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Our 20th Century Bulk Power System

A large-scale, nonlinear, hybrid, stochastic, distributed, cyber-physical ..
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Power electronics are game changers . ..
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Central control authority is fading ... how to coordinate new actuators? J
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A Distributed Optimization Problem

. 1
minimize “xTQx+ c"x
x€ERN 2

subject to Sx = b,

@ x € R" is our decision variable, @ = diag(qz, ..., qn) is pos. def.

e S € R™" with r < nis full rank, ¢, b are vectors
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minimize “xTQx+ c"x
x€ERN 2

subject to Sx = b,

@ x € R" is our decision variable, @ = diag(qz, ..., qn) is pos. def.

@ S e R™" with r < nis full rank, ¢, b are vectors

Each variable x; € R belongs to agent.
The constraint matrix S couples the agents together.

We want the agents to cooperatively solve this problem.
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@ Dynamics are distributed with sparsity pattern of S
@ Converges to unique primal-dual optimizer (x*, v*) [Feijer 10, Cherukuri '15]

© In control though, stability is just the first step. ..

What about sensitivity to disturbances? J
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Incorporating Disturbances into Primal-Dual Dynamics
Inspired by [Bloch et al. '92], [Wang & Elia, '10] and [Stegink, et al. '15],

Primal-Dual System
x=—-Qx—c—STv+d.
G- T, =Sx—b+dp

1 1
z= —Q2x
V2

6/16



Incorporating Disturbances into Primal-Dual Dynamics
Inspired by [Bloch et al. '92], [Wang & Elia, '10] and [Stegink, et al. '15],

Primal-Dual System
x=—-Qx—c—STv+d.
G- T, =Sx—b+dp

1 1
z= —Q2x
V2

Note: ||z||3 = %XTQX ~  Cost Function

6/16



Incorporating Disturbances into Primal-Dual Dynamics
Inspired by [Bloch et al. '92], [Wang & Elia, '10] and [Stegink, et al. '15],

Primal-Dual System
x=—-Qx—c—STv+d.
G- T, =Sx—b+dp

1 1
z= —Q2x
V2

Note: ||z||3 = %XTQX ~  Cost Function

G defines an 1/O mapping G : (dc, dp) — z.

6/16



Incorporating Disturbances into Primal-Dual Dynamics
Inspired by [Bloch et al. '92], [Wang & Elia, '10] and [Stegink, et al. '15],

Primal-Dual System
x=—-Qx—c—STv+d.
G. Ty’):SX_b+db

1 1
z= —Q2x
\/EQ

Note: ||z||3 = %XTQX ~  Cost Function

G defines an 1/O mapping G : (dc, dp) — z.

How much does this system amplify (or attenuate) disturbances? )

6/16



Block Diagram of Primal-Dual 1/O System

Primal Subsystem

+ T = —Qx +u T 1 1
dc T Q P _ —Qé L
+ Yp=1 V2
Interconnection v
ep=—S"fs—c eqa=Sfp—0b
Dual Subsystem
TV = Ug +
v B db
Ya =V
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Quick Review: The H, System Norm

Exp. Stable Linear System
x = Ax + Bd

z = Cx

— G(s)=C(sl —A)'B

161, 2 57 [ Tr [67(=jw)6Gw)] dw J

Useful Interpretations:

(i) Steady-state output variance lim; ., E[z(t)Tz(t)] when d noise

(i) “Average” gain over all frequencies from d(-) to z(-)

If (A, C) observable

ATY + YA+ CTC=0

= |63, = T(BTYB) J




‘H, Performance of Primal-Dual Algorithm

Primal-Dual System

x=—-Qx—c—S"w+d.

G: TUU:S;.(_I:‘i‘db (*)
z = ;ZEC?EX

Theorem: Primal-Dual Performance
The H> norm of the system (x) is

1 I 1 1 r 1
2 = = _
||G||7'l2 _ 4 Z,':]_ B fi + 4 Zk:]

Tv,kk

For uniform time-constants

1 1
1G5, = R e
X 1%

o’
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H, Performance of 1/O Primal-Dual Algorithm

Theorem: PrimaI-DuaI Performa nce

|G”H2 Z—l i _Zk 1

1 1
1G5, = F”"‘Rf-
X

Ty, kk

Key Insights
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H, Performance of |/O Primal-Dual Algorithm

Theorem: PrimaI-DuaI Performa nce

|G||7'l2 Z—l T i _Zk 1

1 1
1G5, = R e
X 1%

Ty, kk

Key Insights
@ Norm independent of Q,S
@ Speed/Performance Trade-off
© Norm grows with # agents

Can we redesign to reduce the H» norm?J
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Augmented Lagrangians and Primal-Dual

One interpretation: penalize constraint violation during transients

Augmented Lagrangian

1
Ly(x,v) = EXTQX +cTx+vT(5x—b) + gHSX — b3
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Augmented Lagrangians and Primal-Dual

