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Control Systems 101

Prototypical feedback control problem is tracking and disturbance
rejection in the presence of non-negligible model uncertainty

Controller Plant
ur e y

−

w

Exact robust asymptotic tracking achieved if loop gain
“incorporates . . . a suitably reduplicated model of the dynamic
structure of the exogenous signal”

How is the reference r being determined?
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Feedforward Optimization of Large-Scale Systems

C1

P1
w1z1

C2

P2
w2z2

Cn

Pn
wnzn

Physical Coupling P0

(i.e., Infrastructure Dynamics)

wpzp

wmeas

r1 r2 rn

minimize
z,r

f (z) + g(r)

subject to (z , r) ∈ C(P̂, ŵ ,wmeas)
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Feedback Optimization of Large-Scale Systems
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Physical Coupling P0
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r1 r2 rn

ξ+ = fopt(ξ,wmeas, y , P̂, ŵ)

r = hopt(ξ,wmeas, y , P̂, ŵ)
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Feedforward vs. Feedback Optimization

Property Feedforward Feedback

Setpoint Quality ≈ Optimal ≈ Optimal

High-Fidelity Model Crucial Not crucial

Robustness No Yes

Feedback Design/Analysis Unchanged More difficult

Computational Effort Moderate ???

MPC: high computational effort, difficult analysis ⇒ Alternatives?

Compared to MPC, if we give a bit on trajectory optimality, can
we can gain a lot on ease of feedback design/analysis and

computational effort?
Here is a first cut of such an approach.
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Optimal Steady-State Control Problem Statement

Given:
1 a dynamic system model with

a class of external disturbances w(t)
an uncertainty specification (e.g., parametric)

2 a vector of outputs y ∈ Rp of system to be optimized

3 an optimization problem in y

Design, if possible, a feedback controller such that

1 closed-loop is (robustly) well-posed and internally stable

2 the regulated output tracks its optimal value

lim
t→∞

y(t)− y?(t) = 0 , ∀w , ∀ uncertainties
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LTI-Convex OSS Control: Setup Overview

1 Uncertain LTI dynamics

ẋ = A(δ)x + B(δ)u + Bw (δ)w

ym = Cm(δ)x + Dm(δ) + Qm(δ)w

y = C (δ)x + D(δ)u + Q(δ)w

δ = parametric uncertainty, w = const. disturbances

ym = system measurements available for feedback

y = arbitrary system states/inputs to be robustly optimized

2 a steady-state convex optimization problem

y?(w , δ) = argmin
y∈Rp

{f (y ,w) : y ∈ C(w , δ)}
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LTI-Convex OSS Control: Setup I

Forced equilibria (x̄ , ū, ȳ) satisfy
0 = A(δ)x̄ + B(δ)ū + Bw (δ)w

ȳ = C (δ)x̄ + D(δ)ū + Q(δ)w

This defines an affine set of achievable steady-state outputs

Y (w , δ) = (offset vector) + V (δ)

Note: Due to

1 selection of variables y ∈ Rp to be optimized, and/or

2 structure of model matrices (A,B,C ,D,Bw ,Q)

it may be that Y (w , δ) ⊂ Rp

constraint ⇐⇒ ȳ ∈ Y (w , δ) cannot be ignored
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LTI-Convex OSS Control: Setup II
Desired regulated output y?(w , δ) solution to

minimize
y∈Rp

f (y ,w) (convex cost)

subject to y ∈ Y (w , δ) = y(w , δ) + V (δ) (equilibrium)

Hy = Lw (engineering equality)

ki (y ,w) ≤ 0 (engineering inequality)

Equilibrium constraints ensure compatibility between the
plant and the optimization problem

=⇒ guarantees a steady-state exists s.t. y = y?(w , δ).

We want to track optimal output y?(w , δ)
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Optimality Models for OSS Control

An optimality model filters the available measurements to robustly
produce a proxy error ε for the true tracking error e = y?(w , δ)− y

Plant Optimality Model
u

w

ym ε

ξ = OM state

Steady-state requirement: if the plant and optimality model
are both in equilibrium and ε = 0, then y = y?(w , δ).

