Lossy DC Power Flow

John W. Simpson-Porco

Universidad de Chile Santiago, Chile

March 2, 2017

Our 20th Century Bulk Power System

A large-scale, nonlinear, hybrid, stochastic, distributed, cyber-physical ...

Today, we will focus on the network.

Our 20th Century Bulk Power System

A large-scale, nonlinear, hybrid, stochastic, distributed, cyber-physical ...

Today, we will focus on the network.

Modern Large-Scale Power Grids

Problems in Power System Operations

Idea: Optimally match supply and demand (with constraints)

Idea: Optimally match supply and demand (with constraints)

$$\begin{array}{ll} \underset{\theta, P_G}{\operatorname{minimize}} & \sum_{i \in \mathcal{N}_G} f_i(P_i) \\ \text{subject to} & P_i = \sum_j B_{ij}(\theta_i - \theta_j) \quad i \in \mathcal{N}_L \cup \mathcal{N}_G , \\ & P_i^{\min} \leq |P_i| \leq P_i^{\max} & i \in \mathcal{N}_G , \\ & p_{ij}^{\min} \leq |p_{ij}| \leq p_{ij}^{\max} & (i,j) \in \mathcal{E} , \end{array}$$

Idea: Optimally match supply and demand (with constraints)

$$\begin{array}{ll} \underset{\theta, P_G}{\operatorname{minimize}} & \sum_{i \in \mathcal{N}_G} f_i(P_i) \\ \text{subject to} & P_i = \sum_j B_{ij}(\theta_i - \theta_j) \quad i \in \mathcal{N}_L \cup \mathcal{N}_G \,, \\ & P_i^{\min} \leq |P_i| \leq P_i^{\max} \quad i \in \mathcal{N}_G \,, \\ & p_{ij}^{\min} \leq |p_{ij}| \leq p_{ij}^{\max} \quad (i,j) \in \mathcal{E} \,, \end{array}$$

Idea: Optimally match supply and demand (with constraints)

$$\begin{array}{ll} \underset{\theta, P_G}{\operatorname{minimize}} & \sum_{i \in \mathcal{N}_G} f_i(P_i) \\ \text{subject to} & P_i = \sum_j B_{ij}(\theta_i - \theta_j) \quad i \in \mathcal{N}_L \cup \mathcal{N}_G \,, \\ & P_i^{\min} \leq |P_i| \leq P_i^{\max} \quad i \in \mathcal{N}_G \,, \\ & p_{ij}^{\min} \leq |p_{ij}| \leq p_{ij}^{\max} \quad (i,j) \in \mathcal{E} \,, \end{array}$$

• LP or QP depending on objective function, easy to solve

Idea: Optimally match supply and demand (with constraints)

$$\begin{array}{ll} \underset{\theta, P_G}{\operatorname{minimize}} & \sum_{i \in \mathcal{N}_G} f_i(P_i) \\ \text{subject to} & P_i = \sum_j B_{ij}(\theta_i - \theta_j) \quad i \in \mathcal{N}_L \cup \mathcal{N}_G \,, \\ & P_i^{\min} \leq |P_i| \leq P_i^{\max} & i \in \mathcal{N}_G \,, \\ & p_{ij}^{\min} \leq |p_{ij}| \leq p_{ij}^{\max} & (i,j) \in \mathcal{E} \,, \end{array}$$

• LP or QP depending on objective function, easy to solve

Big drawback: model does not have resistances (power losses are not modelled)

- **()** Network: *n* buses \mathcal{N} , *m* lines \mathcal{E} , line admittances $y_{ij} = g_{ij} + \mathbf{j}b_{ij}$
- **2 Bus Variables:** voltage $V_i e^{j\theta_i}$, power $S_i = P_i + jQ_i$
- Ohm Circuit Laws: Kirchhoff & Ohm

