The Optimal Steady-State Control Problem

John W. Simpson-Porco

Automatic Control Laboratory ETH Zürich

January 29, 2019

This talk is based on this paper

SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL. THIS VERSION: OCTOBER 15, 2018

The Optimal Steady-State Control Problem

Liam S. P. Lawrence Student Member, IEEE, John W. Simpson-Porco, Member, IEEE, and Enrique Mallada Member, IEEE

Submitted to IEEE Transactions on Automatic Control

Liam S. P. Lawrence University of Waterloo

Enrique Mallada John's Hopkins Univ. 1

Control Systems 101

• Prototypical feedback control problem is **tracking** and **disturbance rejection** in the presence of non-negligible **model uncertainty**

• Exact robust asymptotic tracking achieved if loop gain "incorporates ... a suitably reduplicated model of the dynamic structure of the exogenous signal"

How is the reference r being determined?

Control Systems 101

• Prototypical feedback control problem is **tracking** and **disturbance rejection** in the presence of non-negligible **model uncertainty**

• Exact robust asymptotic tracking achieved if loop gain "incorporates ... a suitably reduplicated model of the dynamic structure of the exogenous signal"

How is the reference *r* being determined?

Control Systems 101

• Prototypical feedback control problem is **tracking** and **disturbance rejection** in the presence of non-negligible **model uncertainty**

• Exact robust asymptotic tracking achieved if loop gain "incorporates ... a suitably reduplicated model of the dynamic structure of the exogenous signal"

How is the reference r being determined?

Feedforward Optimization of Large-Scale Systems

Feedback Optimization of Large-Scale Systems

Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Feedback Design/Analysis	Unchanged	More difficult
Computational Effort	Moderate	???

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Feedback Design/Analysis	Unchanged	More difficult
Computational Effort	Moderate	???

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Robustness Feedback Design/Analysis	No Unchanged	Yes More difficult

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Feedback Design/Analysis	Unchanged	More difficult
Computational Effort	Moderate	???

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Feedback Design/Analysis	Unchanged	More difficult
Computational Effort	Moderate	???

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Feedback Design/Analysis	Unchanged	More difficult
Computational Effort	Moderate	777

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Feedback Design/Analysis	Unchanged	More difficult
Computational Effort		222

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

Given:

- a dynamic system model with
 - a *class* of external disturbances w(t)
 - an uncertainty specification (e.g., parametric)
- **2** a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized
- **(**) an optimization problem in y

Design, if possible, a feedback controller such that

closed-loop is (robustly) well-posed and internally stable
the regulated output tracks its optimal value

 $\lim_{t\to\infty}y(t)-y^*(t)=0\,,\qquad\forall w,\;\forall\;\text{uncertainties}$

Given:

- a dynamic system model with
 - a *class* of external disturbances w(t)
 - an uncertainty specification (e.g., parametric)
- **2** a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized
- **(**) an optimization problem in y

Design, if possible, a feedback controller such that

- closed-loop is (robustly) well-posed and internally stable
 - 2 the regulated output tracks its optimal value

 $\lim_{t\to\infty} y(t) - y^{\star}(t) = 0, \qquad \forall w, \ \forall \text{ uncertainties}$

Given:

- a dynamic system model with
 - a *class* of external disturbances w(t)
 - an uncertainty specification (e.g., parametric)
- **2** a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized

() an optimization problem in y

Design, if possible, a feedback controller such that

- I closed-loop is (robustly) well-posed and internally stable
- the regulated output tracks its optimal value

$$\lim_{t\to\infty}y(t)-y^{\star}(t)=0\,,\qquad\forall w,\;\forall\;\text{uncertainties}$$

LTI-Convex OSS Control: Setup Overview

1 Uncertain LTI dynamics

$$\begin{split} \dot{x} &= A(\delta)x + B(\delta)u + B_w(\delta)w\\ y_{\rm m} &= C_{\rm m}(\delta)x + D_{\rm m}(\delta) + Q_{\rm m}(\delta)w\\ y &= C(\delta)x + D(\delta)u + Q(\delta)w \end{split}$$

• $\delta = \text{parametric uncertainty}, w = \text{const. disturbances}$

- $y_{\rm m} =$ system measurements available for feedback
- y = arbitrary system states/inputs to be robustly optimized
- 2 a steady-state convex optimization problem

$$y^{\star}(w,\delta) = \operatorname*{argmin}_{y \in \mathbb{R}^p} \{f(y,w) \; : \; y \in \mathcal{C}(w,\delta)\}$$

