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Problems in power system operations

Power Flow Analysis Optimal Power Flow
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Modeling AC power flow

e active power: P = > ViViBjsin(0; — 0;)
N
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Modeling AC power flow

e active power: P = > ViViBjsin(0; — 0;)
o reactive power: Qi = —>_; V;V;Bjcos(6; — 0;)

O n Loads (e) and m Generators (m) N =N UNg
@ Load Model: PQ bus constant P; constant Q;
@ Generator Model: PV bus constant P; constant V;,

Power Flow Equations
P,-:Z,\/,-\/J-B,-jsin(e,-—ej), i€ NLUNg
Z V;V;Bjj cos(0; — 0;), ieNL

2n + m equations in variables § € T"*™ and V| € R%
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e State vector: x = (6, V,)
o Newton iteration:

Xk+1 _ Xk _ J(Xk)—lf-(xk)

@ Chordal Newton iteration:

X =k — J(;()_lf(xk) [Deng et al.]
© Optimal power flow

Q Transient stability
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Intuition on power flow solutions

@ 'Normally’, exists unique high-voltage soln:

e voltage magnitude V; ~ 1
o phase diff |§; — 0;] < 1
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Intuition on power flow solutions

@ 'Normally’, exists unique high-voltage soln:

e voltage magnitude V; ~ 1
o phase diff |§; — 0;] < 1
[Josz et al.]

@ Lightly loaded systems: many low-voltage solutions

© Heavily loaded systems: Few
solutions or infeasible
e saddle node bifurcations
e maximum power transfer limit -
@ non-convex feasible set in e Sl S

(P,Q)-space e
[Hiskens & Davy]
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Mysteries of power flow

Given data: network topology, impedances, generation & loads

Q: 3 “stable high-voltage” solution? unique? properties?

Partial answers from 454 years of literature:

Jacobian singularity [Weedy '67]

Multiple dynamically stable solutions [Korsak '72]

Existence conditions [Wu & Kumagai '80, '82]

Active power flow singularity [Araposthatis, Sastry & Varaiya, '81]

Counting # of solutions [Baillieul and Byrnes '82]

Properties of quadratic equations [Makarov, Hill & Hiskens '00]

Optimization approaches [Cafiizares '98], [Dvijotham, Low, Chertkov '15], [Molzahn]

Existence/uniqueness for active power flow [Dérfler, Chertkov & Bullo '12, Delabays,
Coletta, and Jacquod '17, JWSP '17, Jafarpour and Bullo '18]

Existence/uniqueness for reactive power flow [JWSP, Dérfler & Bullo '15]

Existence/uniqueness in distribution networks [Bolognani & Zampieri '16, Nguyen et al.
'17, Wang et al. '17, Bazrafshan et al. '17, ...]
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Given data: network topology, impedances, generation & loads J

Q: 4 “stable high-voltage” solution? unique? properties?

Partial answers from 45+ years of literature:
@ Existence/uniqueness for active power flow [Déorfler, Chertkov & Bullo, PNAS '12]

@ Existence/uniqueness for reactive power flow [JWSP, Dérfler & Bullo, NatComms '15]

Main insight: stiffness vs. loading

© Stiff network + light loading = feasible
@ Weak network + heavy loading = infeasible

Voltage

Q: How to quantify network
stiffness vs. loading?
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Solution of Two-Bus System |

P =bVsV, sin(—n) Vain b V5, /0
Ps = bVgVy sin(n) /* ___ o
QL = bV? — bV, Vi cos(n) Pe+iQq PL+iQL
© Lossless Network —= Pe=—-P.=p
p = bV V,sin(n)
Q[_ = bVl_2 — b\/[_ VG COS(n)

© Eliminate n
p?+(Qu—bVE)? = VGV,

© Change Variables

_ Vi _ P N
e T bVZ - —3bV2

v
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Solution of Two-Bus System I

- VGZU b VLZO
p = bV Vsin(n) J m ~N——y
= 2 = / ----- L
QL bVL bVL VG C°5(77) Pe+iQg PL+jQr