O Admittance Matrix: Y = G + jB

$$Y_{ij} = -y_{ij}, \qquad Y_{ii} = -\sum_{j=1}^n y_{ij}$$

1 Network: *n* buses \mathcal{N} , *m* lines \mathcal{E} , line admittances $y_{ij} = g_{ij} + \mathbf{j}b_{ij}$

2 Bus Variables: voltage $V_i e^{\mathbf{j}\theta_i}$, power $S_i = P_i + \mathbf{j}Q_i$

Oricuit Laws: Kirchhoff & Ohm

O Admittance Matrix: Y = G + jB

$$Y_{ij} = -y_{ij}, \qquad Y_{ii} = -\sum_{j=1}^n y_{ij}$$

- **1** Network: *n* buses \mathcal{N} , *m* lines \mathcal{E} , line admittances $y_{ij} = g_{ij} + \mathbf{j}b_{ij}$
- **2** Bus Variables: voltage $V_i e^{\mathbf{j}\theta_i}$, power $S_i = P_i + \mathbf{j}Q_i$
- **3 Circuit Laws:** Kirchhoff & Ohm

$$P_i + \mathbf{j} Q_i \longrightarrow \diamondsuit \qquad V_i e^{\mathbf{j} \theta_i} \qquad y_{ij} \qquad V_j e^{\mathbf{j} \theta_j}$$

O Admittance Matrix: $Y = G + \mathbf{j}B$

$$Y_{ij} = -y_{ij}, \qquad Y_{ii} = -\sum_{j=1}^n y_{ij}$$

- **1** Network: *n* buses \mathcal{N} , *m* lines \mathcal{E} , line admittances $y_{ij} = g_{ij} + \mathbf{j}b_{ij}$
- **2** Bus Variables: voltage $V_i e^{\mathbf{j}\theta_i}$, power $S_i = P_i + \mathbf{j}Q_i$
- Orregistry Circuit Laws: Kirchhoff & Ohm

O Admittance Matrix: $Y = G + \mathbf{j}B$

$$Y_{ij}=-y_{ij}, \qquad Y_{ii}=-\sum_{j=1}^n y_{ij}$$

$$P_i = \sum_{j=1}^n V_i V_j B_{ij} \sin(\theta_i - \theta_j) + \sum_{j=1}^n V_i V_j G_{ij} \cos(\theta_i - \theta_j)$$

- Many applications require some simplifying assumptions
- **①** constant voltage magnitudes: $V_i \approx 1$
- **2** no resistances: $G_{ij} \approx 0$

$$P_i = \sum_{j=1}^n B_{ij} \sin(\theta_i - \theta_j)$$
 "Decoupled PF"

(3) small phase differences: $|\theta_i - \theta_j| \ll 1$

$$P_i \approx \sum_{j=1}^n B_{ij}(\theta_i - \theta_j)$$
 "DC PF" $\Longrightarrow \quad \theta = B^{-1}P$

- Many applications require some simplifying assumptions
- **①** constant voltage magnitudes: $V_i \approx 1$
- **2** no resistances: $G_{ij} \approx 0$

$$P_i = \sum_{j=1}^n B_{ij} \sin(heta_i - heta_j)$$
 "Decoupled PF"

(3) small phase differences: $|\theta_i - \theta_j| \ll 1$

$$P_i \approx \sum_{j=1}^n B_{ij}(\theta_i - \theta_j)$$
 "DC PF" $\Longrightarrow \quad \theta = B^{-1}P$

- Many applications require some simplifying assumptions
- **①** constant voltage magnitudes: $V_i \approx 1$
- **2** no resistances: $G_{ij} \approx 0$

$$P_i = \sum_{j=1}^n B_{ij} \sin(heta_i - heta_j)$$
 "Decoupled PF"

3 small phase differences: $|\theta_i - \theta_j| \ll 1$

 $P_i \approx \sum_{j=1}^n B_{ij}(\theta_i - \theta_j)$ "DC PF" $\Longrightarrow \quad \theta = B^{-1}P$