LTI-Convex OSS Control: Setup Overview

1 Uncertain LTI dynamics

$$\begin{split} \dot{x} &= A(\delta)x + B(\delta)u + B_w(\delta)w\\ y_{\rm m} &= C_{\rm m}(\delta)x + D_{\rm m}(\delta) + Q_{\rm m}(\delta)w\\ y &= C(\delta)x + D(\delta)u + Q(\delta)w \end{split}$$

• δ = parametric uncertainty, w = const. disturbances

- $y_{\rm m} =$ system measurements available for feedback
- y = arbitrary system states/inputs to be robustly optimized
- a steady-state convex optimization problem

$$y^{\star}(w,\delta) = \operatorname*{argmin}_{y \in \mathbb{R}^p} \{f(y,w) \; : \; y \in \mathcal{C}(w,\delta)\}$$

Forced equilibria $(\bar{x}, \bar{u}, \bar{y})$ satisfy $\begin{aligned} & \emptyset = A(\delta)\bar{x} + B(\delta)\bar{u} + B_w(\delta)w \\ & \bar{y} = C(\delta)\bar{x} + D(\delta)\bar{u} + Q(\delta)w \end{aligned}$

This defines an affine set of achievable steady-state outputs

$$\overline{Y}(w,\delta) = (ext{offset vector}) + V(\delta)$$

Note: Due to

- **(**) selection of variables $y \in \mathbb{R}^p$ to be optimized, and/or
- 2 structure of model matrices (A, B, C, D, B_w, Q)

it may be that $\overline{Y}(w,\delta) \subset \mathbb{R}^p$

constraint $\iff \overline{y} \in \overline{Y}(w, \delta)$ cannot be ignored

Forced equilibria $(\bar{x}, \bar{u}, \bar{y})$ satisfy $\begin{aligned} & 0 &= A(\delta)\bar{x} + B(\delta)\bar{u} + B_w(\delta)w \\ & \bar{y} &= C(\delta)\bar{x} + D(\delta)\bar{u} + Q(\delta)w \end{aligned}$

This defines an affine set of achievable steady-state outputs

$$\overline{Y}(w,\delta) = (ext{offset vector}) + V(\delta)$$

Note: Due to

- **(**) selection of variables $y \in \mathbb{R}^p$ to be optimized, and/or
- **2** structure of model matrices (A, B, C, D, B_w, Q)

it may be that $\overline{Y}(w,\delta) \subset \mathbb{R}^p$

constraint $\Longleftrightarrow ar{y} \in \overline{Y}(w, \delta)$ cannot be ignored

Desired regulated output $y^*(w, \delta)$ solution to

minimize
 $y \in \mathbb{R}^p$ f(y, w)(convex cost)subject to $y \in \overline{Y}(w, \delta) = y(w, \delta) + V(\delta)$ (equilibrium)Hy = Lw(engineering equality) $k_i(y, w) \le 0$ (engineering inequality)

Equilibrium constraints ensure **compatibility** between the plant and the optimization problem

 \implies guarantees a steady-state exists s.t. $y = y^*(w, \delta)$.

Desired regulated output $y^*(w, \delta)$ solution to

$$\begin{array}{ll} \underset{y \in \mathbb{R}^{p}}{\text{minimize}} & f(y, w) & (\text{convex cost}) \\ \text{subject to} & y \in \overline{Y}(w, \delta) = y(w, \delta) + V(\delta) & (\text{equilibrium}) \\ & Hy = Lw & (\text{engineering equality}) \\ & k_{i}(y, w) \leq 0 & (\text{engineering inequality}) \end{array}$$

Equilibrium constraints ensure **compatibility** between the plant and the optimization problem

 \implies guarantees a steady-state exists s.t. $y = y^*(w, \delta)$.

Desired regulated output $y^*(w, \delta)$ solution to

$$\begin{array}{ll} \underset{y \in \mathbb{R}^{p}}{\operatorname{minimize}} & f(y, w) & (\operatorname{convex \ cost}) \\ \text{subject to} & y \in \overline{Y}(w, \delta) = y(w, \delta) + V(\delta) & (\text{equilibrium}) \\ & Hy = Lw & (\text{engineering equality}) \\ & k_{i}(y, w) \leq 0 & (\text{engineering inequality}) \end{array}$$

Equilibrium constraints ensure **compatibility** between the plant and the optimization problem

 \implies guarantees a steady-state exists s.t. $y = y^*(w, \delta)$.

