Optimal Steady-State Control for Frequency Regulation of Power Systems

John W. Simpson-Porco

INFORMS Annual Meeting Phoenix, AZ, USA

October 30, 2018

This talk is based on these papers

SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL. THIS VERSION: OCTOBER 15, 2018

The Optimal Steady-State Control Problem

Liam S. P. Lawrence Student Member, IEEE, John W. Simpson-Porco, Member, IEEE, and Enrique Mallada Member, IEEE

> Submitted to IEEE Transactions on Automatic Control

Optimal Steady-State Control for Linear Time-Invariant Systems

Liam S. P. Lawrence, Zachary E. Nelson, Enrique Mallada, and John W. Simpson-Porco

Paper & talk at IEEE Conf. Decision & Control (Miami, FL)

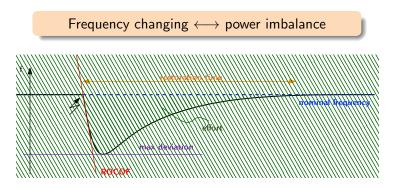
Acknowledgements

Liam S. P. Lawrence MASc Student, ECE University of Waterloo

Enrique Mallada Asst. Prof. ECE John's Hopkins Univ.

Zachary E. Nelson Lockheed Martin

Frequency Control in Power Systems



Small power system: Integral control on frequency
Big power system: Automatic Generation Control (AGC)

$$\text{ACE}_i = \beta_i (f_i - f_i^\star) + \sum_{(i,j) \in \text{Tie lines}} (p_{ij} - p_{ij}^\star)$$

Swing dynamics of network of generators

$$\begin{split} M_{i}\dot{\omega}_{i} &= P_{i}^{*} - D_{i}\omega_{i} - \sum_{j\in\mathcal{E}} p_{ij} + u_{i}, \qquad i\in\mathcal{N} \\ \dot{p}_{ij} &= b_{ij}(\omega_{i} - \omega_{j}), \qquad (i,j)\in\mathcal{E} \end{split}$$

2 Economically select equilibrium reserve powers u_i

$$egin{array}{ll} {
m minimize} & J(u):=\sum_{i=1}^n J_i(u_i) \ {
m subject} \ {
m to} \sum_{i=1}^n (P_i^*+u_i)=0 \end{array}$$

- Constraint is power balance \iff frequency regulation $\omega = 0$
- Extensions: power limits, ramp rate limits, tie-line flow setpoints

Swing dynamics of network of generators

$$\begin{split} M_{i}\dot{\omega}_{i} &= P_{i}^{*} - D_{i}\omega_{i} - \sum_{j\in\mathcal{E}}p_{ij} + u_{i}, \qquad i\in\mathcal{N} \\ \dot{p}_{ij} &= b_{ij}(\omega_{i} - \omega_{j}), \qquad (i,j)\in\mathcal{E} \end{split}$$

2 Economically select equilibrium reserve powers u_i

$$\begin{array}{ll} \underset{u \in \mathbb{R}^n}{\text{minimize}} & J(u) := \sum_{i=1}^n J_i(u_i) \\ \text{subject to } \sum_{i=1}^n (P_i^* + u_i) = 0 \end{array}$$

• Constraint is power balance \iff frequency regulation $\omega = 0$

• Extensions: power limits, ramp rate limits, tie-line flow setpoints

Swing dynamics of network of generators

$$\begin{split} M_{i}\dot{\omega}_{i} &= P_{i}^{*} - D_{i}\omega_{i} - \sum_{j\in\mathcal{E}}p_{ij} + u_{i}, \qquad i\in\mathcal{N} \\ \dot{p}_{ij} &= b_{ij}(\omega_{i} - \omega_{j}), \qquad (i,j)\in\mathcal{E} \end{split}$$

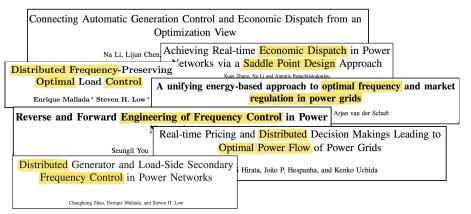
2 Economically select equilibrium reserve powers u_i

$$\begin{array}{ll} \underset{u \in \mathbb{R}^n}{\text{minimize}} & J(u) := \sum_{i=1}^n J_i(u_i) \\ \text{subject to } \sum_{i=1}^n (P_i^* + u_i) = 0 \end{array}$$

