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Our 20th Century Bulk Power System
A large-scale, nonlinear, hybrid, stochastic, distributed, cyber-physical . . .

Active
Control

Passive
Consumption

What kind of control is used?
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Power electronics are game changers . . .

synchronous generator

power inverters scaling

location & distributed implementation

Central control authority is fading . . . how to coordinate new actuators?
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Optimal Distributed Frequency Regulation
A very incomplete literature review

Popular Idea: {Grid Dynamics} ∪ {Dist. Controller}
= Distributed Online Optimization Algorithm

(many other approaches exist)
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A Distributed Optimization Problem

minimize
x∈Rn

1

2
xTQx + cTx

subject to Sx = b ,

x ∈ Rn is our decision variable, Q = diag(q1, . . . , qn) is pos. def.

S ∈ Rr×n with r < n is full rank, c , b are vectors

Each variable xi ∈ R belongs to agent.

The constraint matrix S couples the agents together.

We want the agents to cooperatively solve this problem.
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The Primal-Dual / Saddle Point Algorithm
Key Idea: Write an algorithm which seeks the KKT points of

L(x , ν) =
1

2
xTQx + cTx + νT(Sx − b) .

Saddle Point Algorithm [Kose ’56, Arrow et al. ’58]

τx ẋ = −∇xL(x , ν)

τν ν̇ = ∇νL(x , ν)
=⇒

τx ẋ = −Qx − c − STν ,

τν ν̇ = Sx − b ,

1 Dynamics are distributed with sparsity pattern of S

2 Converges to unique primal-dual optimizer (x∗, ν∗) [Feijer ’10, Cherukuri ’15]

3 In control though, stability is just the first step. . .

What about sensitivity to disturbances?
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τx ẋ = −∇xL(x , ν)

τν ν̇ = ∇νL(x , ν)
=⇒
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Incorporating Disturbances into Primal-Dual Dynamics
Inspired by [Bloch et al. ’92], [Wang & Elia, ’10] and [Stegink, et al. ’15],

Primal-Dual System

G :


τx ẋ = −Qx − c − STν + dc

τν ν̇ = Sx − b + db

z=
1√
2
Q

1
2 x

Note: ‖z‖2
2 = 1

2x
TQx ∼ Cost Function

G defines an I/O mapping G : (dc , db)→ z .

How much does this system amplify (or attenuate) disturbances?
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Block Diagram of Primal-Dual I/O System
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Quick Review: The H2 System Norm

Exp. Stable Linear System

ẋ = Ax + Bd

z = Cx
⇐⇒ G (s) = C (sI − A)−1B

‖G‖2
H2

,
1

2π

∫
R
Tr
[
GT(−jω)G (jω)

]
dω

Useful Interpretations:

(i) Steady-state output variance limt→∞ E[z(t)Tz(t)] when d noise

(ii) “Average” gain over all frequencies from d(·) to z(·)

If (A,C ) observable

ATY + YA + CTC = 0
⇒ ‖G‖2

H2
= Tr(BTYB)
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H2 Performance of Primal-Dual Algorithm

Primal-Dual System

G :


τx ẋ = −Qx − c − STν + dc

τν ν̇ = Sx − b + db

z =
1√
2
Q

1
2 x

(?)

Theorem: Primal-Dual Performance

The H2 norm of the system (?) is

‖G‖2
H2

=
1

4

∑n

i=1

1

τx ,ii
+

1

4

∑r

k=1

1

τν,kk
.

For uniform time-constants

‖G‖2
H2

=
1

4τx
n +

1

4τν
r .
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H2 Performance of I/O Primal-Dual Algorithm
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4
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τν,kk
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‖G‖2
H2

=
1

4τx
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4τν
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Key Insights
1 Norm independent of Q,S

2 Speed/Performance Trade-off

3 Norm grows with # agents

Can we redesign to reduce the H2 norm?
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Augmented Lagrangians and Primal-Dual
One interpretation: penalize constraint violation during transients

Augmented Lagrangian

Lρ(x , ν) =
1

2
xTQx + cTx + νT(Sx − b) +

ρ

2
‖Sx − b‖2

2

Augmented Primal-Dual System

τx ẋ = −Qx − STν − c − ρST(Sx − b)

τν ν̇ = Sx − b
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Block Diagram of Primal-Dual I/O System
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H2 Performance of I/O Augmented Primal-Dual