- Many applications require some simplifying assumptions
- **①** constant voltage magnitudes: $V_i \approx 1$
- **2** no resistances: $G_{ij} \approx 0$

$${\sf P}_i = \sum_{j=1}^n B_{ij} \sin(heta_i - heta_j)$$
 "Decoupled PF"

§ small phase differences: $|\theta_i - \theta_j| \ll 1$

$$P_i \approx \sum_{j=1}^n B_{ij}(\theta_i - \theta_j)$$
 "DC PF" $\Longrightarrow \quad \theta = B^{-1}P$

Our goal is to include resistances (remove assumption #2) (we will not even need assumption #3)

$$\begin{split} P_1 &= b \sin(\theta_1 - \theta_2) + g - g \cos(\theta_1 - \theta_2) \\ P_2 &= b \sin(\theta_1 - \theta_2) + g - g \cos(\theta_1 - \theta_2) \qquad \text{slack/ref bus} \end{split}$$

• Let $\psi = \sin(\theta_1 - \theta_2)$. Then $\cos(\theta_1 - \theta_2) = \sqrt{1 - \psi^2}$

$$P_1 = b\psi + g - g\sqrt{1 - \psi^2}$$

$$\begin{aligned} P_1 &= b \sin(\theta_1 - \theta_2) + g - g \cos(\theta_1 - \theta_2) \\ P_2 &= b \sin(\theta_1 - \theta_2) + g - g \cos(\theta_1 - \theta_2) \qquad \text{slack/ref bus} \end{aligned}$$

• Let $\psi = \sin(\theta_1 - \theta_2)$. Then $\cos(\theta_1 - \theta_2) = \sqrt{1 - \psi^2}$

$$P_1 = b\psi + g - g\sqrt{1 - \psi^2}$$

$$\begin{aligned} P_1 &= b \sin(\theta_1 - \theta_2) + g - g \cos(\theta_1 - \theta_2) \\ P_2 &= b \sin(\theta_1 - \theta_2) + g - g \cos(\theta_1 - \theta_2) \qquad \text{slack/ref bus} \end{aligned}$$

• Let
$$\psi = \sin(heta_1 - heta_2)$$
. Then $\cos(heta_1 - heta_2) = \sqrt{1 - \psi^2}$

$$P_1 = b\psi + g - g\sqrt{1-\psi^2}$$

$$\begin{aligned} P_1 &= b \sin(\theta_1 - \theta_2) + g - g \cos(\theta_1 - \theta_2) \\ P_2 &= b \sin(\theta_1 - \theta_2) + g - g \cos(\theta_1 - \theta_2) \qquad \text{slack/ref bus} \end{aligned}$$

• Let
$$\psi = \sin(\theta_1 - \theta_2)$$
. Then $\cos(\theta_1 - \theta_2) = \sqrt{1 - \psi^2}$

$$P_1 = b\psi + g - g\sqrt{1 - \psi^2}$$

 $\bullet\,$ now isolate ψ

$$\psi = \frac{1}{b} \left(P_1 + g \sqrt{1 - \psi^2} - g \right)$$

This is a **fixed-point equation** $\psi = f(\psi)$ Interpret as an **iteration**. Start with initial guess ψ_0 and update:

$$\psi_{k+1} = f(\psi_k) = \frac{1}{b} \underbrace{\left(P_1 + g\sqrt{1 - \psi_k^2} - g\right)}_{:=P_{1,k}}$$

After ψ **converges**, simply compute $heta_1 - heta_2 = rcsin(\psi)$

$$\psi = \frac{1}{b} \left(P_1 + g \sqrt{1 - \psi^2} - g \right)$$

This is a fixed-point equation $\psi = f(\psi)$

Interpret as an **iteration**. Start with initial guess ψ_0 and update:

$$\psi_{k+1} = f(\psi_k) = \frac{1}{b} \underbrace{\left(P_1 + g\sqrt{1 - \psi_k^2} - g\right)}_{:=P_{1,k}}$$

