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Our 20th Century Bulk Power System
A large-scale, nonlinear, hybrid, stochastic, distributed, cyber-physical . . .
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Modern Large-Scale Power Grids
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Problems in Power System Operations

Power Flow Analysis
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Contingency Analysis

[Rezaei et al.]

Optimal Power Flow

[Molzahn et al.]

Transient Stability

[Overbye et al.]
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Linearized Optimal Power Flow

Idea: Optimally match supply and demand (with constraints)

minimize
θ,PG

∑
i∈NG

fi (Pi )

subject to Pi =
∑

j
Bij(θi − θj) i ∈ NL ∪NG ,

Pmin
i ≤ |Pi | ≤ Pmax

i i ∈ NG ,

pmin
ij ≤ |pij | ≤ pmax

ij (i , j) ∈ E ,

LP or QP depending on objective function, easy to solve

Big drawback: model does not have resistances

(power losses are not modelled)
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AC Power Flow Equations

1 Network: n buses N , m lines E , line admittances yij = gij + jbij

2 Bus Variables: voltage Vie
jθi , power Si = Pi + jQi

3 Circuit Laws: Kirchhoff & Ohm

4 Admittance Matrix: Y = G + jB

Yij = −yij , Yii = −
∑n

j=1
yij

Pi =
∑n

j=1
ViVjBij sin(θi − θj) +

∑n

j=1
ViVjGij cos(θi − θj)
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Simplified Models of Active Power Flow

Many applications require some simplifying assumptions

1 constant voltage magnitudes: Vi ≈ 1

2 no resistances: Gij ≈ 0

Pi =
∑n

j=1
Bij sin(θi − θj) “Decoupled PF”

3 small phase differences: |θi − θj | << 1

Pi ≈
∑n

j=1
Bij(θi − θj) “DC PF” =⇒ θ = B−1P

Our goal is to include resistances (remove assumption #2)

(we will not even need assumption #3)
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Lossy DC Power Flow: Two-Bus Case

1 2
y = g − jb

P1 P2

P1 = b sin(θ1 − θ2) + g − g cos(θ1 − θ2)

P2 = b sin(θ1 − θ2) + g − g cos(θ1 − θ2) slack/ref bus

Let ψ = sin(θ1 − θ2). Then cos(θ1 − θ2) =
√

1− ψ2

P1 = bψ + g − g
√

1− ψ2

now isolate ψ
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Lossy DC Power Flow: Two-Bus Case

ψ =
1

b

(
P1 + g

√
1− ψ2 − g

)

This is a fixed-point equation ψ = f (ψ)

Interpret as an iteration. Start with initial guess ψ0 and update:

ψk+1 = f (ψk) =
1

b

(
P1 + g

√
1− ψ2

k − g

)
︸ ︷︷ ︸

:=P1,k

After ψ converges, simply compute θ1 − θ2 = arcsin(ψ)
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Convergence for Two-Bus Case
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Can we show this converges? Yes!

Theorem: Convergence of Lossy DC Power Flow

The Lossy DC Power Flow iteration ψk+1 = f (ψk) converges
exponentially to a power flow solution θ∗ if(

P1

b

)2

+ 2
(g
b

)(P1

b

)
< 1 .

The power flow solution θ∗ is the unique solution contained in the
normal operating regime.

P1/b is the DC PF solution

ρ = g/b is the R/X ratio of the network

Can we extend this idea to networks?
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Graph and circuit matrices

very convenient to write power flow in matrix/vector notation

introduce incidence matrix A ∈ Rn×m

Ake =


1 if bus k at sending-end of edge e

−1 if bus k at recieving-end of edge e

0 otherwise

1 2 3

4 5

e1

e2

e3

e4

A =


+1 +1 0 0
−1 0 0 +1
0 0 0 −1
0 −1 −1 0
0 0 +1 0



ker(A) = {0} if graph has no cycles
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Modified DC Power Flow

with vector notation

DB = diag(Bij) , P = (P1, . . . ,Pn)T , θ = (θ1, . . . , θn)T

decoupled power flow becomes

Pi =
∑n

j=1
Bij sin(θi − θj) ⇐⇒ P = ADB sin(ATθ)

candidate solution: The “Modified” DC PF

ψ = sin(ATθ) , ψ = ATB−1P
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Lossy DC Power Flow for Networks

Pi =
∑

j 6=i
Bij sin(θij) + Gii +

∑
j 6=i

Gij cos(θi − θj) ,

Gdiag = (G11,G22, . . . ,Gnn)T DG = −diag(Gij)

Vectorized Lossy Power Flow

P = ADB sin(ATθ) + Gdiag − |A|DG cos(ATθ)

substitute ψ = sin(ATθ) like before

P = ADBψ + Gdiag − |A|DG

√
1 − ψ2

now isolate ψ!
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Lossy DC Power Flow for Networks contd.

We obtain a fixed-point equation

ψ = f (ψ) := ATB−1
(
P − Gdiag + |A|DG

√
1− ψ2

)
which we interpret as an iteration

Lossy DC Power Flow Iteration

ψk+1 = f (ψk) := ATB−1
(
P − Gdiag + |A|DG

√
1− ψ2

k

)

phase angles calculated as

ATθk = arcsin(ψk)
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Convergence of Lossy DC Power Flow

Theorem

The Lossy DCPF iteration ψk+1 = f (ψk) converges exponentially
to a power flow solution θ∗ if the network has no cycles and

‖ψDC‖2∞ + 2ρ‖ψDC‖∞ < 1

The power flow solution θ∗ is the unique solution contained in the
normal operating regime

ψDC = ATB−1P is the DC PF solution

ρ = ‖D−1B A−1|A|DG‖∞ measures R/X ratio

Proof based on contraction mapping principle

15 / 18



Simulations on MATPOWER Test Cases

Table: Base Case Testing of Lossy Modified DC Power Flow

Test System Error (deg) Error (deg) Error (deg)
DCPF k = 1 k = 2

New England 39 1.33 0.02 0.00
RTS ’96 (2 area) 1.88 0.03 0.00
57 bus system 0.55 0.01 0.00
RTS ’96 (3 area) 4.16 0.06 0.01
118 bus system 3.49 0.05 0.01
300 bus system 19.3 0.22 0.07
Polish 2383wp 5.32 0.31 0.02
PEGASE 2869 21.44 0.61 0.05
PEGASE 9241 74.05 6.02 0.37
PEGASE 13,659 242.7 111.7 5.85

16 / 18



Conclusions

Lossy DC Power Flow extends the DC PF

1 Iterative approximation

2 Convergence conditions

3 Successful numerical tests

Future work:

1 Analysis for meshed networks

2 Application to stability/contingency

3 Application to market LMPs
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Questions

https://ece.uwaterloo.ca/~jwsimpso/

jwsimpson@uwaterloo.ca
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appendix



Algorithmic Implementation

Algorithm 1: Lossy Modified/Unmodified DCPF

Inputs: grid data, approximation order k ∈ N
Outputs: voltage phase angles θr [k]
ψ[0] = 0m

for `← 1 to k do

Pr [`− 1]← Pr − Gdiag + |A|rDG

√
1m − (ψ[`− 1])2

δr [`]← Solve(LBδr [`] = Pr [`− 1])
ψ[`]← AT

r δr [`]

if Lossy Modified DCPF then
θr [k]← Solve(AT

r θr [k] = arcsin(ψ[k]))
return L-MDCPF voltage angles θr [k]

else
θr [k]← δr [k]
return L-DCPF voltage angles θr [k]
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