Theorem: Aug. Primal-Dual Performance

The H2 norm of the augmented P-D system is

‖Gρ‖2
H2

=
1

4τx
(n − r) +

1

4

(
1

τx
+

1

τν

)∑r

k=1

q

q + ρ σk(S)

where σk(S) = singular values. Moreover

‖Gρ‖H2 ≤ ‖G‖H2 and lim
ρ→∞

‖Gρ‖2
H2

=
1

4τx
(n − r)

Recall:

‖G‖2
H2

=
1

4τx
n +

1

4τν
r

Key Insights
1 Not independent of Q,S

2 More constraints = good

3 More gain = good

13 / 16



H2 Performance of I/O Augmented Primal-Dual

Theorem: Aug. Primal-Dual Performance

The H2 norm of the augmented P-D system is

‖Gρ‖2
H2

=
1

4τx
(n − r) +

1

4

(
1

τx
+

1

τν

)∑r

k=1

q

q + ρ σk(S)

where σk(S) = singular values. Moreover

‖Gρ‖H2 ≤ ‖G‖H2 and lim
ρ→∞

‖Gρ‖2
H2

=
1

4τx
(n − r)

Recall:

‖G‖2
H2

=
1

4τx
n +

1

4τν
r

Key Insights
1 Not independent of Q,S

2 More constraints = good

3 More gain = good

13 / 16



H2 Performance of I/O Augmented Primal-Dual

Theorem: Aug. Primal-Dual Performance

The H2 norm of the augmented P-D system is

‖Gρ‖2
H2

=
1

4τx
(n − r) +

1

4

(
1

τx
+

1

τν

)∑r

k=1

q

q + ρ σk(S)

where σk(S) = singular values. Moreover

‖Gρ‖H2 ≤ ‖G‖H2 and lim
ρ→∞

‖Gρ‖2
H2

=
1

4τx
(n − r)

Recall:

‖G‖2
H2

=
1

4τx
n +

1

4τν
r

Key Insights
1 Not independent of Q,S

2 More constraints = good

3 More gain = good

13 / 16



H2 Performance of I/O Augmented Primal-Dual

Theorem: Aug. Primal-Dual Performance

The H2 norm of the augmented P-D system is

‖Gρ‖2
H2

=
1

4τx
(n − r) +

1

4

(
1

τx
+

1

τν

)∑r

k=1

q

q + ρ σk(S)

where σk(S) = singular values. Moreover

‖Gρ‖H2 ≤ ‖G‖H2 and lim
ρ→∞

‖Gρ‖2
H2

=
1

4τx
(n − r)

Recall:

‖G‖2
H2

=
1

4τx
n +

1

4τν
r

Key Insights
1 Not independent of Q,S

2 More constraints = good

3 More gain = good

13 / 16



Connection to Frequency Control

Optimal Frequency Regulation Problem

minimize
p∈Rn

∑n

i=1

1

2
kip

2
i

subject to
∑n

i=1
(P∗i + pi ) = 0

After dual decomposition: P∗i = ci = uncontrolled load

=⇒ Quantify H2-norm from load disturbance dc to generation cost

1 For Primal-Dual : ‖G‖H2 ∝
√
n

=⇒ Large systems are more sensitive

2 For Augmented Primal-Dual: ‖Gρ‖2
H2
→ const. as ρ→∞

=⇒ Sensitivity removed by high-gain (Laplacian!!) feedback

For details, see the paper.
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Conclusions

Primal-Dual Input/Output Performance:

1 H2-norm scales with
√

# agents

2 Augmentation reduces H2 norm, constraints are good

3 Implications for frequency control of power systems

For L2-gain or H∞ results, see Allerton 2016 paper

“Input/Output Analysis of Primal-Dual Gradient Algorithms”

What’s next?

1 Inequality constraints? Descriptor systems?

2 Other distributed optimization algorithms

3 Beyond augmented Lagrangians . . .
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Easy Proof of H2 Result

1 Simplify: Assume block-diagonal solution to avoid coupling

2 Lyapunov Equation:[
Y11 0
0 Y22

] [
−τ−1

x Q −τ−1
x ST

τ−1
ν S 0

]
+

[
? ?
? ?

]T

= −
[

1
2Q 0
0 0

]

Y11τ
−1
x Q + Qτ−1

x Y11 −
1

2
Q = 0 , =⇒ Y11 = τx/4

Y22τ
−1
ν S − Sτ−1

x Y11 = 0 , =⇒ Y22 = Sτ−1
x Y11S

†τν

= SS†τν/4

= τν/4

3 Trace Formula: ‖G‖2
H2

= Tr(τ−1
x Y11τ

−1
x ) + (?)
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Smart Grid Project Samples
Distributed Inverter Control
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An incomplete literature review of a busy field

ntwk with unknown disturbances ∪ integral control ∪ distributed averaging

all-to-all source frequency & injection averaging [Q. Shafiee, J. Vasquez, & J. Guerrero,

’13] & [H. Liang, B. Choi, W. Zhuang, & X. Shen, ’13] & [M. Andreasson, D. V.