After ψ **converges**, simply compute $heta_1 - heta_2 = rcsin(\psi)$

$$\psi = rac{1}{b} \left(P_1 + g \sqrt{1 - \psi^2} - g
ight)$$

This is a **fixed-point equation** $\psi = f(\psi)$ Interpret as an **iteration**. Start with initial guess ψ_0 and update:

$$\psi_{k+1} = f(\psi_k) = \frac{1}{b} \underbrace{\left(P_1 + g\sqrt{1 - \psi_k^2} - g\right)}_{:=P_{1,k}}$$

After ψ **converges**, simply compute $heta_1 - heta_2 = \arcsin(\psi)$

$$\psi = rac{1}{b} \left(P_1 + g \sqrt{1 - \psi^2} - g
ight)$$

This is a **fixed-point equation** $\psi = f(\psi)$ Interpret as an **iteration**. Start with initial guess ψ_0 and update:

$$\psi_{k+1} = f(\psi_k) = \frac{1}{b} \underbrace{\left(P_1 + g\sqrt{1 - \psi_k^2} - g\right)}_{:=P_{1,k}}$$

After ψ **converges**, simply compute $heta_1 - heta_2 = rcsin(\psi)$

$$\psi = rac{1}{b} \left(P_1 + g \sqrt{1 - \psi^2} - g
ight)$$

This is a **fixed-point equation** $\psi = f(\psi)$ Interpret as an **iteration**. Start with initial guess ψ_0 and update:

$$\psi_{k+1} = f(\psi_k) = \frac{1}{b} \underbrace{\left(P_1 + g\sqrt{1 - \psi_k^2} - g\right)}_{:=P_{1,k}}$$

After ψ converges, simply compute $\theta_1 - \theta_2 = \arcsin(\psi)$

Convergence for Two-Bus Case

Can we show this converges? Yes!

Theorem: Convergence of Lossy DC Power Flow The Lossy DC Power Flow iteration $\psi_{k+1} = f(\psi_k)$ converges exponentially to a power flow solution θ^* if

$$\left(\frac{P_1}{b}\right)^2 + 2\left(\frac{g}{b}\right)\left(\frac{P_1}{b}\right) < 1.$$

The power flow solution θ^* is the unique solution contained in the normal operating regime.

- P_1/b is the DC PF solution
- $\rho = g/b$ is the R/X ratio of the network

Can we extend this idea to networks?

Can we show this converges? Yes!

Theorem: Convergence of Lossy DC Power Flow The Lossy DC Power Flow iteration $\psi_{k+1} = f(\psi_k)$ converges exponentially to a power flow solution θ^* if

$$\left(\frac{P_1}{b}\right)^2 + 2\left(\frac{g}{b}\right)\left(\frac{P_1}{b}\right) < 1.$$

The power flow solution θ^* is the unique solution contained in the normal operating regime.

- P_1/b is the DC PF solution
- $\rho = g/b$ is the R/X ratio of the network

Can we extend this idea to networks?

Graph and circuit matrices

- very convenient to write power flow in matrix/vector notation
- introduce incidence matrix $A \in \mathbb{R}^{n \times m}$

$$A_{ke} = \begin{cases} 1 & \text{if bus } k \text{ at sending-end of edge } e \\ -1 & \text{if bus } k \text{ at recieving-end of edge } e \\ 0 & \text{otherwise} \end{cases}$$

• $ker(A) = \{0\}$ if graph has no cycles

Graph and circuit matrices

- very convenient to write power flow in matrix/vector notation
- introduce incidence matrix $A \in \mathbb{R}^{n \times m}$

$$A_{ke} = \begin{cases} 1 & \text{if bus } k \text{ at sending-end of edge } e \\ -1 & \text{if bus } k \text{ at recieving-end of edge } e \\ 0 & \text{otherwise} \end{cases}$$