Desired regulated output $y^*(w, \delta)$ solution to

$$\begin{array}{ll} \underset{y \in \mathbb{R}^{\rho}}{\text{minimize}} & f(y, w) & (\text{convex cost}) \\ \text{subject to} & y \in \overline{Y}(w, \delta) = y(w, \delta) + V(\delta) & (\text{equilibrium}) \\ & Hy = Lw & (\text{engineering equality}) \\ & k_i(y, w) \leq 0 & (\text{engineering inequality}) \end{array}$$

Equilibrium constraints ensure **compatibility** between the plant and the optimization problem

 \implies guarantees a steady-state exists s.t. $y = y^*(w, \delta)$.

Desired regulated output $y^*(w, \delta)$ solution to

$$\begin{array}{ll} \underset{y \in \mathbb{R}^{\rho}}{\text{minimize}} & f(y, w) & (\text{convex cost}) \\ \text{subject to} & y \in \overline{Y}(w, \delta) = y(w, \delta) + V(\delta) & (\text{equilibrium}) \\ & Hy = Lw & (\text{engineering equality}) \\ & k_i(y, w) \leq 0 & (\text{engineering inequality}) \end{array}$$

Equilibrium constraints ensure **compatibility** between the plant and the optimization problem

 \implies guarantees a steady-state exists s.t. $y = y^*(w, \delta)$.

An **optimality model** filters the available measurements to robustly produce a proxy error ϵ for the true tracking error $e = y^*(w, \delta) - y$

Steady-state requirement: if the plant and optimality model are both in equilibrium and $\epsilon = 0$, then $y = y^*(w, \delta)$.

An **optimality model** filters the available measurements to robustly produce a proxy error ϵ for the true tracking error $e = y^*(w, \delta) - y$

Steady-state requirement: if the plant and optimality model are both in equilibrium and $\epsilon = 0$, then $y = y^*(w, \delta)$.

An **optimality model** filters the available measurements to robustly produce a proxy error ϵ for the true tracking error $e = y^*(w, \delta) - y$

Steady-state requirement: if the plant and optimality model are both in equilibrium and $\epsilon = 0$, then $y = y^*(w, \delta)$.

An **optimality model** filters the available measurements to robustly produce a proxy error ϵ for the true tracking error $e = y^*(w, \delta) - y$

Steady-state requirement: if the plant and optimality model are both in equilibrium and $\epsilon = 0$, then $y = y^*(w, \delta)$.

General Architecture for OSS Control

Optimality model reduces OSS control to output regulation

Optimality Model: creates proxy error signal ϵ Integral Control: integrates ϵ Stabilizing Controller: stabilizes closed-loop system

General Architecture for OSS Control

Optimality model reduces OSS control to output regulation

Optimality Model: creates proxy error signal ϵ

Integral Control: integrates ϵ

Stabilizing Controller: stabilizes closed-loop system
General Architecture for OSS Control

Optimality model reduces OSS control to output regulation

Optimality Model: creates proxy error signal ϵ Integral Control: integrates ϵ Stabilizing Controller: stabilizes closed-loop system

General Architecture for OSS Control

Optimality model reduces OSS control to output regulation

Optimality Model: creates proxy error signal ϵ Integral Control: integrates ϵ Stabilizing Controller: stabilizes closed-loop system

Robustness Issues in Constructing Optimality Models

Can we implement an optimality model that is *robust* against δ ?

 $\begin{array}{ll} \underset{y \in \mathbb{R}^{p}}{\operatorname{minimize}} & f(y, w) \\ \text{subject to} & y \in \overline{Y}(w, \delta) = \mathsf{y}(w, \delta) + V(\delta) \\ & Hy = Lw \\ & Jy \leq Mw \end{array}$

Optimality condition:

$$\nabla f(y^{\star}, w) + J^{\mathsf{T}} \nu^{\star} \perp (V(\delta) \cap \operatorname{null}(H))$$

possibly depends on uncertain parameter δ .

Robustness Issues in Constructing Optimality Models

Can we implement an optimality model that is *robust* against δ ?

