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Today, we will focus on the network. )
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Modern Large-Scale Power Grids

United States
transmission grid
Source: FEMA
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Problems in Power System Operations

Power Flow Analysis Optimal Power Flow
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[Molzahn et al.]
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Linearized Optimal Power Flow

Idea: Optimally match supply and demand (with constraints)
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Linearized Optimal Power Flow

Idea: Optimally match supply and demand (with constraints)

minimize Z N fi(P;)
ieENG

0>PG
subject to P; = ZJ_ Bij(0;i —0;) ie NtUNg,
pmin < |p;| < prax i€Ng,
p;}lin < ’py’ < P,I'}lax (Iv./) € ga

@ LP or QP depending on objective function, easy to solve

Big drawback: model does not have resistances

(power losses are not modelled)
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AC Power Flow Equations

@ Network: n buses N, m lines &, line admittances yj;; = gjj + jbjj
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AC Power Flow Equations

@ Network: n buses N, m lines &, line admittances yj;; = gjj + jbjj
@ Bus Variables: voltage Vel power S; = P; + jQ;
@ Circuit Laws: Kirchhoff & Ohm
Vet Yij Vel
P +jQ; —>¢—\/W\/\/—¢<— P +jQ;
Q@ Admittance Matrix: Y = G +jB

n
Yi = —Vi, Yii=— Zj:l Yij

n . W
P, = ijl V;V;Bjjsin(6; — 0;) + ijl V;V;Gjj cos(6; — b)) J
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Simplified Models of Active Power Flow

@ Many applications require some simplifying assumptions

© constant voltage magnitudes: V; =~ 1

@ no resistances: G; ~ 0
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Simplified Models of Active Power Flow

@ Many applications require some simplifying assumptions

© constant voltage magnitudes: V; =~ 1

@ no resistances: G; ~ 0

P = ijl Bjsin(6; —6;)  "Decoupled PF"

© small phase differences: |9, — 0| << 1

P ~ ijl Bj(6i —6;) ‘DCPF" = 6=B'P

Our goal is to include resistances (remove assumption #2) J

(we will not even need assumption #3)
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Lossy DC Power Flow: Two-Bus Case

C y=g-jb C

- ~
- ~

P1 P

P1 = bsin(0; — 62) + g — g cos(01 — 602)
P> = bsin(0; — 62) + g — g cos(01 — 62) slack/ref bus
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Lossy DC Power Flow: Two-Bus Case

C y=g-jb C

- ~
- ~

Py P

P1 = bsin(0; — 62) + g — g cos(01 — 602)
P> = bsin(0; — 62) + g — g cos(01 — 62) slack/ref bus

o Let 1) =sin(fy — 62). Then cos(f; — 62) = /1 — 9?2

Pi=by+g—gyv1—1y?

@ now isolate v
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Lossy DC Power Flow: Two-Bus Case

<P1 —i—g\/l—izbz—g)

(Sl

Y=
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Lossy DC Power Flow: Two-Bus Case
1
b= (P+evVi—v7—g)

This is a fixed-point equation ¢ = f(%))

Interpret as an iteration. Start with initial guess 1)y and update:

¢k+1=f(¢k)=%<P1+g\/1—¢;3—g>

~~

=Pk

After 1) converges, simply compute 01 — 6, = arcsin(1))
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Convergence for Two-Bus Case
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Can we show this converges? Yes!

Theorem: Convergence of Lossy DC Power Flow

The Lossy DC Power Flow iteration ¢x11 = f(1)x) converges
exponentially to a power flow solution 6* if

P2 g\ (P~
=) +2(8) (5 ) <1
( b ) + b b
The power flow solution 8* is the unique solution contained in the
normal operating regime.

@ Pi/bis the DC PF solution

e p=g/bisthe R/X ratio of the network
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Can we show this converges? Yes!

Theorem: Convergence of Lossy DC Power Flow

The Lossy DC Power Flow iteration ¢x11 = f(1)x) converges
exponentially to a power flow solution 6* if

P2 g\ (P~
=) +2(8) (5 ) <1
( b ) + b b
The power flow solution 8* is the unique solution contained in the
normal operating regime.