• $ker(A) = \{0\}$ if graph has no cycles

Modified DC Power Flow

• with vector notation

$$\mathsf{D}_B = \operatorname{diag}(B_{ij}), \qquad \mathsf{P} = (\mathsf{P}_1, \dots, \mathsf{P}_n)^\mathsf{T}, \qquad \theta = (\theta_1, \dots, \theta_n)^\mathsf{T}$$

decoupled power flow becomes

$$P_i = \sum_{j=1}^n B_{ij} \sin(\theta_i - \theta_j) \quad \Longleftrightarrow \quad P = A D_B \sin(A^{\mathsf{T}} \theta)$$

• candidate solution: The "Modified" DC PF

$$\psi = \sin(A^{\mathsf{T}}\theta), \qquad \psi = A^{\mathsf{T}}B^{-1}P$$

Modified DC Power Flow

• with vector notation

$$\mathsf{D}_B = \operatorname{diag}(B_{ij}), \qquad \mathsf{P} = (\mathsf{P}_1, \dots, \mathsf{P}_n)^\mathsf{T}, \qquad \theta = (\theta_1, \dots, \theta_n)^\mathsf{T}$$

decoupled power flow becomes

$$P_i = \sum_{j=1}^n B_{ij} \sin(\theta_i - \theta_j) \iff P = A D_B \sin(A^{\mathsf{T}} \theta)$$

• candidate solution: The "Modified" DC PF

$$\psi = \sin(A^{\mathsf{T}}\theta), \qquad \psi = A^{\mathsf{T}}B^{-1}P$$

Modified DC Power Flow

with vector notation

$$\mathsf{D}_B = \operatorname{diag}(B_{ij}), \qquad \mathsf{P} = (\mathsf{P}_1, \dots, \mathsf{P}_n)^\mathsf{T}, \qquad \theta = (\theta_1, \dots, \theta_n)^\mathsf{T}$$

decoupled power flow becomes

$$P_i = \sum_{j=1}^n B_{ij} \sin(\theta_i - \theta_j) \quad \Longleftrightarrow \quad P = A D_B \sin(A^{\mathsf{T}} \theta)$$

• candidate solution: The "Modified" DC PF

$$\psi = \sin(A^{\mathsf{T}}\theta), \qquad \psi = A^{\mathsf{T}}B^{-1}P$$

Novel Insights into Lossless AC and DC Power Flow

Florian Dörfler, Student Member, IEEE, and Francesco Bullo, Fellow, IEEE

$$\begin{aligned} P_i &= \sum_{j \neq i} B_{ij} \sin(\theta_{ij}) + G_{ii} + \sum_{j \neq i} G_{ij} \cos(\theta_i - \theta_j), \\ G_{\text{diag}} &= (G_{11}, G_{22}, \dots, G_{nn})^{\mathsf{T}} \qquad \mathsf{D}_{\mathcal{G}} = -\text{diag}(G_{ij}) \end{aligned}$$

Vectorized Lossy Power Flow $P = AD_B \sin(A^{\mathsf{T}}\theta) + G_{\text{diag}} - |A|D_G \cos(A^{\mathsf{T}}\theta)$

• substitute $\psi = \sin(A^{\mathsf{T}}\theta)$ like before

$$P = A \mathsf{D}_B \psi + \mathcal{G}_{\text{diag}} - |A| \mathsf{D}_G \sqrt{1 - \psi^2}$$

$$\begin{aligned} P_i &= \sum_{j \neq i} B_{ij} \sin(\theta_{ij}) + G_{ii} + \sum_{j \neq i} G_{ij} \cos(\theta_i - \theta_j), \\ G_{\text{diag}} &= (G_{11}, G_{22}, \dots, G_{nn})^{\mathsf{T}} \qquad \mathsf{D}_{\mathcal{G}} = -\text{diag}(G_{ij}) \end{aligned}$$

