A Hill-Moylan Lemma for Equilibrium
Independent Dissipativity

American Control Conference
Milwaukee, WI

John W. Simpson-Porco

%} WATERLOO



Dissipative Dynamical Systems: State-Space Models

u x = f(x,u) y 0="f

—_— RS - (07

Yy = h(X’ u)

1/15



Dissipative Dynamical Systems: State-Space Models

u x = f(x,u) y 0=

—_— ———> _(’

@ Use C! storage function Vg : X — Rxq to measure “energy”

@ Use function w : U x Y — R to measure “dissipation”

1/15



Dissipative Dynamical Systems: State-Space Models

u x = f(x,u) y 0=
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Yy = h(X’ u)

@ Use C! storage function Vg : X — Rxq to measure “energy”

@ Use function w : U x Y — R to measure “dissipation”

Dissipativity [willems '72]

System is dissipative w.r.t. supply rate w(-,-) if there exists a
positive definite storage function with V,(0) = 0 s.t.

LeVo(x) = VVO(X)Tf(x, u) < w(u,y)

for all t > 0 and all input signals u: R>o — U
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Dissipative Dynamical Systems: State-Space Models
(Lyapunov Theory with Inputs and Outputs)
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Dissipative Dynamical Systems: State-Space Models
(Lyapunov Theory with Inputs and Outputs)

u x = f(x, u) y
y = h(x, u)

_____ > t
W(U,y) g fo ______ >0

@ many interesting cases in restriction to quadratic supply rates
T
_ Wl |Q S|y
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Applications of Dissipativity Theory

@ System analysis
e Passivity / small-gain / conic sector theorems
e Absolute stability
o Diagonal stability / large-scale systems

o Network analysis
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Applications of Dissipativity Theory

@ System analysis
Passivity / small-gain / conic sector theorems
Absolute stability

Diagonal stability / large-scale systems

Network analysis

@ Design methodologies
o Nonlinear Hoo control [van der Schaft et al]
o Backstepping [Kokotovic et al.]
o PBC / Control-by-interconnection [Ortega et al.]

Minimum gain results [Forbes et al]

Scattering-based stabilization [Polushin et al]
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Algebraic Characterization for Control-Affine Systems
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Algebraic Characterization for Control-Affine Systems

e NI

Lemma [Hill-Moylan '76]

System is dissipative w.r.t. supply rate w(-,-) with C! storage
function Vo : X — Rsq iff Ik € Zoo, W : X — R¥*™ and

I: X = RFst.
VVo(x)TF(x) = h(x) T Qh(x) — I(x)TI(x)
%VVO(X)Tg(X) = h(x)"(Qj(x) + ) — I(x) T W(x)
W(x)TW(x) = R+j(x)"S + STj(x) +j(x)" Q(x).
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Forced Equilibria and Dissipativity

@ Dissipation inequality is w.r.t. (u, x,y) = (0,0,0) equilibrium

%Vo(x(t)) < w(u—0,y—0)
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Forced Equilibria and Dissipativity

@ Dissipation inequality is w.r.t. (u, x,y) = (0,0,0) equilibrium

%Vo(x(t)) < w(u—0,y—0)

@ Often however interested in forced equilibria (7, X)

E={xeXx  Jaclst f(x)+g(x)di=0} J

@ Why care? Changing operating points, uncertain interconnections

Storage function Vp(x) need not be useful for establishing
dissipativity at other operating points
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Equilibrium-Independent Dissipativity

u x = f(x,u) y 0= f(x,a)
y = h(x, u) 0 = h(x, @)
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Equilibrium-Independent Dissipativity

u x = f(x,u) y 0= f(x,a)
y = h(x, u) 0 = h(x, @)

Equilibrium-Independent Dissipativity [HAP '11 / BZA '14]

System is EID w.r.t. supply rate w(:,-) if for every x € £ there
exists a positive definite storage function Vi with V¢(X) =0 s.t.

ﬁfV;(X) = VV)—((X)Tf(X, U) < W(u —u,y _}7)

for all t > 0 and all input signals v : R>q — U, where (&, y) are
equilibrium input/output.
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Equilibrium-Independent Dissipativity

u x = f(x,u) y 0= f(x, 0)
y = h(x, u) 0 = h(x, @)

Equilibrium-Independent Dissipativity [HAP '11 / BZA '14]

System is EID w.r.t. supply rate w(:,-) if for every x € £ there
exists a positive definite storage function Vi with V¢(X) =0 s.t.

ﬁfV;(X) = VV)—((X)Tf(X, U) < W(u —u,y _}7)

for all t > 0 and all input signals v : R>q — U, where (&, y) are
equilibrium input/output.