Dimarogonas, K. H. Johansson, & H. Sandberg, ’12]

optimality w.r.t. economic dispatch [E. Mallada & S. Low, ’13] & [M. Andreasson, D.

V. Dimarogonas, K. H. Johansson, & H. Sandberg, ’13] & [X. Zhang and

A. Papachristodoulou, ’13] & [N. Li, L. Chen, C. Zhao & S. Low ’13]

ratio consensus & dispatch [S.T. Cady, A. Garcıa-Domınguez, & C.N. Hadjicostis, ’13]

load balancing in Port-Hamiltonian networks [J. Wei & A. Van der Schaft, ’13]

passivity-based network cooperation and flow optimization [M. Bürger, D. Zelazo, &

F. Allgöwer, ’13, M. Bürger & C. de Persis ’13, He Bai & S.Y. Shafi ’13]

distributed PI avg optimization [G. Droge, H. Kawashima, & M. Egerstedt, ’13]

PI avg consensus [R. Freeman, P. Yang, & K. Lynch ’06] & [M. Zhu & S. Martinez ’10]

decentralized “practical” integral control [N. Ainsworth & S. Grijalva, ’13]



Distributed Averaging PI (DAPI) Frequency Control

ωi = ω∗ −miPi (θ)− Ωi

ki Ω̇i = (ωi − ω∗)−
∑

j ⊆ inverters

aij · (Ωi − Ωj)

1 no tuning, no model dependence

2 weak comm. requirements

3 maintains load sharing
(share burden of sec. control)

Simple & Intuitive

Theorem: Stability of DAPI
[JWSP, FD, & FB, ’13]

DAPI-Controlled System Stable

m
Droop-Controlled System Stable

(grid-conscious sec. control)



Distributed Averaging PI (DAPI) Frequency Control

ωi = ω∗ −miPi (θ)− Ωi

ki Ω̇i = (ωi − ω∗)−
∑

j ⊆ inverters

aij · (Ωi − Ωj)

1 no tuning, no model dependence

2 weak comm. requirements

3 maintains load sharing
(share burden of sec. control)

Simple & Intuitive

Theorem: Stability of DAPI
[JWSP, FD, & FB, ’13]

DAPI-Controlled System Stable

m
Droop-Controlled System Stable

(grid-conscious sec. control)



Distributed Averaging PI (DAPI) Frequency Control

ωi = ω∗ −miPi (θ)− Ωi

ki Ω̇i = (ωi − ω∗)−
∑

j ⊆ inverters

aij · (Ωi − Ωj)

1 no tuning, no model dependence

2 weak comm. requirements

3 maintains load sharing
(share burden of sec. control)

Simple & Intuitive

Theorem: Stability of DAPI
[JWSP, FD, & FB, ’13]

DAPI-Controlled System Stable

m
Droop-Controlled System Stable

(grid-conscious sec. control)



Distributed Averaging PI (DAPI) Frequency Control

ωi = ω∗ −miPi (θ)− Ωi

ki Ω̇i = (ωi − ω∗)−
∑

j ⊆ inverters

aij · (Ωi − Ωj)

1 no tuning, no model dependence

2 weak comm. requirements

3 maintains load sharing
(share burden of sec. control)

Simple & Intuitive

Theorem: Stability of DAPI
[JWSP, FD, & FB, ’13]

DAPI-Controlled System Stable

m
Droop-Controlled System Stable

(grid-conscious sec. control)



Distributed Averaging PI (DAPI) Frequency Control

ωi = ω∗ −miPi (θ)− Ωi

ki Ω̇i = (ωi − ω∗)−
∑

j ⊆ inverters

aij · (Ωi − Ωj)

1 no tuning, no model dependence

2 weak comm. requirements

3 maintains load sharing
(share burden of sec. control)

Simple & Intuitive

Theorem: Stability of DAPI
[JWSP, FD, & FB, ’13]

DAPI-Controlled System Stable

m
Droop-Controlled System Stable

(grid-conscious sec. control)



From Hierarchical Control to Distributed Control
flat hierarchy, no time-scale separations, & model-free



From Hierarchical Control to Distributed Control
flat hierarchy, no time-scale separations, & model-free


	Appendix