 $\begin{array}{ll} \underset{y \in \mathbb{R}^{p}}{\operatorname{minimize}} & f(y, w) \\ \text{subject to} & y \in \overline{Y}(w, \delta) = \mathsf{y}(w, \delta) + V(\delta) \\ & Hy = Lw \\ & Jy \leq Mw \end{array}$

Optimality condition:

$$\nabla f(y^{\star}, w) + J^{\mathsf{T}}\nu^{\star} \perp (V(\delta) \cap \operatorname{null}(H))$$

possibly depends on uncertain parameter δ .

Robustness Issues in Constructing Optimality Models

Can we implement an optimality model that is *robust* against δ ?

 $\begin{array}{ll} \underset{y \in \mathbb{R}^{p}}{\operatorname{minimize}} & f(y, w) \\ \text{subject to} & y \in \overline{Y}(w, \delta) = \mathsf{y}(w, \delta) + V(\delta) \\ & Hy = Lw \\ & Jy \leq Mw \end{array}$

Optimality condition:

$$\nabla f(y^{\star}, w) + J^{\mathsf{T}} \nu^{\star} \perp (V(\delta) \cap \operatorname{null}(H))$$

possibly depends on uncertain parameter δ .

Robustness Issues (cont.)

When can an optimality model encode the gradient KKT condition?

$$\nabla f(y^{\star}, w) + J^{\mathsf{T}}\nu^{\star} \perp (V(\delta) \cap \operatorname{null}(H))$$

Robust Feasible Subspace Property $V(\delta) \cap \text{null}(H)$ is independent of δ

Robustness Issues (cont.)

When can an optimality model encode the gradient KKT condition?

$$abla f(y^{\star}, w) + J^{\mathsf{T}} \nu^{\star} \perp (V(\delta) \cap \operatorname{null}(H))$$

Robust Feasible Subspace Property $V(\delta) \cap \operatorname{null}(H)$ is independent of δ

Robustness Issues (cont.)

When can an optimality model encode the gradient KKT condition?

$$\nabla f(y^{\star}, w) + J^{\mathsf{T}} \nu^{\star} \perp (V(\delta) \cap \operatorname{null}(H))$$

Robust Feasible Subspace Property $V(\delta) \cap \operatorname{null}(H)$ is independent of δ

Robust Feasible Subspace Optimality Model

If Robust Feasible Subspace property holds, then

$$\dot{\nu} = \max(\nu + Jy - Mw, 0) - \nu$$

$$\epsilon = \begin{bmatrix} Hy - Lw \\ T_0^{\mathsf{T}} (\nabla f(y, w) + J^{\mathsf{T}} \nu) \end{bmatrix}$$

$$range(T_0) = V(\delta) \cap null(H)$$

is an optimality model for the LTI-Convex OSS Control Problem.

Comments:

1 $T_0^{\mathsf{T}} z$ extracts component of z in subspace $V(\delta) \cap \operatorname{null}(H)$:

 $\epsilon_2 = 0 \qquad \Longleftrightarrow \qquad \nabla f(y, w) + J^{\mathsf{T}} \nu \perp V(\delta) \cap \operatorname{null}(H)$

Oifferent equivalent formulations of optimization problem give different optimality models

Robust Feasible Subspace Optimality Model

If Robust Feasible Subspace property holds, then

$$\dot{\nu} = \max(\nu + Jy - Mw, 0) - \nu$$

$$\epsilon = \begin{bmatrix} Hy - Lw \\ T_0^{\mathsf{T}} (\nabla f(y, w) + J^{\mathsf{T}} \nu) \end{bmatrix}$$

range(
$$T_0$$
)
= V(δ) \cap null(H)

is an optimality model for the LTI-Convex OSS Control Problem.

Comments:

1 $T_0^{\mathsf{T}} z$ extracts component of z in subspace $V(\delta) \cap \operatorname{null}(H)$:

$$\epsilon_2 = \mathbb{O} \quad \iff \quad \nabla f(y, w) + J^{\mathsf{T}} \nu \perp V(\delta) \cap \operatorname{null}(H)$$

Oifferent equivalent formulations of optimization problem give different optimality models

Robust Feasible Subspace Optimality Model

If Robust Feasible Subspace property holds, then

$$\dot{\nu} = \max(\nu + Jy - Mw, 0) - \nu$$

$$\epsilon = \begin{bmatrix} Hy - Lw \\ T_0^{\mathsf{T}} (\nabla f(y, w) + J^{\mathsf{T}} \nu) \end{bmatrix}$$

range(
$$T_0$$
)
= V(δ) \cap null(H)

is an optimality model for the LTI-Convex OSS Control Problem.