@ Pi/bis the DC PF solution

e p=g/bisthe R/X ratio of the network

Can we extend this idea to networks?)
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Graph and circuit matrices

@ very convenient to write power flow in matrix/vector notation
@ introduce incidence matrix A € R™"™
1 if bus k at sending-end of edge e

Ake = ¢ —1 if bus k at recieving-end of edge e
0 otherwise

+1 +1 0 O

e3 -1 0 0 +1

A=]10 0 0 -1
0 -1 -1 0

(D23 0 0 +1 0

@ ker(A) = {0} if graph has no cycles

€2
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@ very convenient to write power flow in matrix/vector notation
@ introduce incidence matrix A € R™"™

1 if bus k at sending-end of edge e
Ake = ¢ —1 if bus k at recieving-end of edge e
0 otherwise

+1 +1 0 0

(4) % (5) +1 0 0 +1
o Al=|l0 0 0 +1
0 +1 +1 0

0

61@64@ 0 0 +1

@ ker(A) = {0} if graph has no cycles
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Modified DC Power Flow

@ with vector notation
Dp = diag(Bj), P=(Py,....,P,)T, 0=(01,...,00)"
decoupled power flow becomes

n ) .
P; = Zj:1 Bjsin(9; —0;) <= P = ADgsin(AT0)
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Modified DC Power Flow

@ with vector notation
Dp = diag(Bj), P=(Py,....,P,)T, 0=(01,...,00)"
decoupled power flow becomes

n ) .
P; = Zj:1 Bjsin(9; —0;) <= P = ADgsin(AT0)

@ candidate solution: The “Modified” DC PF

Y =sin(AT9), Y=ATB7lP

Novel Insights into Lossless AC and DC Power Flow

Florian Dorfler, Student Member, IEEE, and Francesco Bullo, Fellow, IEEE
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Lossy DC Power Flow for Networks
P; = Z _Bjsin(8;) + Gii + Z _Gjjcos(6; — 0;),

Gdiag = (G117 G22, N G,,,,)T DG = —diag(G,-j)
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Lossy DC Power Flow for Networks contd.

We obtain a fixed-point equation

¥ = (1)) = ATB™ (P = Guag + |AID6 /1= 1?)
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Lossy DC Power Flow Iteration
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Lossy DC Power Flow for Networks contd.

We obtain a fixed-point equation

¥ = (1)) = ATB™ (P = Guag + |AID6 /1= 1?)

which we interpret as an iteration

Lossy DC Power Flow Iteration

Yrp1 = F() = ATB™ (P — Gaiag + |A|Dgy/1 — T/’/%)

@ phase angles calculated as

AT0, = arcsin(vy)
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Convergence of Lossy DC Power Flow

Theorem

The Lossy DCPF iteration 1,11 = f(1)x) converges exponentially
to a power flow solution 8* if the network has no cycles and

[¥pcllZ + 2pl¥pc|les < 1

The power flow solution 8* is the unique solution contained in the
normal operating regime

Ypc =ATB7IP s the DC PF solution

p= ||DE1A_1|A|DG||OO measures R/X ratio

Proof based on contraction mapping principle
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Simulations on MATPOWER Test Cases

Table: Base Case Testing of Lossy Modified DC Power Flow

Test System Error (deg) Error (deg) Error (deg)
DCPF k=1 k=2
New England 39 1.33 0.02 0.00
RTS '96 (2 area) 1.88 0.03 0.00
57 bus system 0.55 0.01 0.00
RTS '96 (3 area) 4.16 0.06 0.01
118 bus system 3.49 0.05 0.01
300 bus system 19.3 0.22 0.07
Polish 2383wp 5.32 0.31 0.02
PEGASE 2869 21.44 0.61 0.05
PEGASE 9241 74.05 6.02 0.37

PEGASE 13,659 242.7 111.7 5.85
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Conclusions

Lossy DC Power Flow extends the DC PF

O Iterative approximation

@ Convergence conditions

Lossy DC Power Flow

John W. Simpson-Porco, Member, IEEE

@ Successful numerical tests
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Conclusions

Lossy DC Power Flow extends the DC PF

© lterative approximation

@ Convergence conditions

Lossy DC Power Flow

John W. Simpson-Porco, Member, IEEE

@ Successful numerical tests

Future work:

@ Analysis for meshed networks

@ Application to stability/contingency

© Application to market LMPs
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Questions

https://ece.uwaterloo.ca/~jwsimpso/
jwsimpson@uwaterloo.ca
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Algorithmic Implementation

Algorithm 1: Lossy Modified/Unmodified DCPF

Inputs: grid data, approximation order k € N
Outputs: voltage phase angles 0,[k]
for / < 1 to k do

P[0 — 1] < P, — Gaiag + |Al:Dgv/1m — (V[0 — 1])?
5,[¢] < Solve(Lgd, [¢] = P/[¢ —1])

L vl « Ao

if Lossy Modified DCPF then

0,[k] < Solve(A]0,[k] = arcsin(v[k]))

return L-MDCPF voltage angles 0, k|

else

0, [K] < 0,[K]

return L-DCPF voltage angles 0,[k]
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