Driving ε to zero (+ internal stability) drives y to y?
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General Architecture for OSS Control
Optimality model reduces OSS control to output regulation

Plant
Optimality

Model
Stabilizing
Controller

Integral
Control

ymu

w

η

ε
ξ

uom

Optimality Model: creates proxy error signal ε

Integral Control: integrates ε

Stabilizing Controller: stabilizes closed-loop system
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Robustness Issues in Constructing Optimality Models

Can we implement an optimality model that is robust against δ?

minimize
y∈Rp

f (y ,w)

subject to y ∈ Y (w , δ) = y(w , δ) + V (δ)

Hy = Lw

Jy ≤ Mw

Optimality condition:

∇f (y?,w) + JTν? ⊥ (V (δ) ∩ null(H))

possibly depends on uncertain parameter δ.
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Robustness Issues (cont.)

When can an optimality model encode the gradient KKT condition?

∇f (y?,w) + JTν? ⊥ (V (δ) ∩ null(H))

Robust Feasible Subspace Property

V (δ) ∩ null(H) is independent of δ

null(H)

V (δ1)
V (δ2)
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Robust Feasible Subspace Optimality Model

If Robust Feasible Subspace property holds, then

ν̇ = max(ν + Jy −Mw ,0)− ν

ε =

[
Hy − Lw

T0
T(∇f (y ,w) + JTν)

] range(T0)

= V(δ)∩null(H)

(Design freedom!)

is an optimality model for the LTI-Convex OSS Control Problem.

Comments:

1 TT
0 z extracts component of z in subspace V(δ)∩null(H):

ε2 = 0 ⇐⇒ ∇f (y ,w) + JTν ⊥ V (δ) ∩ null(H)

2 Different equivalent formulations of optimization problem give
different optimality models
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Robust Output Subspace Optimality Model

If furthermore V (δ) itself is independent of δ, then

µ̇ = Hy − Lw

ν̇ = max(ν + Jy −Mw , 0)− ν
ε = R0

T(∇g(y ,w) + HTµ+ JTν)

range R0 = V(δ)

(Design freedom!)

is also an optimality model for the LTI-Convex OSS Control Problem.

1 Can take R0 = I if V (δ) = Rp, which holds if[
A B
C D

]
has full row rank ⇐⇒

No transmission zeros

at s = 0

2 Again, different equivalent formulations of optimization problem give
different optimality models
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Towards an internal model principle . . .

ε =

[
Hy − Lw

T0
T∇f (y ,w)

]
range(T0) = V(δ)∩null(H)

Plant
Optimality

Model
Stabilizing
Controller

Integral
Control

ymu

w

η

ε
ξ

uom

Interpretation: Exact robust asymptotic optimization
achieved if loop incorporates a model of the optimal set of

the optimization problem
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Stabilizer Design

Plant
Optimality

Model
Stabilizing
Controller

Integral
Control

ymu

w

η

ε
ξ

uom

Stabilizer design options:

1 full-order dynamic robust controller synthesis

2 low-gain integral control u = −Kη (Davison ’76)

3 any heuristic, local linearized LQ design, . . .

Closed-loop analysis:

1 Time-scale separation, robust control
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Optimal Frequency Regulation Problem

1 Linearized dynamics of network of generators

∆θ̇i = ∆ωi ,

Mi∆ω̇i = −
∑n

j=1
Tij(∆θi −∆θj)− Di∆ωi + ∆Pm,i + ∆Pu,i

Tch,i∆Ṗm,i = −∆Pm,i + ∆Pg,i

Tg,i∆Ṗg,i = −∆Pg,i − R−1
d,i ∆ωi + ∆Pref

i .

2 Economically select equilibrium reserve powers ∆Pref
i subject to

balance of supply and demand (control and disturbances)

minimize
∆Pref

i ∈Rn

∑n

i=1
Ji (P

ref
i + ∆Pref

i )

subject to
∑n

i=1
(∆Pu,i + ∆Pref

i ) = 0

18 / 26
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Optimal Frequency Regulation Problem

Power
System

Pref

Pu

∆ω

Equivalent formulations of steady-state dispatch problem

minimize
Pref∈Rn

∑n

i=1
Ji (P

ref
i )

subject to
∑n

i=1
(Pu,i + Pref

i ) = 0

(ROS Property X)

minimize
Pref∈Rn

∑n

i=1
Ji (P

ref
i )

subject toF∆ω = 0

(RFS Property )
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OSS Framework Recovers Recent Controllers