- Constraint is power balance \iff frequency regulation $\omega = 0$
- Extensions: power limits, ramp rate limits, tie-line flow setpoints

Optimal Distributed Frequency Regulation

A very incomplete literature review

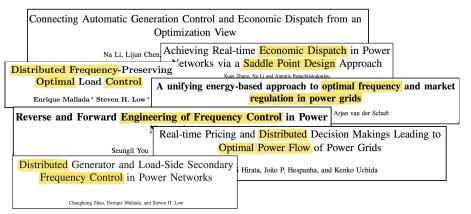


Underlying idea: Steady-state optimization with dynamics

What would a general problem formulation look like?

Optimal Distributed Frequency Regulation

A very incomplete literature review



Underlying idea: Steady-state optimization with dynamics

What would a general problem formulation look like?

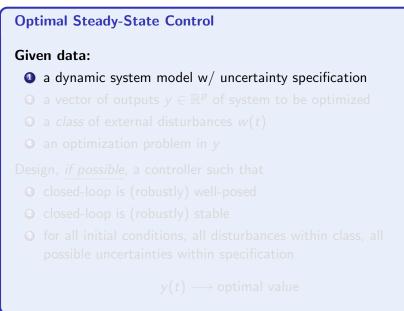
Optimal Steady-State Control

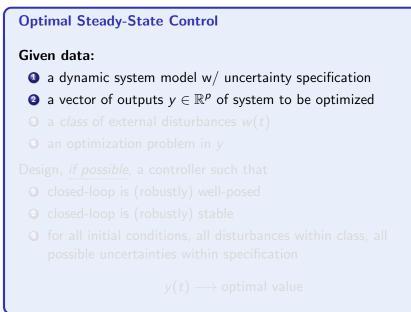
Given data:

- O a dynamic system model w/ uncertainty specification
- ② a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized
- a *class* of external disturbances w(t)
- \bigcirc an optimization problem in y

Design, if possible, a controller such that

- Closed-loop is (robustly) well-posed
- October 1000 closed-loop is (robustly) stable
- for all initial conditions, all disturbances within class, all possible uncertainties within specification





Optimal Steady-State Control Given data: a dynamic system model w/ uncertainty specification **2** a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized 3 a *class* of external disturbances w(t)

Optimal Steady-State Control Given data: a dynamic system model w/ uncertainty specification **2** a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized **3** a *class* of external disturbances w(t)**4** an optimization problem in y

Optimal Steady-State Control Given data: a dynamic system model w/ uncertainty specification **2** a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized **3** a *class* of external disturbances w(t)**4** an optimization problem in yDesign, if possible, a controller such that

 for all initial conditions, all disturbances within class, all possible uncertainties within specification

Optimal Steady-State Control Given data: a dynamic system model w/ uncertainty specification **2** a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized **3** a *class* of external disturbances w(t)**4** an optimization problem in yDesign, *if possible*, a controller such that closed-loop is (robustly) well-posed

Optimal Steady-State Control Given data: a dynamic system model w/ uncertainty specification **2** a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized **3** a *class* of external disturbances w(t)**4** an optimization problem in yDesign, *if possible*, a controller such that closed-loop is (robustly) well-posed 2 closed-loop is (robustly) stable

for all initial conditions, all disturbances within class, all possible uncertainties within specification

Optimal Steady-State Control Given data: a dynamic system model w/ uncertainty specification 2 a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized **3** a *class* of external disturbances w(t)**4** an optimization problem in yDesign, if possible, a controller such that closed-loop is (robustly) well-posed

- Closed-loop is (robustly) stable
- for all initial conditions, all disturbances within class, all possible uncertainties within specification

Linear OSS Control: dynamics and achievable equilibria

O Uncertain LTI dynamics

$$\begin{split} \dot{x} &= A(\delta)x + B(\delta)u + B_w(\delta)w \\ y &= C(\delta)x + D(\delta)u + Q(\delta)w \\ y_{\rm m} &= C_{\rm m}(\delta)x + D_{\rm m}(\delta) + Q_{\rm m}(\delta)w \end{split}$$