Uses a family of storage functions {Vx(-) : x € £}
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Hill-Moylan Characterization of Equilibrium-Indep. Diss

What is the analogous Hill-Moylan-type algebraic
characterization of equilibrium-independent dissipative systems?J
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Hill-Moylan Characterization of Equilibrium-Indep. Diss

What is the analogous Hill-Moylan-type algebraic
characterization of equilibrium-independent dissipative systems?J

@ We will restrict attention to

e control-affine systems with constant input/throughput matrices

e quadratic supply rates

u | x=1Ff(x)+ Gu
y = h(x)+ Ju

y

—

on =[] (& FL

@ We will not take the available storage / required supply path, but
instead explicitly parameterize a useful class of storage functions
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Storage Functions via Bregman Divergence

[Jayawardhana et al.]

e For V :R" — R convex, define Bregman divergence of V at x:

Ve(x) = V(x) — |V(R) + VV(X)T(x — %)

~
Linearization at x
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Storage Functions via Bregman Divergence

[Jayawardhana et al.]

e For V :R" — R convex, define Bregman divergence of V at x:

Vi(x) = V(x) — [V(x) +VVE)T(x - )

~
Linearization at x

\J
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Hill-Moylan Characterization of Equilibrium-Indep. Diss.

Main Result
Let V : X — Rx>q be C! and convex and for X € € let

Vz(x) = V(x) = V(X) = VV(X)T(x — %).
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Hill-Moylan Characterization of Equilibrium-Indep. Diss.

Main Result
Let V : X — Rx>q be C! and convex and for X € € let

Vz(x) = V(x) = V(X) = VV(X)T(x — %).

The system is EID w.r.t. supply rate w with storage family {Vx(x)} iff
k>0, WeRK™ and £: X x X — RF sit.

[VV(x) = VV(R)]T[f(x) — F(X)]
= [A(x) = h(x)]T Q[A(x) — h(X)] — [|¢(x, %)13
%[Vv(x) — V("G = [h(x) — h(x)](QJ + S)
—U(x,%)TW
WTW=R+JTS+STJ+JTQJ (%)

(%)

(35)
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Hill-Moylan Characterization of Equilibrium-Indep. Diss.

@ Result simplifies when W has full row rank

Let V : X — Rx>q be C! and convex and for X € € let
Vz(x) = V(x) = V(X) = VV(x)T(x — %).

The system is EID w.r.t. supply rate w with storage family {Vx(x)} iff
Jk >0, We R and | : X — R st

[VV(x) = VVRIT[F(x) - f(%)]
= [h(x) = h(=)]T QIh(x) — h(x)] = [ /(x) — I()]3

v e, |3V VEITG = h(x)T(QJ+S) — 16)TW
C\WTW =R+ JTS+STI+JTQJ
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Special Case of Main Result: Equilibrium-Indep. Passivity

@ For passive systems without feedthrough

[VV(x) = VV(R)]" [F(x) = F(R)] < —[le(x, %)]13 (%)
GTVV(x) = h(x) (k)
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Special Case of Main Result: Equilibrium-Indep. Passivity

@ For passive systems without feedthrough

[VV(x) = VV(R)]" [f(x) — F(R)] < = ]le(x, %)I3 (%)
GTVV(x) = h(x) (%)

Q If V(x) = xTPx, then (x) implies Krasovskii-type condition

for incremental stability.

© Generalization of SISO Popov-type Lyapunov result in [Arcak, Meissen,
Packard '16] in the paper
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Application: Equilibrium-Independent Absolute Stability

0 x = f(x)+ Gu y
— y = h(x)+ Ju -
(4

e Static map ¢ : R™ — R™ is [Ki, K] slope-restricted

{T/J(ZZ - Z(Zl)]T [K1_+2K2 }—(12;12] [lb(zig - i(zl)] >0

12/15



Application: Equilibrium-Independent Absolute Stability

0 x = f(x)+ Gu y
— y = h(x)+ Ju -
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e Static map ¢ : R™ — R™ is [Ki, K] slope-restricted
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@ Standard assumptions: Square system, appropriately observable
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Application: Equilibrium-Independent Absolute Stability

0 x = f(x)+ Gu y
— y = h(x)+ Ju -
(4

e Static map ¢ : R™ — R™ is [Ki, K] slope-restricted

{T/J(ZZ - Z(Zl)]T [K1_+2K2 }—(12;12] [lb(zig - i(zl)] >0

@ Standard assumptions: Square system, appropriately observable

@ Key difference: no assumption of equilibrium at origin
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Application: Equilibrium-Independent Absolute Stability

Equilibrium-Independent Circle Criterion
Suppose that the loop-transformed system

