal-Dual System
X = —VFf(x) — STv — KST(Sx — b) + w,
Yapd: § WV =Sx—b

Yp =X

Theorem 2
Let (x*,v*) be the optimizer. If each fi(x;) is mj-strongly convex,
then the Lr-gain ||Xapall, of the map X,pq @ wp — y, satisfies

1
S <
|| apd”Lz = Amin (M —+ KSTS)

around the optimizer, where M = diag(my, ..., my).
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Result 2: L,-Gain of Augmented Primal-Dual System

Theorem 2

Let (x*,v*) be the optimizer. If each f;(x;) is m;-strongly convex,
then the Ly-gain ||X,pall1, of the map X,pq : wp, — y, satisfies

1
TapdllL, <
Iapallee < S0 RETS)

around the optimizer, where M = diag(mj, ..., mp).

Idea: Increase K to decrease Ly-gain?

Agreement Constraints x; = x;
S = ET, E incidence matrix of acyclic graph, L = STS
: 1 1
lim =
K—00 Amin(M 4+ KL) Mgy,

14/18



Conclusions

Passivity / Lo-Framework for Primal-Dual Input/Output Performance:
Q Lr-gain < 1/my;y,, strong convexity important

@ Augmentation reduces Ly-gain ...sometimes

For quadratic costs, Hz-norm results (CDC, Las Vegas) ]
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Conclusions

Passivity / Lo-Framework for Primal-Dual Input/Output Performance:
Q Lr-gain < 1/my;y,, strong convexity important

@ Augmentation reduces Ly-gain ...sometimes

For quadratic costs, Hz-norm results (CDC, Las Vegas) |

What'’s next?
@ Inequality constraints
@ Other distributed optimization algorithms
© L, small-gain provides solid ground for interconnection

© Beyond PI controllers . ..
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| Swept Something Under The Rug ...

Eprimal
Wp T2l = =V f(2) + up Yp
+ Yp = -
Eintelr v
ep =—S" fa ea=Sf,—b
Edual

Tyl)zud
Yya =v + Kug
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A More General Picture

w x
P
—>(O—> ¥ primal >
+ A +
Y
-
ep:—S fd €d:Sfp—b
, i
v
+ X+ wy
< Ydual
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Swing Dynamics
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The Optimal Frequency Regulation Problem

(Simplified, Linearized, and Network-Reduced)

Grid: G = (V,€, B)
Swing Dynamics
é' = Wwj

—Djw; + P} — Pei(0) + pi

(Linearized) Power Flow
0)=> _ Bilbi—0),

Problem: How to pick controls p;
for (i) wss = 0 (ii) optimality?

(Note: not “optimal control”, but

Pgeneration
PN
—
Pdemand
OFR Problem
- . . n
mlgel%jnlze Zi ) 2k,p,
subject toZ (P* +pi)=0
P, < pi <P

“control to optimal steady-state”)



Smart Grid Project Samples

Distributed Inverter Control

Voltage Collapse (Nat. Comms.)

Optimal Distrib. Volt/Var (cbc)

H = T
sing| 11| [Processing] 1 £

(22, 42)

EE (z1,31) i

Cyber Layer

[vazo, i | Tvan, it | Tvico,
| PMU H PMU H PMU |

S
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Y
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Some Intuition

To first order
f(x) = f(x*) + VF(x)T(x — x*).

Therefore

|f(x) — (x|, < ::max - (size of disturbance)

min
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