- $\delta = \text{parametric uncertainty}, w = \text{const. disturbances}$
- $y_{\rm m} =$ system measurements available for feedback
- y = arbitrary system states/inputs to be robustly optimized

Output: Affine set of equilibrium values for y

$$\overline{Y}(w, \delta) = \underbrace{y(w, \delta)}_{ ext{offset vector}} + \underbrace{V(\delta)}_{ ext{(unique) subspace}}$$

Linear OSS Control: dynamics and achievable equilibria

O Uncertain LTI dynamics

$$\begin{split} \dot{x} &= A(\delta)x + B(\delta)u + B_w(\delta)w \\ y &= C(\delta)x + D(\delta)u + Q(\delta)w \\ y_{\rm m} &= C_{\rm m}(\delta)x + D_{\rm m}(\delta) + Q_{\rm m}(\delta)w \end{split}$$

- $\delta = \text{parametric uncertainty}, w = \text{const. disturbances}$
- $y_{\rm m} =$ system measurements available for feedback
- y = arbitrary system states/inputs to be robustly optimized

Affine set of equilibrium values for y

$$\overline{Y}(w, \delta) = \underbrace{y(w, \delta)}_{\text{offset vector}} + \underbrace{V(\delta)}_{(unique) \text{ subspace}}$$

Linear OSS Control: optimal steady-state

Steady-state convex optimization problem

$$y^{\star}(w, \delta) = \underset{y \in \mathbb{R}^{p}}{\operatorname{subject}} \qquad g(y, w)$$

subject to
$$y \in \overline{Y}(w, \delta) = y(w, \delta) + V(\delta)$$

$$Hy = Lw$$

$$Jy \leq Mw$$

• $y \mapsto g(y, w)$ is convex, **engineering** (in)equality constraints

gradient KKT condition for optimizer y* is

$$\nabla g(y^{\star}, w) + H^{\mathsf{T}} \mu^{\star} + J^{\mathsf{T}} \nu^{\star} \perp \mathbf{V}(\boldsymbol{\delta})$$

$$\iff \nabla g(y^{\star}, w) + J^{\mathsf{T}} \nu^{\star} \perp (\mathbf{V}(\boldsymbol{\delta}) \cap \ker \mathbf{H})$$

Linear OSS Control: optimal steady-state

③ Steady-state convex optimization problem

$$\begin{array}{ll} y^{\star}(w,\delta) = \underset{y \in \mathbb{R}^{p}}{\operatorname{argmin}} & g(y,w) \\ & \text{subject to} & y \in \overline{Y}(w,\delta) = y(w,\delta) + \mathsf{V}(\delta) \\ & Hy = Lw \\ & Jy \leq Mw \end{array}$$

• $y \mapsto g(y, w)$ is convex, **engineering** (in)equality constraints

4 gradient **KKT** condition for optimizer y^* is

$$\begin{aligned} \nabla g(y^{\star},w) + H^{\mathsf{T}}\mu^{\star} + J^{\mathsf{T}}\nu^{\star} & \perp \quad \boldsymbol{V}(\delta) \\ \Rightarrow \quad \nabla g(y^{\star},w) + J^{\mathsf{T}}\nu^{\star} & \perp \quad (\boldsymbol{V}(\delta) \cap \ker \boldsymbol{H}) \end{aligned}$$

Problem: model uncertainty δ enters KKT conditions

 \implies we cannot design δ -independent controller!

When can KKT be **robustly** (i.e., $\forall \delta \in \delta$) enforced?

Robust Output Subspace (ROS) property
 V(δ) is independent of δ

3 Robust Feasible Subspace (RFS) property $V(\delta) \cap \ker H$ is independent of

Problem: model uncertainty δ enters KKT conditions

 \implies we cannot design δ -independent controller!

When can KKT be **robustly** (i.e., $\forall \delta \in \delta$) enforced?

Robust Output Subspace (ROS) property
 V(δ) is independent of δ

3 Robust Feasible Subspace (RFS) property $V(\delta) \cap \ker H$ is independent of

Problem: model uncertainty δ enters KKT conditions

 \implies we cannot design δ -independent controller!

