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The US Power Grid

United States
transmission grid | A/
Source: FEMA nNus
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Problems in Power System Operations

Power Flow Analysis Optimal Power Flow

10 20 30 20
P, (per unit) P (per unit)

[Molzahn et al.]

Contingency Analysis Transient Stability

Frequency (Hz)

0 i )
Time (Seconds)

[Rezaei et al.] [Overbye et al.]
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@ Network Graph: (N, &), complex weights yj;i = gjj + jbjj
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© Coupling Laws: Kirchhoff & Ohm
Vel Yij Vel
Pt — MW — P i,
O Admittance Matrix: Y = G + jB = Laplacian w/ weights y;;

© Lossless Lines: G;j =0

e active power: By =

2
e reactive power: Qi = —> ;. V;V;Bjcos(6; — 0;)
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Modeling Il: Bus Models

(aka boundary conditions)

e active power: P = 3

B
e reactive power: Q; = — Zj i VjBij cos(6; — 0))
Ne
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Modeling Il: Bus Models

(aka boundary conditions)

e active power: P = > ViViBjsin(0; — 0;)
N
e reactive power: Q; = — Zj V;V;Bjj cos(0; — ;)
Ne
O n Loads (e) and m Generators (m) N =N UNg
@ Load Model: PQ bus constant P; constant Q;
@ Generator Model: PV bus constant P; constant V;,
Power Flow Equations
P = V;V:B;;sin(6; — 0;), € N UN,
ZJ- i Bijsin( i) ! L G

Q== ViviBycos(ti—6)), €N

2n 4+ m equations in variables § € T"*™ and V| € RZ,,.
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Motivation |: Numerical Methods for Power Flow

Power flow always solved with variant of Newton iteration

x= (0 VL)T , XKL = )k — J(x¥)71F(xK) . J
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Motivation |: Numerical Methods for Power Flow

Power flow always solved with variant of Newton iteration

x= (0 VL)T , XKL = 5k J(x)TLF(xK) J

o If convergent, may converge to “wrong” solution

o If non-convergent, several possibilities:
(a) No power flow solution exists

(b) Numerical instability (conditioning)

(

c) x° not in any region of convergence

[Deng et al.]

[ To differentiate, need theory of power flow solvability ]
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Motivation II: Multimachine Transient Stability

Constrained Swing Dynamics

{ é;:w,-

Gen :

Mjwi = —Djw; + P; — ViV;Bjjsin(6; — 0;
w wi + Zj /i Bjj sin( i)

Load : {
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Motivation II: Multimachine Transient Stability
Constrained Swing Dynamics

9,':(,0,'

Gen :
. Miw; = —Diw; + P; — Z V;V;Bjjsin(0; — b))

Dif; = P; — Zj V;V;Bj sin(0; — )

Load :
— E i V,V_,B,_, COS(@,’ — Hj)
J

V.

Challenge: Characterize equilibria, stability, basin of attraction
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Constrained Swing Dynamics

0; = w;

Gen :

Di; = P; — Z V; V;Bjsin(0; — 0))

Load :
Z V; V;Bjj cos(8; — 6;)

Mit; = —Diw; + P = > V;V;Bjsin(6; —
J

9;)

Direct Methods for
Stability Analysis of
Electric Power
Systems

HSIAD-DONE
CHIANG

Challenge: Characterize equilibria, stability, basin of attraction

Approaches: Energy functions, nearest unstable eq. point, S.0.S., ...
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Motivation II: Multimachine Transient Stability

Constrained Swing Dynamics

. Direct Methods for
9,’ = Wwj Stability Analysis of
Electric Power

Gen :

HSIAD-DONE
CHIANG

Di; = P; — Z V; V;Bjsin(0; — 0))

Load :
Z V; V;Bjj cos(8; — 6;)

Challenge: Characterize equilibria, stability, basin of attraction

Approaches: Energy functions, nearest unstable eq. point, S.0.S., ...