Comments:

• $T_0^{\mathsf{T}}z$ extracts component of z in subspace $V(\delta) \cap \operatorname{null}(H)$:

$$\epsilon_2 = \mathbb{O} \quad \iff \quad \nabla f(y, w) + J^{\mathsf{T}} \nu \perp V(\delta) \cap \operatorname{null}(H)$$

Oifferent equivalent formulations of optimization problem give different optimality models

Robust Output Subspace Optimality Model

If furthermore $V(\delta)$ itself is independent of δ , then

$$\begin{split} \dot{\mu} &= Hy - Lw \\ \dot{\nu} &= \max(\nu + Jy - Mw, \mathbb{O}) - \nu \\ \epsilon &= R_0^{\mathsf{T}} (\nabla g(y, w) + H^{\mathsf{T}} \mu + J^{\mathsf{T}} \nu) \end{split}$$

range $R_0 = V(\delta)$ (Design freedom!)

is also an optimality model for the LTI-Convex OSS Control Problem.

1 Can take $R_0 = I$ if $V(\delta) = \mathbb{R}^p$, which holds if

 $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \text{ has full row rank } \iff \begin{array}{c} \text{No transmission zeros} \\ \text{at } s = 0 \end{array}$

Again, different equivalent formulations of optimization problem give different optimality models

Robust Output Subspace Optimality Model

If furthermore $V(\delta)$ itself is independent of δ , then

$$\begin{split} \dot{\mu} &= Hy - Lw \\ \dot{\nu} &= max(\nu + Jy - Mw, 0) - \nu \\ \epsilon &= R_0^{\mathsf{T}} (\nabla g(y, w) + H^{\mathsf{T}} \mu + J^{\mathsf{T}} \nu) \end{split}$$

range $R_0 = V(\delta)$ (Design freedom!)

is also an optimality model for the LTI-Convex OSS Control Problem.

• Can take $R_0 = I$ if $V(\delta) = \mathbb{R}^p$, which holds if

 $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \text{ has full row rank } \iff \begin{array}{c} \text{No transmission zeros} \\ \text{at } s = 0 \end{array}$

2 Again, different equivalent formulations of optimization problem give different optimality models

Robust Output Subspace Optimality Model

If furthermore $V(\delta)$ itself is independent of δ , then

$$\begin{split} \dot{\mu} &= Hy - Lw \\ \dot{\nu} &= max(\nu + Jy - Mw, 0) - \nu \\ \epsilon &= R_0^{\mathsf{T}} (\nabla g(y, w) + H^{\mathsf{T}} \mu + J^{\mathsf{T}} \nu) \end{split}$$

range $R_0 = V(\delta)$ (Design freedom!)

is also an optimality model for the LTI-Convex OSS Control Problem.

() Can take
$$R_0 = I$$
 if $V(\delta) = \mathbb{R}^p$, which holds if

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \text{ has full row rank } \iff \begin{array}{c} \text{No transmission zeros} \\ \text{at } s = 0 \end{array}$$

Again, different equivalent formulations of optimization problem give different optimality models

Towards an internal model principle

$$\epsilon = \begin{bmatrix} Hy - Lw \\ T_0^{\mathsf{T}} \nabla f(y, w) \end{bmatrix}$$

$$\operatorname{range}(T_0) = \mathsf{V}(\delta) \cap \operatorname{null}(H)$$

Interpretation: Exact robust asymptotic optimization achieved if loop *incorporates a model of the optimal set of the optimization problem*

Stabilizer Design

Stabilizer design options:

- full-order dynamic robust controller synthesis
- 2 low-gain integral control $u = -K\eta$ (Davison '76)
- any heuristic, local linearized LQ design, ...