When can KKT be **robustly** (i.e., $\forall \delta \in \delta$) enforced?

Robust Output Subspace (ROS) property
 V(δ) is independent of δ

2 Robust Feasible Subspace (RFS) property $V(\delta) \cap \ker H$ is independent of δ

Problem: model uncertainty δ enters KKT conditions

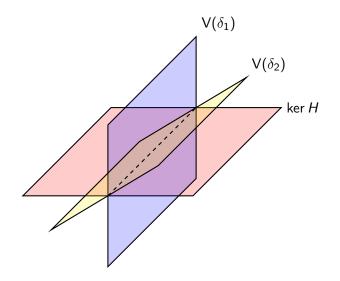
 \implies we cannot design δ -independent controller!

When can KKT be **robustly** (i.e., $\forall \delta \in \delta$) enforced?

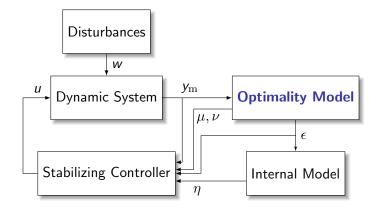
Robust Output Subspace (ROS) property
 V(δ) is independent of δ

2 Robust Feasible Subspace (RFS) property $V(\delta) \cap \ker H$ is independent of δ

The Robust Feasible Subspace Property



General Design for Linear OSS Control



An **optimality model** is a dynamic system which **robustly** produces a **proxy** ϵ for optimality error

Optimality Models for Linear OSS Control

Robust Output Subspace (ROS) Optimality Model

$$\begin{split} \dot{\mu} &= Hy - Lw \\ \dot{\nu} &= max(\nu + Jy - Mw, 0) - \nu \\ \epsilon &= R_0^{\mathsf{T}} (\nabla g(y, w) + H^{\mathsf{T}} \mu + J^{\mathsf{T}} \nu) \end{split}$$

range
$$R_0 = V(\delta)$$

(Design freedom!)

2 Robust Feasible Subspace (RFS) Optimality Model

$$\dot{\nu} = \max(\nu + Jy - Mw, 0) - \nu$$
$$\epsilon = \begin{bmatrix} Hy - Lw \\ \mathbf{T_0}^{\mathsf{T}}(\nabla g(y, w) + J^{\mathsf{T}}\nu) \end{bmatrix}$$

ange T_0 = V(δ) \cap ker H

(Design freedom!)

Optimality Models for Linear OSS Control

Robust Output Subspace (ROS) Optimality Model

$$\begin{split} \dot{\mu} &= Hy - Lw \\ \dot{\nu} &= \max(\nu + Jy - Mw, \mathbb{O}) - \nu \\ \epsilon &= R_0^{\mathsf{T}} (\nabla g(y, w) + H^{\mathsf{T}} \mu + J^{\mathsf{T}} \nu) \end{split}$$

range
$$R_0 = V(\delta)$$

(Design freedom!)

Robust Feasible Subspace (RFS) Optimality Model

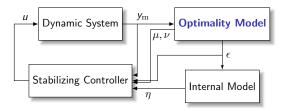
$$\dot{\nu} = \max(\nu + Jy - Mw, 0) - \nu$$

$$\epsilon = \begin{bmatrix} Hy - Lw \\ T_0^{\mathsf{T}}(\nabla g(y, w) + J^{\mathsf{T}}\nu) \end{bmatrix}$$

range T_0 = V(δ) \cap ker H

(Design freedom!)

Internal Model and Stabilizer Design



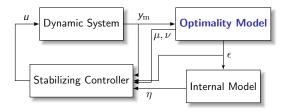
For constant disturbances, internal model is integral control

$$\dot{\eta} = \epsilon$$

Stabilizer design options:

- **1** high-gain feedback of ϵ (minimum phase systems)
- 2 full-order dynamic robust controller synthesis
- (a) low-gain integral control $u = -k\eta$ (E. J. Davison 1976)
- øproblem-specific judgement

Internal Model and Stabilizer Design



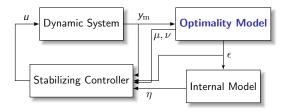
For constant disturbances, internal model is integral control