[ {Equilibria} = {Power Flow Solutions} J

Mit; = —Djw; + P = Y Vi V;Bjsin(6; — ;) Systems

7/29



Motivation IIl: Optimal Power Flow
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Motivation IIl: Optimal Power Flow

Idea: Optimally match supply and demand (with constraints)

minimize Z f;(P,
6,V ,P¢g iENG I( I)

subject to  P;=>_ V;V;Bysin(6; —0;) i€ N UNg,
J

Qi:_Zj\/i\/jBUCOS(Hi_ej) ieNL,
V,_ming\/igvimax iGNL,
SPIN <P+ jQi| < S i€Ng,
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@ non-convex, solved every 5-15 min. via linearization, ($$$)
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Motivation IIl: Optimal Power Flow

Idea: Optimally match supply and demand (with constraints)

minimize Z f;(P;
6,V ,P¢g iENG I( I)

subject to P = V;V;Bysin(6; — ;) i€ N UNg,
J

Q,-:—Zj\/;\/jB;jcos(H,-—Qj) ieN.,
Vmin < < e ieN,,
Smin <P 4 Q| < Smax i€Ng,
S < |picyj + §Gisj] < S (i,j) €€,

@ non-convex, solved every 5-15 min. via linearization, ($$$)

“Today, 50 years after the problem was formulated, we still do not have a fast, robust
solution technique for the full ACOPF.”
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Intuition on Power Flow Solutions

@ 'Normally’, exists unique high-voltage soln:

e voltage magnitude V; ~ 1
o phase diff |§; — 0;] < 1

et

[Josz et al.]
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Intuition on Power Flow Solutions

@ 'Normally’, exists unique high-voltage soln:

e voltage magnitude V; ~ 1
o phase diff |§; — 0;] < 1
[Josz et al.]

@ Lightly loaded systems: many low-voltage solutions

© Heavily loaded systems: Few
solutions or infeasible
e saddle node bifurcations
e maximum power transfer limit -
@ non-convex feasible set in e Sl S

(P,Q)-space e
[Hiskens & Davy]
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Mysteries of Power Flow |

Given: network topology, impedances, generation & loads

Q: 3 “stable high-voltage” solution? unique? properties?

Partial answers from 45+ years of literature:

Jacobian singularity [Weedy '67]

Multiple dynamically stable solutions [Korsak '72]

Existence conditions [Wu & Kumagai '80, '82]

Active power flow singularity [Araposthatis, Sastry & Varaiya, '81]

Counting # of solutions [Baillieul and Byrnes '82]

Properties of quadratic equations [Makarov, Hill & Hiskens '00]

Optimization approaches [Cafiizares '98], [Dvijotham, Low, Chertkov '15], [Molzahn]
Existence/uniqueness for active power flow [Dérfler, Chertkov & Bullo '12]
Existence/uniqueness for reactive power flow [JWSP, Dorfler & Bullo '15]
Existence/uniqueness in distribution networks [Bolognani & Zampieri '16]

Many, many more . ..
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Given: network topology, impedances, generation & loads J

Q: 4 “stable high-voltage” solution? unique? properties?

Partial answers from 45+ years of literature:
@ Existence/uniqueness for active power flow [Déorfler, Chertkov & Bullo, PNAS '12]

@ Existence/uniqueness for reactive power flow [JWSP, Dérfler & Bullo, NatComms '15]

Main insight: stiffness vs. loading

© Stiff network + light loading = feasible
@ Weak network + heavy loading = infeasible

Voltage

Q: How to quantify network
stiffness vs. loading?




Mysteries of Power Flow Il

“[Power flow feasibility] is one question which is unresolved in power systems analysis,
but which is of basic theoretical and practical importance .. .is a given network
structurally susceptible to unfeasibility? What type and what value of injections are

most likely to result in unfeasible situations?”
— F. D. Galiana, 1975
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“[Power flow feasibility] is one question which is unresolved in power systems analysis,
but which is of basic theoretical and practical importance .. .is a given network
structurally susceptible to unfeasibility? What type and what value of injections are
most likely to result in unfeasible situations?”

— F. D. Galiana, 1975

“The power systems theory needs to be pushed further in the direction of exploiting
structural features of the networks ... realistic power systems models have at least
two different types of node dynamics (generators, loads) and the directional power
flows between them play a major role.”

— D. J. Hill & G. Chen, 2006

‘Root causes of [the northeastern] blackout: lack of basic understanding of power
systems ... theoretical understanding of nonlinear power system dynamics is
inadequate. It is time for more theoretical research to develop alternatives to
complement scenario-based simulation paradigm: mathematical theory to understand
the complex dynamic behavior of large-scale interconnected power systems utilizing
modern nonlinear mathematics.”