Closed-loop analysis:

Time-scale separation, robust control

Linearized dynamics of network of generators

$$\begin{split} \Delta \dot{\theta}_i &= \Delta \omega_i \,, \\ M_i \Delta \dot{\omega}_i &= -\sum_{j=1}^n T_{ij} (\Delta \theta_i - \Delta \theta_j) - D_i \Delta \omega_i + \Delta P_{\mathrm{m},i} + \Delta P_{\mathrm{u},i} \\ T_{\mathrm{ch},i} \Delta \dot{P}_{\mathrm{m},i} &= -\Delta P_{\mathrm{m},i} + \Delta P_{\mathrm{g},i} \\ T_{\mathrm{g},i} \Delta \dot{P}_{\mathrm{g},i} &= -\Delta P_{\mathrm{g},i} - R_{\mathrm{d},i}^{-1} \Delta \omega_i + \Delta P_i^{\mathrm{ref}} \,. \end{split}$$

2 Economically select equilibrium reserve powers ΔP_i^{ref} subject to balance of supply and demand (control and disturbances)

$$egin{array}{lll} {} & {\displaystyle \sum}_{i=1}^{n} J_{i}(P_{i}^{\mathrm{ref}}+\Delta P_{i}^{\mathrm{ref}}) \ {} & {\displaystyle \sum}_{i=1}^{n} (\Delta P_{\mathrm{u},i}+\Delta P_{i}^{\mathrm{ref}}) = 0 \end{array}$$

Linearized dynamics of network of generators

$$\begin{split} \Delta \dot{\theta}_i &= \Delta \omega_i \,, \\ M_i \Delta \dot{\omega}_i &= -\sum_{j=1}^n T_{ij} (\Delta \theta_i - \Delta \theta_j) - D_i \Delta \omega_i + \Delta P_{\mathrm{m},i} + \Delta P_{\mathrm{u},i} \\ T_{\mathrm{ch},i} \Delta \dot{P}_{\mathrm{m},i} &= -\Delta P_{\mathrm{m},i} + \Delta P_{\mathrm{g},i} \\ T_{\mathrm{g},i} \Delta \dot{P}_{\mathrm{g},i} &= -\Delta P_{\mathrm{g},i} - R_{\mathrm{d},i}^{-1} \Delta \omega_i + \Delta P_i^{\mathrm{ref}} \,. \end{split}$$

2 Economically select equilibrium reserve powers ΔP_i^{ref} subject to balance of supply and demand (control and disturbances)

$$egin{array}{lll} {\displaystyle \min_{\Delta P_i^{
m ref} \in \mathbb{R}^n}} & \sum_{i=1}^n J_i(P_i^{
m ref} + \Delta P_i^{
m ref}) \ {\displaystyle {
m subject to}} & \sum_{i=1}^n (\Delta P_{{
m u},i} + \Delta P_i^{
m ref}) = 0 \end{array}$$

Equivalent formulations of steady-state dispatch problem

$$\begin{array}{l} \underset{P^{\mathrm{ref}} \in \mathbb{R}^n}{\text{minimize}} \quad \sum_{i=1}^n J_i(P_i^{\mathrm{ref}}) \\ \text{subject to} \sum_{i=1}^n (P_{\mathrm{u},i} + P_i^{\mathrm{ref}}) = 0 \end{array}$$

 $\begin{array}{ll} \underset{P^{\mathrm{ref}} \in \mathbb{R}^n}{\text{minimize}} & \sum\nolimits_{i=1}^n J_i(P_i^{\mathrm{ref}}) \\ \text{subject to } F\Delta\omega = \mathbb{0} \end{array}$

(ROS Property √)

(RFS Property)

Equivalent formulations of steady-state dispatch problem

$$\begin{array}{ll} \underset{P^{\mathrm{ref}} \in \mathbb{R}^{n}}{\text{minimize}} & \sum_{i=1}^{n} J_{i}(P_{i}^{\mathrm{ref}}) \\ \text{subject to} \sum_{i=1}^{n} (P_{\mathrm{u},i} + P_{i}^{\mathrm{ref}}) = 0 \end{array}$$

 $\begin{array}{ll} \underset{P^{\mathrm{ref}} \in \mathbb{R}^n}{\text{minimize}} & \sum_{i=1}^n J_i(P_i^{\mathrm{ref}}) \\ \text{subject to } F\Delta\omega = 0 \end{array}$

(ROS Property \checkmark)

(RFS Property ✓)

OSS Framework Recovers Recent Controllers

Distributed-Averaging Integral Control

$$k_i \dot{\eta}_i = -\Delta \omega_i - \sum_{j=1}^n a_{ij} (\eta_i - \eta_j), \quad P_i^{\text{ref}} = (\nabla J_i)^{-1} (\eta_i)$$