1 Distributed-Averaging Integral Control

ki η̇i = −∆ωi −
∑n

j=1
aij(ηi − ηj) , Pref

i = (∇Ji )−1(ηi )

2 AGC / Gather-and-Broadcast Control

η̇ = average(ωi ) , Pref
i = (∇Ji )−1(η)

3 Primal-dual algorithm

µ̇i = −∇Ji (µi )− ν , Pref
i = µi

ν̇ =
∑n

i=1
(Pu,i + µi )
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Nonlinear OSS Control Problem
Nonlinear systems with time-varying disturbances in continuous or discrete-time

ẋ = f (x, u,w)

ym = hm(x, u,w)

ẇ = s(w)

ξ̇ = ϕ(ξ, ym)

ε = hε(ξ, ym)

ẋs = fs(xs, η, ξ, ym, ε)

u = hs(xs, η, ξ, ym, ε)
η̇ = γ(η, ε)

ymu

w

η

ε

ξ
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Conclusions

New control framework: Optimal Steady-State (OSS) Control

1 Robust feedback optimization of dynamic systems

2 Optimality model reduces OSS problem to output reg. problem

Plant
Optimality

Model
Stabilizing
Controller

Integral
Control

ymu

w

η

ε
ξ

uom

Many pieces of theory wide open . . .

1 Sampled-data, decentralized, hierarchical, competitive, . . .

2 Performance improvement (e.g., feedforward, anti-windup)
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Details in paper on arXiv

https://arxiv.org/abs/1810.12892
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Questions

https://ece.uwaterloo.ca/~jwsimpso/

jwsimpson@uwaterloo.ca
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appendix



Is OSS Control just a standard tracking problem?

Controller Plant
uy?(w , δ) e y

−

w

We want y to track y?(w , δ), but two problems:

1 unmeasured components of w change y?

2 y? depends on uncertainty δ (relevant if Y ⊂ Rp)

Standard tracking approach infeasible for quickly
varying w(t), or large uncertainties δ, or particular

choices of regulated outputs
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Slide on EOA Approach . . .



Example 1: Necessity of Equilibrium Constraints
Consider the OSS control problem:

1 Dynamics: [
ẋ1

ẋ2

]
=

[
−1 0
1 −1

] [
x1

x2

]
+

[
1
−1

]
u +

[
1
1

]
w

y =

[
x1

u

]
2 Optimization problem:

minimize
y∈R2

g(y) :=
1

2
y2

1 +
1

2
y2

2

What happens if we omit the equilibrium constraints?

η̇ = ∇g(y)

u = −Kη



Example 1: Necessity of Equilibrium Constraints (cont.)



Example 2: Necessity of Robust Feasible Subspace

Consider the OSS control problem:

1 Dynamics: [
ẋ1

ẋ2

]
=

[
−1− δ 0
1 + δ −1

] [
x1

x2

]
+

[
1
−1

]
u +

[
1
1

]
w

y =

[
x1

u

]
2 Optimization problem:

minimize
y∈R2

1

2
y2

1 +
1

2
y2

2

subject to y ∈ Y (w , δ) = y(w , δ) + V (δ)

We can show V (δ) = span

{[
1
δ

]}
⇒ V (δ) dependent on δ.



Example 2: Necessity of Robust Feasible Subspace (cont.)

We apply our scheme anyway supposing δ = 0

Optimality model + integral control yields. . .

If δ = 0 in the true plant
⇒ achieve optimal cost of 0.1538.

If δ = 0.5 in the true plant
⇒ achieve sub-optimal cost of

0.1599.



OSS Control in the Literature

The OSS controller architecture found throughout the literature on
real-time optimization.

Problem [Nelson and Mallada ’18]

Design a feedback controller to drive the system

ẋ(t) = Ax(t) + B(u(t) + w)

ym(t) = Cx(t) + D(u(t) + w)

to the solution of the optimization problem

minimize
x∈Rn

f (x) .



OSS Control in the Literature (cont.)

Observer −∇f PI
u + w , ym x̂ ε u

Optimality Model

Controller Design

The optimality model is an observer with gradient output

˙̂x = (A− LC )x̂ + (B − LD)(u + w) + Lym

ε = −∇f (x̂) .

A PI controller serves as internal model and stabilizer

ėI = ε , u = KI eI + Kpε .
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