— Felix F. Wu, 2003
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Solution of Two-Bus System |

P, = bV V) sin(—n) Vain b V5, /0
P = bV V sin(n) /* ___ o
QL = bV? — bV, Vi cos(n) Pe+iQq PL+iQL
© Lossless Network —= Pe=—-P.=p
p = bV V,sin(n)
QL = bV? — bV, Vi cos(n)

© Eliminate n
p?+(Qu—bVE)? = VGV,

© Change Variables

_ Vi _ P N
e T bVZ - —3bV2

v
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Solution of Two-Bus System I

- VGZU b VLZO
p = bV Vsin(n) J m Y e
ES 2 = / ----- L
QL bVL bVL VG Cos(n) Pe+iQg PL+jQr

© Change Variables

o Vi . P ) QL

=2t = A= —pE
YT Ve bV2 —Thv2
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Solution of Two-Bus System I

- VGZU b VLZO
p = bV Vsin(n) J m ~N——g
== 2 — / ----- p o
QL bVL bVL VG C°5(77) Pe+iQg PL+jQr
© Change Variables
Vi p Qu
= — MN=-—— A=——5
VT Ve bVZ —§bVE

O Solve Quadratic in v2

ﬁ (184 /imGrea)
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Solution of Two-Bus System I

- Ve in b V520
p = bV Vsin(n) J m ~N——g
= 2 — / ----- p o
QL bVL bVL VG C°5(77) Pe+iQg PrL+jQr
© Change Variables
Vi P Qu
= — r = A =
YTV bV2 —3bV8

O Solve Quadratic in v2

Vi:ﬁ(l_gi L o)

@ Nec. & Suff. Condition

[ 24 A <1 ]
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Solution of Two-Bus System IlI

. v . P . QL
= vsin(n) V= V_G M= bVé A= _‘llb\/é
A = —4v? 4 4vcos(n) A2 LA <1
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Solution of Two-Bus System IlI

. v . P . QL
= vsin(n) V= V_G = bVé A= —%bVé
A = —4v? 4 4vcos(n) A2 1A <1

@ High-voltage solution
v € [%7 1)

@ Low-voltage solution
v- €[0, %)
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Solution of Two-Bus System IlI

V
[ = vsin(n) vi= v_é = b_Cé A= —;;ng
A = —4v? 4 4vcos(n) A2 1A <1
@ High-voltage solution
vy €[3,1) r\
@ Low-voltage solution 0 : ‘ — >
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Solution of Two-Bus System IlI

V
[ = vsin(n) vi=yo = b_C§ A= —;;ng
A = —4v? 4 4vcos(n) A2 LA <1
@ High-voltage solution
vy €[3,1) r\
@ Low-voltage solution 0 = ‘ >
v_ € [0, %) | Wﬂ 1

Angle: sin(ny) =T /v4
© Small-angle solution
n- €[0,7/4)
@ Large-angle solution
ni € [0,7/2)
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Solution of Two-Bus System IlI

V,
[ = vsin(n) vi= v_(L; = b_C§ A= —}%vg
A = —4v? 4 4vcos(n) A2 LA <1
@ High-voltage solution
vy €[3,1)
@ Low-voltage solution 0 = . — >
v_ €10, %) | Wﬂ 1

Angle: sin(ny) =T /v4
© Small-angle solution
n- €[0,7/4)

@ Large-angle solution
N+ € [O' 7T/2)
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Solution of Two-Bus System [V

@ Squaring and adding equations does not generalize to networks.
@ Is there any hope then?
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Solution of Two-Bus System [V

@ Squaring and adding equations does not generalize to networks.
@ Is there any hope then?

A = —4v? 4 4vcos(n)

I = vsin(n) J

e Use cos(n) = m = A=—4v2+4v\/1—(T/v)?

@ Rearrange to get fixed-point equation

o= =22 () }

This generalizes!
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Network Notation |: Branches Between Bus Types

Power Flow Equations
P; = V;V;B;isin(6; — 6;), i€ N UN, N,
Zj /i Bjj sin( i) i L G L

Q,-:—Zj\/,-\/J-B;jcos(Q,-—Gj), ieNL Ne
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Network Notation |: Branches Between Bus Types

Power Flow Equations
P; = Z ViV;Bjsin(6; — 6;), i€ N UNg Ni

Zv .Bjcos(6; — 0;), i€NL Ne

@ Bus partitioning N’ = N U N induces branch partitioning

E=¢gtuestueee,
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Network Notation |: Branches Between Bus Types

Power Flow Equations
P; = V;V;B;isin(6; — 6;), i€ N UN, N,
Zj /i Bjj sin( i) i L G L

Q,-:—Zj\/,-\/J-B;jcos(Q,-—Gj), ieNL Ne

@ Bus partitioning N’ = N U N induces branch partitioning

e_stugstugs a [ A) o (ALATLOY
| Ac 0 [ AL [ A%

o o -1]o0
0lo -1 0o }/\/
“1/-1 0 o0]o

A=
o1 o o |F1
ojlo 1 o1 }NG
oo o 1|0
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Network Notation II: Open-Circuit Voltages

.