One interpretation: penalize constraint violation during transients

Augmented Lagrangian

1
Ly(x,v) = EXTQX +cTx+vT(5x—b) + gHSX —b|3

Augmented Primal-Dual System
X =—Qx—c—STv— pST(Sx — b) + d.
c . dnv=S—b+d
-

z= \2@)(

Uniformity Assumption: Qi = q, Ty ii = Tx, Tv,ii = Ty
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Block Diagram of Primal-Dual 1/O System

Primal Subsystem

+ T = —Qx +u T 1
i #b = —Qrtu J Lot
+ Yp=1 V2
Interconnection v
ep=—S"fs—c eqa=Sfp—0b
Dual Subsystem
TV = Ug + d
Ya=v+ pug ’
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H, Performance of |/O Augmented Primal-Dual

Theorem: Aug. Primal-Dual Performance
The Hy norm of the augmented P-D system is

1 1/1 1) q
G2 — _ =4 = _—
1Goll3, = (1 =)+ 3 (TX - Ty) 2 q+pow(S)

where o4 (S) = singular values. Moreover

1
4T,

(n—=r)

: 2
[Golla < NGl ] and | lim 116,15, =

Key Insights
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Theorem: Aug. Primal-Dual Performance
The Hy norm of the augmented P-D system is

1 11 1) q
G2 — _ =4 = _—
1Golle, = g (=) + 5 (TX " Ty) 241 3% pn(S)

where o4 (S) = singular values. Moreover

1
. 2
Gl < 1G] and | lim |Gol, = 5—(n =)
Key Insights
Recall: .
) . © Not independent of @, S
Gl3, = —n+— M traints = good
I1Gll%, 4Txn-l-47_yr @ More constraints = goo

© More gain = good
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Connection to Frequency Control

Optimal Frequency Regulation Problem

S n 1
minimize E ) —k,-p,-2
pERP i=1 2

subject to Z’,,_l(P,?" +pi)=0
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Connection to Frequency Control

Optimal Frequency Regulation Problem

o n 1
minimize E  —kip?
pER? i=12

subject to z:r_7_1(P,?k +pi)=0

After dual decomposition: P; = ¢; = uncontrolled load
= Quantify Hy-norm from load disturbance d. to generation cost

@ For Primal-Dual : |G|y, o v/n
= Large systems are more sensitive

@ For Augmented Primal-Dual: |]Gp||%{2 — const. as p — 00
= Sensitivity removed by high-gain (Laplacian!!) feedback

For details, see the paper. |
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Conclusions

Primal-Dual Input/Output Performance:

© 7Hp-norm scales with \/# agents

© Augmentation reduces Hy norm, constraints are good

© Implications for frequency control of power systems

For Lr-gain or Ho results, see Allerton 2016 paper
“Input/Output Analysis of Primal-Dual Gradient Algorithms”J
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What'’s next?
@ Inequality constraints? Descriptor systems?
@ Otbher distributed optimization algorithms

© Beyond augmented Lagrangians ...
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Easy Proof of H, Result

@ Simplify: Assume block-diagonal solution to avoid coupling

© Lyapunov Equation:
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Smart Grid Project Samples

Distributed Inverter Control
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sing| 11| [Processing] 1 £

(22, 42)

EE (z1,31) i

Cyber Layer
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Y
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An incomplete literature review of a busy field

ntwk with unknown disturbances U integral control U distributed averagingJ

@ all-to-all source frequency & injection averaging [Q. Shafiee, J. Vasquez, & J. Guerrero,
'13] & [H. Liang, B. Choi, W. Zhuang, & X. Shen, '13] & [M. Andreasson, D. V.
Dimarogonas, K. H. Johansson, & H. Sandberg, '12]

@ optimality w.r.t. economic dispatch [E. Mallada & S. Low, '13] & [M. Andreasson, D.
V. Dimarogonas, K. H. Johansson, & H. Sandberg, '13] & [X. Zhang and
A. Papachristodoulou, '13] & [N. Li, L. Chen, C. Zhao & S. Low '13]

@ ratio consensus & dispatch [S.T. Cady, A. Garcia-Dominguez, & C.N. Hadjicostis, '13]
@ load balancing in Port-Hamiltonian networks [J. Wei & A. Van der Schaft, '13]

@ passivity-based network cooperation and flow optimization [M. Biirger, D. Zelazo, &
F. Allgower, '13, M. Biirger & C. de Persis '13, He Bai & S.Y. Shafi '13]

@ distributed Pl avg optimization [G. Droge, H. Kawashima, & M. Egerstedt, '13]
@ Pl avg consensus [R. Freeman, P. Yang, & K. Lynch '06] & [M. Zhu & S. Martinez '10]

@ decentralized “practical” integral control [N. Ainsworth & S. Grijalva, '13]



Distributed Averaging PI (DAPI) Frequency Control
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Simple & IntuitiveJ Droop-Controlled System Stable
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From Hierarchical Control to Distributed Control

flat hierarchy, no time-scale separations, & model-free
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From Hierarchical Control to Distributed Control

flat hierarchy, no time-scale separations, & model-free
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