 $\dot{\eta}=\epsilon$

Stabilizer design options:

- **1** high-gain feedback of ϵ (minimum phase systems)
- I full-order dynamic robust controller synthesis
- (i) low-gain integral control $u = -k\eta$ (E. J. Davison 1976)
- oproblem-specific judgement

Internal Model and Stabilizer Design



For constant disturbances, internal model is integral control

$$\dot{\eta} = \epsilon$$

Stabilizer design options:

- **1** high-gain feedback of ϵ (minimum phase systems)
- Interpretended and a second state of the se
- 3 low-gain integral control $u = -k\eta$ (E. J. Davison 1976)
- oproblem-specific judgement

$$\begin{split} M_i(\delta)\dot{\omega}_i &= P_i^* - D_i(\delta)\omega_i - \sum_{j\in\mathcal{E}} p_{ij} + u_i, \qquad i\in\mathcal{N} \\ \dot{p}_{ij} &= b_{ij}(\delta)(\omega_i - \omega_j), \qquad (i,j)\in\mathcal{E} \end{split}$$

Optimization problem formulations

$$\begin{array}{ll} \underset{u \in \mathbb{R}^{n}}{\text{minimize}} & \sum_{i=1}^{n} J_{i}(u_{i}) \\ \text{subject to} & \sum_{i=1}^{n} (P_{i}^{*} + u_{i}) = 0 \end{array}$$

(ROS Property
$$\checkmark$$
)

$$\begin{array}{ll} \underset{u \in \mathbb{R}^n}{\text{minimize}} & \sum_{i=1}^n J_i(u_i) \\ \text{subject to } F\omega = 0 \end{array}$$

Equivalent optimization problems will lead to **different** OSS controllers (more design flexibility)

$$\begin{split} M_i(\delta)\dot{\omega}_i &= P_i^* - D_i(\delta)\omega_i - \sum_{j\in\mathcal{E}} p_{ij} + u_i, \qquad i\in\mathcal{N} \\ \dot{p}_{ij} &= b_{ij}(\delta)(\omega_i - \omega_j), \qquad (i,j)\in\mathcal{E} \end{split}$$

Optimization problem formulations

$$\begin{array}{ll} \underset{u \in \mathbb{R}^{n}}{\text{minimize}} & \sum_{i=1}^{n} J_{i}(u_{i}) \\ \text{subject to} \sum_{i=1}^{n} (P_{i}^{*} + u_{i}) = 0 \end{array}$$

(ROS Property \checkmark)

$$egin{array}{lll} {\displaystyle \min_{u\in \mathbb{R}^n}} & \displaystyle \sum_{i=1}^n J_i(u_i) \ {\displaystyle ext{subject to }} F\omega = \mathbb{0} \end{array}$$

(RFS Property ✓)

Equivalent optimization problems will lead to **different** OSS controllers (more design flexibility)

$$\begin{split} M_i(\delta)\dot{\omega}_i &= P_i^* - D_i(\delta)\omega_i - \sum_{j\in\mathcal{E}} p_{ij} + u_i, \qquad i\in\mathcal{N} \\ \dot{p}_{ij} &= b_{ij}(\delta)(\omega_i - \omega_j), \qquad (i,j)\in\mathcal{E} \end{split}$$

Optimization problem formulations

$$\begin{array}{ll} \underset{u \in \mathbb{R}^n}{\text{minimize}} & \sum_{i=1}^n J_i(u_i) \\ \text{subject to} & \sum_{i=1}^n (P_i^* + u_i) = 0 \end{array}$$

$$egin{array}{cc} { extstyle minimize} & \sum_{i=1}^n J_i(u_i) \ { extstyle subject to } F\omega = \mathbb{O} \end{array}$$

(ROS Property ✓)

(RFS Property ✓)

Equivalent optimization problems will lead to **different** OSS controllers (more design flexibility)

OSS Framework Recovers Standard Controllers

Distributed-Averaging Proportional-Integral Control [JWSP et. al. '12]

$$\dot{p}_i = \omega_i - \sum_{j \in \mathcal{N}} a_{ij} (\nabla J_i(p_i) - \nabla J_j(p_j)), \qquad u_i = -p_i$$