P; = Zv /:Bjj sin(6;

-
Power Flow Equations

—-0;),

Z V;V;Bij cos(6

o Generators Ng: V; fixed

e Loads N;:

V; free

),

i€ N UNg
i €N

~

N

Ng
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Power Flow Equations

P; = Zv :Bjsin(6; —0;), €N UNg
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e Generators N¢: V; fixed Na
e Loads \N;: V; free
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Network Notation II: Open-Circuit Voltages

( )
Power Flow Equations

P; = Zv :Bjsin(6; —0;), €N UNg

Z V;VBjjcos(6; — 0;), ieNL A
e Generators N¢: V; fixed Na
e Loads \N;: V; free
. J

Partitioned Variables
Vi BrL BLG)
V=[-—], B=
( Ve ) ( BgL | BGe
Open-circuit voltages

Vi2 -B;'Bic Ve
N———

Generators— Loads
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Network Notation II: Open-Circuit Voltages

-
Power Flow Equations

P; = Zv /By sin(0; — 0;),

Z V;V;Bjj cos(0; — ;) ,
o Generators Ng: V; fixed
e Loads N;: V; free

.

~

i€ N UNg

i €N Mo

Partitioned Variables
_ (VL
V= < VG) ’

Open-circuit voltages

VL* £ _BELI Bic Vg
—_———

Generators— Loads

B_ (BLL BLG>
BgL | BGe

Ng

Scaled voltages

vi £ Vi)V
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Network Notation Ill: Stiffness Matrices

7 B BLG) . ~1
V =\, B = 5 V = —B B V
(Vc;) (BGL Bge : LL =teve
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© Nodal stiffness matrix S£ 4_11 [VI]- B - [V]] J

@ Branch stiffness matrix B) = [ Vi Bijl(ij)ee J

© Laplacian stiffness matrix L2 ADAT |
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1 if e =(i,j) € £88

P= A D [h(v)] sin(ATH)
~ ~— 2N —
Incidence Branch Stiff. Voltages sin(6;—6;)

o Let columns of C be a basis for ker(A), let p. € R€

Semi-Explicit Solution
sin(AT0) = (v, pc) 2 [h(v)]* (ATLTP + D7 Che )
0 = CT arcsin(z))
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Reactive Power Reformulation
Skipping some details . ..

Qu = —4[vIS(v — 1) + |A[D [A(v)](Le| — cos(AT)).

@ Rearrange for v

v=f(v,0) =1, — %S’l[QL][v]’lln

+ 3571V HALD [h()] (e ~ cos(AT6))

o Now plug in cos(z) = 1/1 — sin?(z)!
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Main Modeling Result
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(0, V) is a power flow solution iff (v, p.) solves the FPPF
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1
v="~F(v,p) &1, — Zsfl[QL][v]_lln
14, _
+ 35 M ALD ()] (v, pe)
0. = CTarcsin(¢)(v, pc)) .
where
U(V,pc) — il \% 1- [1/}]¢
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e The model says v = f(v, p.), and sin(AT0) = ¥ (v, pc).

@ By construction, when P = @Q; = 0, a solution is

v=1, pc=0c, AT0=04.

o Taylor expand FPPF model around this solution

AT0upprox = ATLTP
1 1
Vapprox = 1n — ZS*QL + §S_1!A|LD[ATLTP]ATLTP

Pc,approx = 0
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New Approximate Power Flow Solution

AT0pprox = ATLTP
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New Approximate Power Flow Solution

A0 pprox = ATLTP
1 1
Vapprox =~ 1p — ZS_IQL + gs_llAlLD[ATLTP]ATLTP

— 11 : : :
= —e— MATPOWER

B 108 * FPPF Iteration||
® - +%- Approx. Soln.

el

E 1.06

=

%0 104

=

& 1.02

s

E 1

0.98
0

5 10 15 20 25 30
Bus Number
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Numerical Results

1

Omax = ||V - Vapprox”oo ) 5avg = EHV - Vapprox”l
Base Load High Load |

Test Case FPPF | dmax Oave FPPF |  Omax

Iters. | (p.u.) | (p.u.) | Ilters. | (p.u.)
New England 39 4 0.006 | 0.004 8 0.086
57 bus system 5 0.011 | 0.003 8 0.118
RTS '96 (3 area) 4 0.003 | 0.001 8 0.084
118 bus system 3 0.001 | 0.000 7 0.054
300 bus system 6 0.022 | 0.004 8 0.059
PEGASE 1,354 5 0.011 | 0.001 8 0.070
Polish 2,383 wp 4 0.003 | 0.000 8 0.078
PEGASE 2,869 5 0.015 | 0.002 8 0.098
PEGASE 9,241 6 0.063 | 0.003 9 0.133