© Change Variables

o Vi . P ) QL

=2t = A= —pE
YT Ve bV2 —Thv2
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Solution of Two-Bus System I

- VGZU b VLZO
p = bV Vsin(n) J o iy ®
= 2 — / ----- p o
QL bVL bVL VG C05(77) Pe+iQg PL+jQr
© Change Variables
Vi p Qu
= — MN=-—— A=——5
VT Ve bVZ —§bVE

O Solve Quadratic in v2

ﬁ (184 /imGrea)
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Solution of Two-Bus System I

- Ve in b V520
p = bV Vsin(n) J m ~N——g
= 2 — / ----- p o
QL bVL bVL VG C°5(77) Pe+iQg PrL+jQr
© Change Variables
Vi P Qu
= — r = A =
YTV bV2 —3bV8

O Solve Quadratic in v2

Vi:ﬁ(l_gi L o)

@ Nec. & Suff. Condition

[ 24 A <1 ]
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Solution of Two-Bus System IlI

. v . P . QL
I = vsin(n) V= V_G M= bVé A= _‘llb\/é
A = —4v? + 4v cos(n) A2 LA <1
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Solution of Two-Bus System IlI

. v . P . QL
I = vsin(n) V= V_G = bVé A= —%bVé
A = —4v? + 4v cos(n) A2 1A <1

@ High-voltage solution
v € [%7 1)
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Solution of Two-Bus System IlI

V
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Solution of Two-Bus System IlI

V
[ = vsin(n) vi=yo = b_C§ A= —;;ng
A = —4v? + 4v cos(n) A2 LA <1
@ High-voltage solution
vy €[3,1) r\
@ Low-voltage solution 0 = ‘ >
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V,
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Solution of Two-Bus System [V

@ Squaring and adding equations does not generalize to networks.
@ Is there any hope then?
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Solution of Two-Bus System [V

@ Squaring and adding equations does not generalize to networks.
@ Is there any hope then?

A = —4v? 4 4vcos(n)

I = vsin(n) J

e Use cos(n) = m = A=—4v2+4v\/1—(T/v)?

@ Rearrange to get fixed-point equation

o= =22 () }

This generalizes!
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Network Notation |: Branches Between Bus Types

Power Flow Equations
P; = V;V;Bjisin(0; — 0;), i€ NL UN, N
Zj /i Bjj sin( o) i L G L

Q,-:—Zj\/,-\/jBUcos(G;—Hj), ieN Ne
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Network Notation |: Branches Between Bus Types

Power Flow Equations
P_ZV Bjsin(0; —0;), i€NLUNg Ny
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@ Bus partitioning N’ = N U N induces branch partitioning

E=¢gtuestueee,
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Network Notation |: Branches Between Bus Types

Power Flow Equations
P; = V;V;Bjisin(0; — 0;), i€ NL UN, N
Zj /i Bjj sin( o) i L G L

Q,-:—Zj\/,-\/jBUcos(G;—Hj), ieN Ne

@ Bus partitioning N’ = N U N induces branch partitioning

e_stugstugs a [ A) o (ALATLOY
| Ac 0 [ AL [ A%

o o -1]o0
0lo -1 0o }/\/
“1/-1 0 o0]o

A=
o1 o o |F1
ojlo 1 o1 }NG
oo o 1|0
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Network Notation II: Open-Circuit Voltages

.