Output AGC / Gather-and-Broadcast Control

$$\dot{\eta} = \operatorname{average}(\omega_i), \qquad P_i^{\operatorname{ref}} = (\nabla J_i)^{-1}(\eta)$$

In Primal-dual algorithm

$$\begin{split} \dot{\mu}_i &= -\nabla J_i(\mu_i) - \nu , \qquad P_i^{\text{ref}} = \mu_i \\ \dot{\nu} &= \sum_{i=1}^n (P_{\mathrm{u},i} + \mu_i) \end{split}$$

OSS Framework Recovers Recent Controllers

O Distributed-Averaging Integral Control

$$k_i\dot{\eta}_i = -\Delta\omega_i - \sum_{j=1}^n a_{ij}(\eta_i - \eta_j), \quad P_i^{ ext{ref}} = (
abla J_i)^{-1}(\eta_i)$$

AGC / Gather-and-Broadcast Control

$$\dot{\eta} = \operatorname{average}(\omega_i), \qquad P_i^{\operatorname{ref}} = (\nabla J_i)^{-1}(\eta)$$

Operation of the second sec

$$\dot{\mu}_i = -\nabla J_i(\mu_i) - \nu, \qquad P_i^{\text{ref}} = \mu_i$$
$$\dot{\nu} = \sum_{i=1}^n (P_{u,i} + \mu_i)$$

OSS Framework Recovers Recent Controllers

O Distributed-Averaging Integral Control

$$k_i\dot{\eta}_i = -\Delta\omega_i - \sum_{j=1}^n a_{ij}(\eta_i - \eta_j), \quad P_i^{\mathrm{ref}} = (\nabla J_i)^{-1}(\eta_i)$$

AGC / Gather-and-Broadcast Control

$$\dot{\eta} = \mathsf{average}(\omega_i)\,, \qquad \mathcal{P}^{\mathrm{ref}}_i = (
abla J_i)^{-1}(\eta)$$

Optimal-dual algorithm

$$\dot{\mu}_i = -\nabla J_i(\mu_i) -
u$$
, $P_i^{\text{ref}} = \mu_i$
 $\dot{\nu} = \sum_{i=1}^n (P_{\mathrm{u},i} + \mu_i)$

Nonlinear OSS Control Problem

Nonlinear systems with time-varying disturbances in continuous or discrete-time

$$\dot{\eta} = \gamma(\eta, \epsilon) \xrightarrow{\eta} \dot{x}_{s} = f_{s}(x_{s}, \eta, \xi, y_{m}, \epsilon) \qquad u \qquad \dot{x} = f(x, u, w) \qquad y_{m} \qquad \dot{\xi} = \varphi(\xi, y_{m}) \\ u = h_{s}(x_{s}, \eta, \xi, y_{m}, \epsilon) \qquad u \qquad \dot{\chi} = h_{m}(x, u, w) \qquad \dot{\chi}_{m} \qquad \dot{\xi} = \phi(\xi, y_{m}) \\ \xi = h_{\epsilon}(\xi, y_{m}) \qquad \dot{\xi} = h_{\epsilon}(\xi, y_{m}) \\ \xi = h_{\epsilon}(\xi, y_{m}) \qquad \dot{\xi} = h_{\epsilon}(\xi, y_{m})$$

Conclusions

New control framework: Optimal Steady-State (OSS) Control

- O Robust feedback optimization of dynamic systems
- Optimality model reduces OSS problem to output reg. problem

Many pieces of theory wide open ...

- Sampled-data, decentralized, hierarchical, competitive, ...
- Performance improvement (e.g., feedforward, anti-windup)

Conclusions

New control framework: Optimal Steady-State (OSS) Control

- O Robust feedback optimization of dynamic systems
- ② Optimality model reduces OSS problem to output reg. problem

Many pieces of theory wide open ...

- Sampled-data, decentralized, hierarchical, competitive, ...
- Performance improvement (e.g., feedforward, anti-windup)

Details in paper on arXiv

SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL. THIS VERSION: OCTOBER 15, 2018

The Optimal Steady-State Control Problem

Liam S. P. Lawrence *Student Member, IEEE*, John W. Simpson-Porco, *Member, IEEE*, and Enrique Mallada *Member, IEEE*

https://arxiv.org/abs/1810.12892

Liam S. P. Lawrence University of Waterloo

Enrique Mallada John's Hopkins Univ.