23/29



FPPF Simplifies for Acyclic Networks

[ Fixed-Point Power Flow: Radial Networks

(0, V) is a power flow solution iff v is a fixed point of

24 /29



FPPF Simplifies for Acyclic Networks

[ Fixed-Point Power Flow: Radial Networks )
(0, V) is a power flow solution iff v is a fixed point of
f(v)

. J

24 /29



FPPF Simplifies for Acyclic Networks

[ Fixed-Point Power Flow: Radial Networks

(0, V) is a power flow solution iff v is a fixed point of

(1) 2 1, — S QUM Lo + 75 1V HALD ()] u(v),

24 /29



FPPF Simplifies for Acyclic Networks

[ Fixed-Point Power Flow: Radial Networks

(0, V) is a power flow solution iff v is a fixed point of
1 1
f(v) £ 1, - ZS_I[QL][V]_lln + ZS_I[V]_llAILD [A(v)] u(v),

where

u(v) =1 -1 -[¥y

24 /29



FPPF Simplifies for Acyclic Networks

[ Fixed-Point Power Flow: Radial Networks

(0, V) is a power flow solution iff v is a fixed point of

(1) 2 1, — S QUM Lo + 75 1V HALD ()] u(v),

where
u(v) 21— /1~ [Py
¥(v) = [A(v)] D p

24 /29



FPPF Simplifies for Acyclic Networks

[ Fixed-Point Power Flow: Radial Networks

(0, V) is a power flow solution iff v is a fixed point of
1 1
f(v) £ 1, - ZS_I[QL][V]_lln + ZS_I[V]_llAILD [A(v)] u(v),

where

u(v) £1 -1~ [y
¥(v) = [h(v)] 1D 'p
p=(ATA)1ATP

with the phase angles AT = arcsin(¢).

24 /29



FPPF Simplifies for Acyclic Networks

[ Fixed-Point Power Flow: Radial Networks

(0, V) is a power flow solution iff v is a fixed point of
1 1
f(v) £ 1, - ZS_I[QL][V]_lln + ZS_I[V]_llAILD [A(v)] u(v),

where

u(v) £1 -1~ [y
¥(v) = [h(v)] 71D 'p
p=(ATA)IATP

with the phase angles AT = arcsin(¢).

24 /29



FPPF Simplifies for Acyclic Networks

[ Fixed-Point Power Flow: Radial Networks

(0, V) is a power flow solution iff v is a fixed point of
1 1
f(v) £ 1, - ZS_I[QL][V]_lln + ZS_I[V]_llAILD [A(v)] u(v),

where

u(v) £1 -1~ [y
¥(v) = [h(v)] 71D 'p
p=(ATA)IATP

with the phase angles AT = arcsin(¢).

On what invariant set is f a contraction? |
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Solvability Results for Different Acyclic Topologies

PQ buses have one PV bus neighbor

Sufficient 4+ Necessary
Existence + Uniqueness

PQ buses have many PV bus neighbors

Sufficient 4+ Tight
Existence + Uniqueness

General interconnections

Sufficient
Existence
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Solvability Results for Type Il Networks : l l ’

( )
Theorem: Conditions for Power Flow Solvability
Define the dimensionless loading margins
A= Qi/Si, £ max;|pjil/Dji , ie Ny
M= |pyl /Dy (i,j)€ €%8.
If it holds that
max A; +4M2< 1, and max [; <1,
iENL (ij)eEee
then 3! solution (V,0) satisfying
1 4 B W .
5Sv SV/VisT,  max|0 —6j|<vi < 7, i€ N
J
bi-6l<w<3,  (ij)eEs.
. J
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el
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Conclusions

Framework for studying Lossless Power Flow:

@ Fixed-Point Power Flow

@ Approximate solution

A Theory of Solvability for Lossless Power Flow
Equations — Part I: Fixed-Point Power Flow

John W. Simpson-Porco, Member, IEEE

New conditions for power flow solvability:

© Contractive iteration

© Existence/uniqueness

A Theory of Solvability for Lossless Power Flow
Equations — Part II: Existence and Uniqueness

John W. Simpson-Porco, Member; IEEE

@ Generalizes known results

What'’s next?

@ Analysis for meshed networks
@ Extension for lossy networks

© Applications (n — 1, opt/control)
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Questions

https://ece.uwaterloo.ca/~jwsimpso/
jwsimpson@uwaterloo.ca
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