P; _Z V; V; B sin(6;

-
Power Flow Equations

91-), i€ N UNg

Z V;V;Bij cos(#

o Generators Ng: V; fixed

e Loads N;:

V; free

—0;), ieN

~

N

Ng
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Network Notation II: Open-Circuit Voltages

( )
Power Flow Equations

P_Z ViV;Bjjsin(6; — 0;), i€ Nt UNg
Z V;VBjjcos(8; — 0;), ie N A

e Generators N¢: V; fixed Na

e Loads N;: V; free

. J
Partitioned Variables
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Network Notation II: Open-Circuit Voltages

( )
Power Flow Equations

P_ZV iBjjsin(0; — 0;) , i€ Nt UNg

Z V;VBjjcos(8; — 0;), ie N A
e Generators N¢: V; fixed Na
e Loads N;: V; free
. J

Partitioned Variables
Vi BrL BLG)
V=[-—], B=
( Ve ) ( BgL | BGe
Open-circuit voltages

Vi2 -B;'Bic Ve
N———

Generators— Loads
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Network Notation II: Open-Circuit Voltages

( )
Power Flow Equations

P_ZV iBjjsin(0; — 0;) , i€ Nt UNg

— — Y ViViBjcos(6; — 6), €N A
e Generators N¢: V; fixed Na
e Loads N;: V; free
. J

Partitioned Variables
7 B BLG>
v= (L), B = 4‘7
( Ve ) ( BgL | BGe

Open-circuit voltages

VL* £ _BELI Bic Vg
—_———

Scaled voltages

vi £ Vi)V

Generators— Loads
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Network Notation Ill: Stiffness Matrices

7 B BLG) . ~1
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(Vc;) (BGL Bge : LL =teve
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Network Notation Ill: Stiffness Matrices

7 B BLG) . ~1
V: - | B: 5 V :—B B V
<VG> <BGL Bge L LL PLteve

@ Need to non-dimensionalize power flow equations

o Stiffness matrices quantify grid strength in units of power

© Nodal stiffness matrix S£ 4_11 [VI]- B - [V]] J

@ Branch stiffness matrix B) = [ Vi Bijl(ij)ee J

© Laplacian stiffness matrix L2 ADAT |

13/22



Main Modeling Result

f Fixed-Point Power Flow: Meshed Networks

(0, V) is a power flow solution iff (v, p.) solves the FPPF
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Main Modeling Result

r

.

Fixed-Point Power Flow: Meshed Networks

(0, V) is a power flow solution iff (v, p.) solves the FPPF
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New Approximate Power Flow Solution

e The model says v = f(v, p.), and sin(AT0) = ¥ (v, pc).
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New Approximate Power Flow Solution

e The model says v = f(v, p.), and sin(AT0) = ¥ (v, pc).

@ By construction, when P = @Q; = 0, a solution is

v=1, pc=0c, AT0=04.

o Taylor expand FPPF model around this solution

AT0upprox = ATLTP
1 1
Vapprox = 1n — ZS*QL + §S_1!A|LD[ATLTP]ATLTP

Pc,approx = 0
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New Approximate Power Flow Solution

AT0pprox = ATLTP

1 1
Vapprox = 1p = 7S QL+ 8S 1) A|DIATLTPIATLTP
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New Approximate Power Flow Solution

A0 pprox = ATLTP
1 1
Vapprox =~ 1p — ZS_IQL + gs_llAlLD[ATLTP]ATLTP

— 11 : : :
= —e— MATPOWER

B 108 * FPPF Iteration||
® - +%- Approx. Soln.

el

E 1.06

=

%0 104

=

& 1.02

s

E 1

0.98
0

5 10 15 20 25 30
Bus Number
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Numerical Results

1

Omax = ||V - Vapprox”oo ) 5avg = EHV - Vapprox”l
Base Load High Load |

Test Case FPPF | dmax Oave FPPF |  Omax

Iters. | (p.u.) | (p.u.) | Ilters. | (p.u.)
New England 39 4 0.006 | 0.004 8 0.086
57 bus system 5 0.011 | 0.003 8 0.118
RTS '96 (3 area) 4 0.003 | 0.001 8 0.084
118 bus system 3 0.001 | 0.000 7 0.054
300 bus system 6 0.022 | 0.004 8 0.059
PEGASE 1,354 5 0.011 | 0.001 8 0.070
Polish 2,383 wp 4 0.003 | 0.000 8 0.078
PEGASE 2,869 5 0.015 | 0.002 8 0.098
PEGASE 9,241 6 0.063 | 0.003 9 0.133
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FPPF Simplifies for Acyclic Networks
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[ Fixed-Point Power Flow: Radial Networks
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1 1
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FPPF Simplifies for Acyclic Networks

[ Fixed-Point Power Flow: Radial Networks

(0, V) is a power flow solution iff v is a fixed point of
1 1
f(v) £ 1, - ZS_I[QL][V]_lln + 15_1[V]_1|A|LD [A(v)] u(v),

where

u(v) £1 -1~ [y
¥(v) = [h(v)] 71D 'p
p=(ATA)IATP

with the phase angles AT = arcsin(¢).
\.