2 Gather-and-Broadcast Control [Dörfler & Grammatico, '17]

$$\dot{\mu} = ext{average}(\omega_i)\,, \qquad u_i = (
abla J_i)^{-1}(\mu)$$

Primal-dual algorithm [Li, Zhao, Mallada, Topcu, Low, ...]

$$\dot{\mu}_i = -\nabla J_i(\mu_i) - \nu, \qquad u_i = \mu_i$$
$$\dot{\nu} = \sum_{i=1}^n P_i^* + \mu_i$$

OSS Framework Recovers Standard Controllers

Distributed-Averaging Proportional-Integral Control [JWSP et. al. '12]

$$\dot{p}_i = \omega_i - \sum_{j \in \mathcal{N}} a_{ij} (\nabla J_i(p_i) - \nabla J_j(p_j)), \qquad u_i = -p_i$$

Gather-and-Broadcast Control [Dörfler & Grammatico, '17]

$$\dot{\mu} = \mathsf{average}(\omega_i)\,, \qquad u_i = (
abla J_i)^{-1}(\mu)$$

In Primal-dual algorithm [Li, Zhao, Mallada, Topcu, Low, ...]

$$\dot{\mu}_i = -\nabla J_i(\mu_i) - \nu, \qquad u_i = \mu_i$$
$$\dot{\nu} = \sum_{i=1}^n P_i^* + \mu_i$$

OSS Framework Recovers Standard Controllers

Distributed-Averaging Proportional-Integral Control [JWSP et. al. '12]

$$\dot{p}_i = \omega_i - \sum_{j \in \mathcal{N}} a_{ij} (\nabla J_i(p_i) - \nabla J_j(p_j)), \qquad u_i = -p_i$$

Gather-and-Broadcast Control [Dörfler & Grammatico, '17]

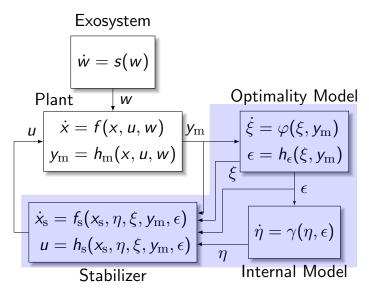
$$\dot{\mu} = \mathsf{average}(\omega_i)\,, \qquad u_i = (
abla J_i)^{-1}(\mu)$$

Primal-dual algorithm [Li, Zhao, Mallada, Topcu, Low, ...]

$$\dot{\mu}_i = -\nabla J_i(\mu_i) - \nu, \qquad u_i = \mu_i$$
$$\dot{\nu} = \sum_{i=1}^n P_i^* + \mu_i$$

Nonlinear OSS Control Problem Architecture

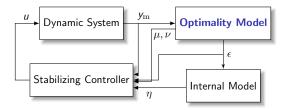
Nonlinear systems with time-varying disturbances



Conclusions

New control framework: Optimal Steady-State (OSS) Control

- **Optimize** dynamic systems robustly w.r.t. uncertainty/disturbances
- Insure dynamic performance and robustness



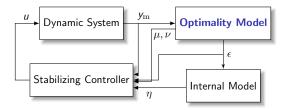
What's next?

- Sampled-data, decentralized, hierarchical OSS control
- 2 Detailed application case studies

Conclusions

New control framework: Optimal Steady-State (OSS) Control

- **Optimize** dynamic systems robustly w.r.t. uncertainty/disturbances
- Insure dynamic performance and robustness



What's next?

- Sampled-data, decentralized, hierarchical OSS control
- 2 Detailed application case studies

Details in our new papers (available on my website)

SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL. THIS VERSION: OCTOBER 15, 2018

The Optimal Steady-State Control Problem

Liam S. P. Lawrence Student Member, IEEE, John W. Simpson-Porco, Member, IEEE, and Enrique Mallada Member, IEEE

> Submitted to IEEE Transactions on Automatic Control

Optimal Steady-State Control for Linear Time-Invariant Systems

Liam S. P. Lawrence, Zachary E. Nelson, Enrique Mallada, and John W. Simpson-Porco

Paper & talk at IEEE Conf. Decision & Control (Miami, FL)

Questions

https://ece.uwaterloo.ca/~jwsimpso/ jwsimpson@uwaterloo.ca appendix