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Response to disturbance of an ideal power system
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1 Physical inertia instantly provides decentralized derivative control

2 Decentralized primary loops at devices provide proportional control

Disturbance attenuation

3 System-wide secondary loop provides centralized integral control

Disturbance rejection
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Response to disturbance in a real power system
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When secondary frequency control goes wrong . . .

“The missing energy amounts currently to 113 GWh . . . The decrease . . . is

affecting also those electric clocks that are steered by the frequency of the

power system . . . they show currently a delay of close to six minutes.”

–ENTSO-E Press Release
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Modern challenges for control engineers

1 Declining inertia and load-frequency responsiveness

Sensitive system

Large and frequent deviations

2 Heterogeneous small-scale power sources

Many small but fast sources

Fast freq. regulation markets

Opportunities for control engineers

1 Inverter-based resources and fast communication

2 Hierarchical control of many small devices
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Simple dynamic models for frequency control (single area)

Power
System

∆Pref

∆Pu

∆ω

Control inputs: Power set-points to devices ∆Pref
i

Meas. / Controlled output: Frequency error ∆ωi

Unknown disturbances: Uncontrolled load/generation ∆Pu,i

∆θ̇i = ∆ωi ,

Mi∆ω̇i = −
∑n

j=1
Tij(∆θi −∆θj)− Di∆ωi + ∆Pm,i + ∆Pu,i

Ti∆Ṗm,i = −∆Pm,i − R−1
d,i ∆ωi + ∆Pref

i .

(Note: Real governor model may be highly nonlinear!)
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Fundamental insights from output regulation theory
Johnson, Davison, Francis, Wonham . . .

System models are BIBO stable with steady-state given by

∆ω = β−111T︸ ︷︷ ︸
:=G0 (DC Gain)

(∆Pu + ∆Pref), β =
∑
i

(Di + R−1
d,i )︸ ︷︷ ︸

Total proportional gain

.

1 Insight #1: ∆ω ∈ span(1n) ⇐⇒ “frequency is global”

2 Insight #2: Only sum of powers matters =⇒ Resource allocation

3 Insight #3: rank(G0) = 1, which means . . .

Only one frequency integrator permitted in any internally
stable secondary control system!
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Optimal allocation of secondary resources

Optimally allocate inputs subject to power balance and limits

minimize
∑n

i=1
Ji (∆Pref

i )

subject to
∑n

i=1
∆Pref

i + ∆Pu,i = 0

∆Pref
i ∈ {power limits} .

Equivalent:

(i) Power balance

(ii) Regulation ∆ω = 0

Solve w/ ∆ω feedback + Lagrange coordination

Power
System

Integral
Control

∆Pref

∆Pu

∆ω

7 / 16



Optimal allocation of secondary resources

Optimally allocate inputs subject to power balance and limits

minimize
∑n

i=1
Ji (∆Pref

i )

subject to
∑n

i=1
∆Pref

i + ∆Pu,i = 0

∆Pref
i ∈ {power limits} .

Equivalent:

(i) Power balance

(ii) Regulation ∆ω = 0

Solve w/ ∆ω feedback + Lagrange coordination

Power
System

Integral
Control

∆Pref

∆Pu

∆ω

7 / 16



Hierarchical or distributed coordination

First-order optimality condition: ∃λ s.t. ∀i ∇Ji (∆Pref
i ) = λ.

How to enforce this equal marginal cost condition?

1 Centralized approach:

τ η̇ = −∆ωmeas︸ ︷︷ ︸
Central integral action

∆Pref
i = (∇Ji )−1(η)︸ ︷︷ ︸

Allocation rule

2 Distributed approach (consensus version):

τi η̇i = −∆ωi −
n∑

j=1

aij(ηi − ηj)︸ ︷︷ ︸
Distributed integral action

∆Pref
i = (∇Ji )−1(ηi )︸ ︷︷ ︸

Allocation rule

8 / 16



Hierarchical or distributed coordination

First-order optimality condition: ∃λ s.t. ∀i ∇Ji (∆Pref
i ) = λ.

How to enforce this equal marginal cost condition?

1 Centralized approach:

τ η̇ = −∆ωmeas︸ ︷︷ ︸
Central integral action

∆Pref
i = (∇Ji )−1(η)︸ ︷︷ ︸

Allocation rule

2 Distributed approach (consensus version):

τi η̇i = −∆ωi −
n∑

j=1

aij(ηi − ηj)︸ ︷︷ ︸
Distributed integral action

∆Pref
i = (∇Ji )−1(ηi )︸ ︷︷ ︸

Allocation rule

8 / 16



Hierarchical or distributed coordination

First-order optimality condition: ∃λ s.t. ∀i ∇Ji (∆Pref
i ) = λ.

How to enforce this equal marginal cost condition?

1 Centralized approach:

τ η̇ = −∆ωmeas︸ ︷︷ ︸
Central integral action

∆Pref
i = (∇Ji )−1(η)︸ ︷︷ ︸

Allocation rule

2 Distributed approach (consensus version):

τi η̇i = −∆ωi −
n∑

j=1

aij(ηi − ηj)︸ ︷︷ ︸
Distributed integral action

∆Pref
i = (∇Ji )−1(ηi )︸ ︷︷ ︸

Allocation rule

8 / 16



Centralized architecture
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Distributed architecture

Communication graph has a globally reachable node (nec. & suff.)
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Distributed vs. centralized
Simulation on New England 39 Bus System1
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Dual-Decomposition : Marginal Cost

1
F. Dörfler and S. Grammatico, “Gather-and-broadcast frequency control in power systems,” Automatica, 2017.
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Hierarchical or distributed coordination contd.

3 Distributed approach (primal-dual version) uses

virtual phase angles θ̂

virtual flow on line ` = (i , j) as p̂` = T`(θ̂i − θ̂j)

minimize
∑n

i=1
Ji (∆Pref

i ) + 1
2Di (∆ωi )

2

subject to ∆Pu,i + ∆Pref
i − Di∆ωi =

∑
j
Ai`p̂`

∆Pu,i + ∆Pref
i =

∑
j
Tij(θ̂i − θ̂j)

Now apply primal-descent and dual-ascent to Lagrangian L

Primal dynamics: Embeds natural system dynamics

Dual dynamics: Distributed control
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Primal-dual method
Simulation on New England 39 Bus System2

2
E. Mallada and C. Zhao and S. Low, “Optimal Load-Side Control for Frequency Regulation . . . ,” IEEE TAC, 2017.
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Unifying perspective: Optimal Steady-State Control3

Plant
Optimality

Model
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Integral
Control

ymu

w
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ε
ξ

uom

Optimality Model: creates optimality error signal ε

Integral Control: integrates error ε

Stabilizing Controller: stabilizes closed-loop system

3
L. Lawrence, JWSP, E. Mallada “Linear-convex optimal steady-state control,” TAC, Submitted.
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Practical challenges
We have discussed structural and architectural aspects, but . . .

1 Dynamic models are highly uncertain and time-varying

Device models often either unknown or not maintained

High-order governor models, deadbands, saturation all important

Machines dispatched in and out of system every ≈ 15 mins

Load characteristics change dramatically day-to-day

Even DC gain (β−1) of system can vary by a factor of 2–3!

Possible approach: data-driven + gain-scheduled methods

2 Communication infrastructure challenges

If it ain’t broke, don’t upgrade it

High-bandwidth control over comm. channels perceived as risky
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Questions

https://ece.uwaterloo.ca/~jwsimpso/

jwsimpson@uwaterloo.ca
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