On what invariant set is f a contraction? |
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Solvability Results for Different Acyclic Topologies
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Solvability Results for Different Acyclic Topologies

PQ buses have one PV bus neighbor

Sufficient 4+ Necessary
Existence + Uniqueness

PQ buses have many PV bus neighbors

Sufficient 4+ Tight
Existence + Uniqueness

General interconnections
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Conclusions

Framework for studying Lossless Power Flow:

@ Fixed-Point Power Flow

@ Approximate solution

A Theory of Solvability for Lossless Power Flow
Equations — Part I: Fixed-Point Power Flow

John W. Simpson-Porco, Member, IEEE
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Framework for studying Lossless Power Flow:
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@ Approximate solution

A Theory of Solvability for Lossless Power Flow
Equations — Part I: Fixed-Point Power Flow

John W. Simpson-Porco, Member, IEEE

New conditions for power flow solvability:

© Contractive iteration
© Existence/uniqueness

@ Generalizes known results

A Theory of Solvability for Lossless Power Flow
Equations — Part II: Existence and Uniqueness

John W. Simpson-Porco, Member; IEEE
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Conclusions

Framework for studying Lossless Power Flow:

@ Fixed-Point Power Flow

@ Approximate solution

A Theory of Solvability for Lossless Power Flow
Equations — Part I: Fixed-Point Power Flow

John W. Simpson-Porco, Member, IEEE

New conditions for power flow solvability:

© Contractive iteration

© Existence/uniqueness

A Theory of Solvability for Lossless Power Flow
Equations — Part II: Existence and Uniqueness

John W. Simpson-Porco, Member; IEEE

@ Generalizes known results

What'’s next?

@ Analysis for meshed networks
@ Lossy networks (TPWRS: JWSP
© Applications (n — 1, opt/control)

'17)
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Questions

https://ece.uwaterloo.ca/~jwsimpso/
jwsimpson@uwaterloo.ca
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Power flow and grid connectivity

“[Power flow feasibility] is one question which is unresolved in power systems analysis,
but which is of basic theoretical and practical importance .. .is a given network
structurally susceptible to unfeasibility? What type and what value of injections are

most likely to result in unfeasible situations?”
— F. D. Galiana, 1975
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“The power systems theory needs to be pushed further in the direction of exploiting
structural features of the networks ... realistic power systems models have at least
two different types of node dynamics (generators, loads) and the directional power
flows between them play a major role.”

— D. J. Hill & G. Chen, 2006




Power flow and grid connectivity

“[Power flow feasibility] is one question which is unresolved in power systems analysis,
but which is of basic theoretical and practical importance .. .is a given network
structurally susceptible to unfeasibility? What type and what value of injections are
most likely to result in unfeasible situations?”

— F. D. Galiana, 1975

“The power systems theory needs to be pushed further in the direction of exploiting
structural features of the networks ... realistic power systems models have at least
two different types of node dynamics (generators, loads) and the directional power
flows between them play a major role.”

— D. J. Hill & G. Chen, 2006

‘Root causes of [the northeastern] blackout: lack of basic understanding of power
systems ... theoretical understanding of nonlinear power system dynamics is
inadequate. It is time for more theoretical research to develop alternatives to
complement scenario-based simulation paradigm: mathematical theory to understand
the complex dynamic behavior of large-scale interconnected power systems utilizing
modern nonlinear mathematics.”

— Felix F. Wu, 2003
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