Questions

https://ece.uwaterloo.ca/~jwsimpso/ jwsimpson@uwaterloo.ca

appendix

Is OSS Control just a standard tracking problem?

We want y to track $y^*(w, \delta)$, but two problems:

- unmeasured components of w change y*
- 2) y^{\star} depends on uncertainty δ (relevant if $\overline{Y} \subset \mathbb{R}^{
 ho})$

Standard tracking approach **infeasible** for quickly varying w(t), or large uncertainties δ , or particular choices of regulated outputs

Is OSS Control just a standard tracking problem?

We want y to track $y^*(w, \delta)$, but two problems:

- unmeasured components of w change y*
- 2 y^* depends on uncertainty δ (relevant if $\overline{Y} \subset \mathbb{R}^p$)

Standard tracking approach **infeasible** for quickly varying w(t), or large uncertainties δ , or particular choices of regulated outputs

Is OSS Control just a standard tracking problem?

We want y to track $y^*(w, \delta)$, but two problems:

- unmeasured components of w change y*
- 2 y^* depends on uncertainty δ (relevant if $\overline{Y} \subset \mathbb{R}^p$)

Standard tracking approach **infeasible** for quickly varying w(t), or large uncertainties δ , or particular choices of regulated outputs

Slide on EOA Approach

Example 1: Necessity of Equilibrium Constraints Consider the OSS control problem:

Dynamics:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u + \begin{bmatrix} 1 \\ 1 \end{bmatrix} w$$
$$y = \begin{bmatrix} x_1 \\ u \end{bmatrix}$$

Optimization problem:

What happens if we omit the equilibrium constraints?

$$\dot{\eta} = \nabla g(y)$$

 $u = -K\eta$

Example 1: Necessity of Equilibrium Constraints (cont.)

Example 2: Necessity of Robust Feasible Subspace

Consider the OSS control problem:

Oynamics:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 - \delta & 0 \\ 1 + \delta & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u + \begin{bmatrix} 1 \\ 1 \end{bmatrix} w$$
$$y = \begin{bmatrix} x_1 \\ u \end{bmatrix}$$

Optimization problem:

$$\begin{array}{ll} \underset{y \in \mathbb{R}^2}{\text{minimize}} & \frac{1}{2}y_1^2 + \frac{1}{2}y_2^2\\ \\ \text{subject to} & y \in \overline{Y}(w, \delta) = \mathsf{y}(w, \delta) + V(\delta) \end{array}$$

We can show
$$V(\delta) = \operatorname{span}\left\{ \begin{bmatrix} 1 \\ \delta \end{bmatrix} \right\} \Rightarrow V(\delta)$$
 dependent on δ .
Example 2: Necessity of Robust Feasible Subspace (cont.)

- We apply our scheme anyway supposing $\delta=\mathbf{0}$
- Optimality model + integral control yields...

 \Rightarrow achieve optimal cost of 0.1538.

If $\delta = 0.5$ in the true plant \Rightarrow achieve sub-optimal cost of 0.1599.

4 5 6

OSS Control in the Literature

The OSS controller architecture found throughout the literature on **real-time optimization**.

Problem [Nelson and Mallada '18] Design a feedback controller to drive the system

$$\dot{x}(t) = Ax(t) + B(u(t) + w)$$
$$y_{m}(t) = Cx(t) + D(u(t) + w)$$

to the solution of the optimization problem

 $\underset{x\in\mathbb{R}^{n}}{\operatorname{minimize}}\,f(x)\,.$

OSS Control in the Literature (cont.)

Controller Design

The **optimality model** is an observer with gradient output

$$\hat{x} = (A - LC)\hat{x} + (B - LD)(u + w) + Ly_{m}$$

$$\epsilon = -\nabla f(\hat{x}).$$

A PI controller serves as internal model and stabilizer

$$\dot{e}_I = \epsilon$$
, $u = K_I e_I + K_p \epsilon$.

OSS Control in the Literature (cont.)

Controller Design

The optimality model is an observer with gradient output

$$\hat{x} = (A - LC)\hat{x} + (B - LD)(u + w) + Ly_{m}$$

 $\epsilon = -\nabla f(\hat{x}).$

A PI controller serves as internal model and stabilizer

$$\dot{e}_I = \epsilon$$
, $u = K_I e_I + K_p \epsilon$.