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f A restoration time

inertial
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inter-area

frequency nadir oscillations

\ ROCOF (max rate of change of frequency)

© Physical inertia instantly provides decentralized derivative control

@ Decentralized primary loops at devices provide proportional control

Disturbance attenuation |

© System-wide secondary loop provides centralized integral control

Disturbance rejection J
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Response to disturbance in a real power system

50.02
f[Hz]
50.01 Primary Control
50.00 &

[\ f - Setpoint ﬁ
49.99 ‘ h H
49.98 y A

j [Secondary Control] "V ‘
49.96 ¥
49.95 *PP Outage ﬂ J Oscillation/Control

A
©
©
g

e

49.93 2 /‘ \
4092 006 Arh v
49.91 09 l w‘\-/ T

- K "4

> 5s
49.90 1 % i+
<. 2340 16:53:45

49.89 | %
4988 1

16:45:00 16:50:00 16:55:00 17:00:00 17:05:00 17:10:00 17:15:00

3 8. Dezember 2004
= Frequency Mettlen, Switzerland

—— Frequency Athens

Source: W. Sattinger, Swissgrid

2/16



When secondary frequency control goes wrong . ..

Grid projects About us Customers de fr it en SWi ssgri d

6 March 2018 | News
Frequency deviation in continental
European grid leads to grid time deviations

“The missing energy amounts currently to 113 GWh ... The decrease . .. is
affecting also those electric clocks that are steered by the frequency of the

power system . ..they show currently a delay of close to six minutes.”

—ENTSO-E Press Release

power supplied
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Modern challenges for control engineers

@ Declining inertia and load-frequency responsiveness

0

LEER SRR A

o Sensitive system
o Large and frequent deviations

4/16



Modern challenges for control engineers

@ Declining inertia and load-frequency responsiveness

0

LEER SRR A

o Sensitive system
o Large and frequent deviations

@ Heterogeneous small-scale power sources

e Many small but fast sources
o Fast freq. regulation markets

4/16



Modern challenges for control engineers

@ Declining inertia and load-frequency responsiveness

LEER SRR ER R

o Sensitive system
o Large and frequent deviations

@ Heterogeneous small-scale power sources

e Many small but fast sources
o Fast freq. regulation markets

Opportunities for control engineers
@ Inverter-based resources and fast communication

@ Hierarchical control of many small devices
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Simple dynamic models for frequency control (single area)

lap,
Apret Power Aw
System
Control inputs: Power set-points to devices AP,-ref
Meas. / Controlled output: Frequency error Aw;

Unknown disturbances: Uncontrolled load/generation AP, ;

Aé,’ = Aw,—,

) n
M; Ao = — ijl Ti(A0; — AG;) — DiAw; + APy i + AP ;
TiAPy; = —APy i — Ry Aw; + AP,
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Fundamental insights from output regulation theory

Johnson, Davison, Francis, Wonham . ..
System models are BIBO stable with steady-state given by

Aw= 1117 (AP, + AP, =Y (Di+Ri}).
\ / i b

=Gy (DC Gain) _
Total proportional gain

6/16



Fundamental insights from output regulation theory

Johnson, Davison, Francis, Wonham . ..
System models are BIBO stable with steady-state given by

Aw= 1117 (AP, + AP, =Y (Di+Ri}).
\ / i b

=Gy (DC Gain) _
Total proportional gain

Q Insight #1: Aw € span(1,) <= “frequency is global’

6/16



Fundamental insights from output regulation theory

Johnson, Davison, Francis, Wonham . ..
System models are BIBO stable with steady-state given by

Aw= 1117 (AP, + AP, =Y (Di+Ri}).
\ / i b

=Gy (DC Gain) _
Total proportional gain

Q Insight #1: Aw € span(1,) <= “frequency is global’

@ Insight #2: Only sum of powers matters = Resource allocation

6/16



Fundamental insights from output regulation theory

Johnson, Davison, Francis, Wonham . ..
System models are BIBO stable with steady-state given by

Aw= 1117 (AP, + AP, =Y (Di+Ri}).
\ / i b

=Gy (DC Gain) _
Total proportional gain

Q Insight #1: Aw € span(1,) <= “frequency is global’
@ Insight #2: Only sum of powers matters = Resource allocation

@ Insight #3: rank(Gp) = 1, which means ...