Vectorized Lossy Power Flow $P = AD_B \sin(A^{\mathsf{T}}\theta) + G_{\text{diag}} - |A|D_G \cos(A^{\mathsf{T}}\theta)$

• substitute $\psi = \sin(A^{\mathsf{T}}\theta)$ like before

$$P = A D_B \psi + G_{\text{diag}} - |A| D_G \sqrt{1 - \psi^2}$$

$$\begin{aligned} P_{i} &= \sum_{j \neq i} B_{ij} \sin(\theta_{ij}) + G_{ii} + \sum_{j \neq i} G_{ij} \cos(\theta_{i} - \theta_{j}), \\ G_{\text{diag}} &= (G_{11}, G_{22}, \dots, G_{nn})^{\mathsf{T}} \qquad \mathsf{D}_{G} = -\text{diag}(G_{ij}) \end{aligned}$$

Vectorized Lossy Power Flow $P = AD_B \sin(A^{\mathsf{T}}\theta) + G_{\text{diag}} - |A|D_G \cos(A^{\mathsf{T}}\theta)$

• substitute $\psi = \sin(A^{\mathsf{T}}\theta)$ like before

$$P = A D_B \psi + G_{\text{diag}} - |A| D_G \sqrt{1 - \psi^2}$$

$$\begin{aligned} P_{i} &= \sum_{j \neq i} B_{ij} \sin(\theta_{ij}) + G_{ii} + \sum_{j \neq i} G_{ij} \cos(\theta_{i} - \theta_{j}), \\ G_{\text{diag}} &= (G_{11}, G_{22}, \dots, G_{nn})^{\mathsf{T}} \qquad \mathsf{D}_{G} = -\text{diag}(G_{ij}) \end{aligned}$$

Vectorized Lossy Power Flow $P = AD_B \sin(A^{\mathsf{T}}\theta) + G_{\text{diag}} - |A|D_G \cos(A^{\mathsf{T}}\theta)$

• substitute $\psi = \sin(A^{\mathsf{T}}\theta)$ like before

$$P = AD_B\psi + G_{diag} - |A|D_G\sqrt{1-\psi^2}$$

We obtain a fixed-point equation

$$\psi = f(\psi) := A^{\mathsf{T}} B^{-1} \left(P - \mathcal{G}_{\text{diag}} + |A| \mathsf{D}_{\mathcal{G}} \sqrt{1 - \psi^2} \right)$$

which we interpret as an iteration

Lossy DC Power Flow Iteration

$$\psi_{k+1} = f(\psi_k) := A^{\mathsf{T}} B^{-1} \left(P - G_{\text{diag}} + |A| \mathsf{D}_G \sqrt{1 - \psi_k^2} \right)$$

• phase angles calculated as

$$A^{\mathsf{T}}\theta_k = \arcsin(\psi_k)$$

We obtain a fixed-point equation

$$\psi = f(\psi) := A^{\mathsf{T}} B^{-1} \left(P - \mathcal{G}_{\text{diag}} + |A| \mathsf{D}_{\mathcal{G}} \sqrt{1 - \psi^2} \right)$$

which we interpret as an iteration

Lossy DC Power Flow Iteration

$$\psi_{k+1} = f(\psi_k) := A^{\mathsf{T}} B^{-1} \left(P - G_{\text{diag}} + |A| \mathsf{D}_G \sqrt{1 - \psi_k^2} \right)$$

• phase angles calculated as

$$A^{\mathsf{T}}\theta_k = \arcsin(\psi_k)$$

We obtain a fixed-point equation

$$\psi = f(\psi) := A^{\mathsf{T}} B^{-1} \left(P - \mathcal{G}_{\text{diag}} + |A| \mathsf{D}_{\mathcal{G}} \sqrt{1 - \psi^2} \right)$$

which we interpret as an iteration

Lossy DC Power Flow Iteration

$$\psi_{k+1} = f(\psi_k) := A^{\mathsf{T}} B^{-1} \left(P - G_{\text{diag}} + |A| \mathsf{D}_G \sqrt{1 - \psi_k^2} \right)$$