5. x = f(x) — GK1h(x) + Guy
ye = (K2 — K1)h(x) + ug
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Application: Equilibrium-Independent Absolute Stability

Equilibrium-Independent Circle Criterion
Suppose that the loop-transformed system

5 x = f(x) — GK1h(x) + Guy
Yo = (K2 — Kl)h(X) + uy
satisfies the main result w.r.t. supply rate

w(ug, ye) = —¢llye — 7ell3 + (ve — %) (ue — @)

for some € > 0 and with V/(x) strongly convex.
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Application: Equilibrium-Independent Absolute Stability

Equilibrium-Independent Circle Criterion

Suppose that the loop-transformed system

5. x = f(x) — GK1h(x) + Guy
ye = (K2 — K1)h(x) + ug

satisfies the main result w.r.t. supply rate

w(ug, ye) = —¢llye — 7ell3 + (ve — %) (ue — @)

for some € > 0 and with V/(x) strongly convex. Then the closed-loop
possesses a unique and globally asymptotically stable equilibrium point.

e Existence/uniqueness of equilibrium is inferred through maximal
monotonicity of subsystem input-output relations

13/15



Proof Sketch

@ Establish 1-1 correspondence between equilibria of original and loop
transformed system
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Proof Sketch

@ Establish 1-1 correspondence between equilibria of original and loop
transformed system

@ ¢ is maximally monotone, static /0O relation of ¥’ is strongly
maximally montotone = Existence/uniqueness of equilibrium X

© Show stability of x using EID storage function Vz(x)
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Conclusions

Hill-Moylan-type result for equilibrium-independent dissipativity:

© result is an “incremental” variant of classic result

@ provides framework for equilibrium-independent stability studies

Extended version to appear in TAC

00 0000

examples

unabridged proofs

monotonicity of static 1/O relations
feedback stability theorems, existence
of closed-loop equilibria

analogous discrete-time results
application to gradient method

Equilibrium-Independent Dissipativity With
Quadratic Supply Rates

15/15



2 WATERLOO

https://ece.uwaterloo.ca/~jwsimpso/
jwsimpson@uwaterloo.ca


https://ece.uwaterloo.ca/~jwsimpso//
https://ece.uwaterloo.ca/~jwsimpso/

appendix



The Optimal Frequency Regulation Problem
(Simplified, Linearized, and Network-Reduced)

Grid: G = (V, &, B)




The Optimal Frequency Regulation Problem
(Simplified, Linearized, and Network-Reduced)

Pgeneration

Grid: G = (V, €, B)
Swing Dynamics

9" = Wwj
Miw; = —Djw; + P* e,i(e) + pi




The Optimal Frequency Regulation Problem
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Pgeneration
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Swing Dynamics
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The Optimal Frequency Regulation Problem
(Simplified, Linearized, and Network-Reduced)

Pgeneration
Grid: G = (V, &, B) —
Swing Dynamics
0 = w; A
M,‘d),' = _Diwi + P:* - Pe,i(e) =+ pi Pdemand

(Linearized) Power Flow

Pei(0) = _, Bi(ti =),

Problem: How to pick controls p; for
(i) wss = 0 (ii) optimality?



The Optimal Frequency Regulation Problem

(Simplified, Linearized, and Network-Reduced)

Grid: G = (V, €, B)
Swing Dynamics

9-:w;
Mw, DUJ,+P* e,i(9)+pi

(Linearized) Power Flow
0)=> _ Bilbi—0),

Problem: How to pick controls p; for
(i) wss = 0 (ii) optimality?

Pgeneration

L n 1
minimize E . —kip?
pER” i=12

subject toz (P* +pi)=0




The Optimal Frequency Regulation Problem
(Simplified, Linearized, and Network-Reduced)

Pgeneration

Grid: G = (V,&,B) PN
Swing Dynamics

é' = Wj S —
M; w, —D; iwi + P* e,i(e) + pi Pdemand
(Linearized) Power Flow OFR Problem

0)=S" B0 —0)), n
) ijl i( i) minimize Zi ) 2k:P,

Problem: How to pick controls p; for ~ Subject toz (P* +pi)=0
(i) wss = 0 (ii) optimality? p, < pi < P;

(Note: not “optimal control”, but “control to optimal steady-state”)



Smart Grid Project Samples

Distributed Inverter Control

Voltage Collapse (Nat. Comms.)

Optimal Distrib. Volt/Var (cbc)

H = T
sing| 11| [Processing] 1 £

(22, 42)

EE (z1,31) i

Cyber Layer

[vazo, i | Tvan, it | Tvico,
| PMU H PMU H PMU |

S

i |
Y
Py +3jQx Pr+jQy
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