Only one frequency integrator permitted in any internally
stable secondary control system!
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Optimal allocation of secondary resources

Optimally allocate inputs subject to power balance and limits

. Equivalent:
... J; A,D.ref
minimize Zi:l (AP) (i) Power balance

subject to Z'_"Zl AP + AP =0 (ii) Regulation Aw =0

AP € {power limits} .
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Optimal allocation of secondary resources

Optimally allocate inputs subject to power balance and limits

minimize Z"’—l Ji(APF)

subject to 27_1 AP 4+ AP, ;=0

AP € {power limits} .

Equivalent:

(i) Power balance
(i) Regulation Aw =0

Solve w/ Aw feedback + Lagrange coordination

)

Integral
Control

A Pref
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Power
System

Y
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Hierarchical or distributed coordination
First-order optimality condition: 3\ s.t. Vi VJ,-(AP}”ef) =\

How to enforce this equal marginal cost condition?J
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Hierarchical or distributed coordination
First-order optimality condition: 3\ s.t. Vi VJ;(APe) = A,

How to enforce this equal marginal cost condition?J

@ Centralized approach:

71 = —AwWneas APref (VJ) ( )
—_———
Central integral action Allocation rule

@ Distributed approach (consensus version):

T = —Dwi — Y ay(ni — n)) AP = (V)" (m)
=1

Allocation rule

Distributed integral action
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Centralized architecture

Centralized Integrator
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Distributed architecture
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e Communication graph has a globally reachable node (nec. & suff.)
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Distributed vs. centralized
Simulation on New England 39 Bus System®
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F. Dorfler and S. Grammatico, “Gather-and-broadcast frequency control in power systems,” Automatica, 2017.
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Hierarchical or distributed coordination contd.

© Distributed approach (primal-dual version) uses

e virtual phase angles 0

o virtual flow on line £ = (i,}) as p, = T¢(8; — 6;)
minimize 27:1 Ji(APFY) + %D,-(Aw,-)2
subject to AP, ; + APl — DiAw; = Zj Ao

APy + AP = 3 Ty(6i - §)
J

Now apply primal-descent and dual-ascent to Lagrangian £
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Hierarchical or distributed coordination contd.

© Distributed approach (primal-dual version) uses
° vhtualphaseangksé
o virtual flow on line £ = (i,}) as p, = T¢(8; — 6;)
n
minimize Zi:l Ji(APFY) + %D,-(A(,u,-)2
subject to APy + AP/ — DjAw; =Y Aupy
J

APy + AP = 3 Ty(6i - §)
J

Now apply primal-descent and dual-ascent to Lagrangian £

Primal dynamics: Embeds natural system dynamics
Dual dynamics: Distributed control J
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Primal-dual method

Simulation on New England 39 Bus System?
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2E. Mallada and C. Zhao and S. Low, “Optimal Load-Side Control for Frequency Regulation ...,” IEEE TAC, 2017.
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Unifying perspective: Optimal Steady-State Control®
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3L. Lawrence, JWSP, E. Mallada “Linear-convex optimal steady-state control,” TAC, Submitted.
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Unifying perspective: Optimal Steady-State Control®

Uom
! lw :
1 Y
Integral | 7 | Stabilizing| v P Ym | Optimality
Control "| Controller i ant .| Model
T 7y Y ! :
L £l
____________________________ D

Optimality Model: creates optimality error signal €
Integral Control: integrates error €

Stabilizing Controller: stabilizes closed-loop system

3L. Lawrence, JWSP, E. Mallada “Linear-convex optimal steady-state control,” TAC, Submitted.
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Practical challenges

We have discussed structural and architectural aspects, but ...

@ Dynamic models are highly uncertain and time-varying

e Device models often either unknown or not maintained

High-order governor models, deadbands, saturation all important

Machines dispatched in and out of system every ~ 15 mins

Load characteristics change dramatically day-to-day

Even DC gain (371) of system can vary by a factor of 2-3!

Possible approach: data-driven + gain-scheduled methods J

@ Communication infrastructure challenges
e If it ain’t broke, don't upgrade it
o High-bandwidth control over comm. channels perceived as risky
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Questions

https://ece.uwaterloo.ca/~jwsimpso/
jwsimpson@uwaterloo.ca
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