• phase angles calculated as

$$A^{\mathsf{T}}\theta_k = \operatorname{arcsin}(\psi_k)$$

Convergence of Lossy DC Power Flow

Theorem

The Lossy DCPF iteration $\psi_{k+1} = f(\psi_k)$ converges exponentially to a power flow solution θ^* if the network has no cycles and

$$\|\psi_{\rm DC}\|_{\infty}^2 + 2\rho \|\psi_{\rm DC}\|_{\infty} < 1$$

The power flow solution θ^* is the unique solution contained in the normal operating regime

$$\psi_{\rm DC} = A^{\sf T} B^{-1} P$$
 is the DC PF solution

 $\rho = \|\mathsf{D}_B^{-1} \mathsf{A}^{-1}| \mathsf{A} |\mathsf{D}_G\|_{\infty}$ measures R/X ratio

Proof based on contraction mapping principle

Simulations on MATPOWER Test Cases

Test System	Error (deg) DCPF	$\begin{array}{l} Error \ (deg) \\ k = 1 \end{array}$	Error (deg) k = 2
New England 39	1.33	0.02	0.00
RTS '96 (2 area)	1.88	0.03	0.00
57 bus system	0.55	0.01	0.00
RTS '96 (3 area)	4.16	0.06	0.01
118 bus system	3.49	0.05	0.01
300 bus system	19.3	0.22	0.07
Polish 2383wp	5.32	0.31	0.02
PEGASE 2869	21.44	0.61	0.05
PEGASE 9241	74.05	6.02	0.37
PEGASE 13,659	242.7	111.7	5.85

Table: Base Case Testing of Lossy Modified DC Power Flow

Conclusions

Lossy DC Power Flow extends the DC PF

- **1** Iterative approximation
- 2 Convergence conditions
- Successful numerical tests

Lossy DC Power Flow

John W. Simpson-Porco, Member, IEEE

Future work:

- Analysis for meshed networks
- 2 Application to stability/contingency
- Opplication to market LMPs

Conclusions

Lossy DC Power Flow extends the DC PF

- **1** Iterative approximation
- 2 Convergence conditions
- Successful numerical tests

Lossy DC Power Flow

John W. Simpson-Porco, Member, IEEE

Future work:

- Analysis for meshed networks
- Application to stability/contingency
- O Application to market LMPs

Questions

https://ece.uwaterloo.ca/~jwsimpso/ jwsimpson@uwaterloo.ca

appendix

Algorithmic Implementation

Algorithm 1: Lossy Modified/Unmodified DCPF

Inputs: grid data, approximation order $k \in \mathbb{N}$ **Outputs:** voltage phase angles $\theta_r[k]$ $\psi[0] = \mathbb{O}_m$ for $\ell \leftarrow 1$ to k do $P_r[\ell - 1] \leftarrow P_r - G_{\text{diag}} + |A|_r \mathbb{D}_G \sqrt{\mathbb{1}_m - (\psi[\ell - 1])^2}$ $\delta_r[\ell] \leftarrow \text{Solve}(\mathbb{L}_B \delta_r[\ell] = P_r[\ell - 1])$ $\psi[\ell] \leftarrow A_r^T \delta_r[\ell]$ if ℓ acress Madified DCDE them

if Lossy Modified DCPF then $\begin{array}{c|c} \theta_r[k] \leftarrow \text{Solve}(A_r^{\mathsf{T}}\theta_r[k] = \arcsin(\psi[k])) \\ \text{return } L\text{-}MDCPF \text{ voltage angles } \theta_r[k] \end{array}$

else

 $\theta_r[k] \leftarrow \delta_r[k]$ return L-DCPF voltage angles $\theta_r[k]$