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How is the reference r being determined? J
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Feedforward Optimization of Large-Scale Systems

minimize f(z) + g(r)
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Feedback Optimization of Large-Scale Systems

§+ = opt(§7 Wmeas, Y5 ﬁ? V/'\/)

F= hopt(f, Wmeas) Y5 'Dv W)
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Feedforward vs. Feedback Optimization
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Feedforward vs. Feedback Optimization

Property Feedforward Feedback
Setpoint Quality ~ Optimal ~ Optimal
High-Fidelity Model Crucial Not crucial
Robustness No Yes
Feedback Design/Analysis Unchanged | More difficult
Computational Effort Moderate 77

MPC: high computational effort, difficult analysis

= Alternatives?

Compared to MPC, if we give a bit on trajectory optimality, can
we can gain a lot on ease of feedback design/analysis and

computational effort?

Here is a first cut of such an approach.
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Optimal Steady-State Control Problem Statement

Given:
@ a dynamic system model with

e a class of external disturbances w(t)
e an uncertainty specification (e.g., parametric)

@ a vector of outputs y € RP of system to be optimized

© an optimization problem in y

Design, if possible, a feedback controller such that

© closed-loop is (robustly) well-posed and internally stable

@ the regulated output tracks its optimal value

lim y(t) — y*(t) =0, Vw, V uncertainties

t—00
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LTI-Convex OSS Control: Setup Overview

© Uncertain LTI dynamics

x = A(0)x + B(0)u + B, (8)w
Ym = Cu(6)x + D () + Qm(d)w
y = C(6)x + D(6)u + Q(§)w

e J = parametric uncertainty, w = const. disturbances
e ym = system measurements available for feedback

e y = arbitrary system states/inputs to be robustly optimized
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LTI-Convex OSS Control: Setup Overview

© Uncertain LTI dynamics

x = A(0)x + B(0)u + B, (8)w
Ym = Gu(6)x + Dw(8) + Qm(d)w
y = C(6)x + D(6)u + Q(§)w

e J = parametric uncertainty, w = const. disturbances
e ym = system measurements available for feedback

e y = arbitrary system states/inputs to be robustly optimized

@ a steady-state convex optimization problem

y*(w, ) = argmin{f(y,w) : y € C(w,d)} J
yERP
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LTI-Convex OSS Control: Setup |

0
y

A(0)x + B(8)id + By (6)w

Forced equilibria (X, 0, y) satisfy C(6)% + D(8)d + Q(6)
X i w

This defines an affine set of achievable steady-state outputs

Y(w, 8) = (offset vector) + V/(6) J
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LTI-Convex OSS Control: Setup |

0
y

A(0)x + B(8)id + By (6)w

Forced equilibria (X, 0, y) satisfy C(6)% + D(8)d + Q(6)
X i w

This defines an affine set of achievable steady-state outputs

Y(w, 8) = (offset vector) + V/(6) J

Note: Due to
@ selection of variables y € RP to be optimized, and/or
@ structure of model matrices (A, B, C, D, B, Q)
it may be that Y(w,d) C RP

constraint <= y € Y(w, ) cannot be ignored
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LTI-Convex OSS Control: Setup Il

Desired regulated output y*(w,d) solution to

ml}rllelﬁyze f(y,w) (convex cost)

subject to y € Y(w,d) =y(w,d) + V(5)  (equilibrium)
Hy = Lw (engineering equality)
ki(y,w) <0 (engineering inequality)

v

Equilibrium constraints ensure compatibility between the
plant and the optimization problem

— guarantees a steady-state exists s.t. y = y*(w, J).

We want to track optimal output y*(w, ) ]
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produce a proxy error € for the true tracking error e = y*(w,d) — y
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Optimality Models for OSS Control

An optimality model filters the available measurements to robustly
produce a proxy error € for the true tracking error e = y*(w,d) — y

|w

Y Plant —2™ Optimality Model
& = OM state

[

Y

Steady-state requirement: if the plant and optimality model
are both in equilibrium and € = 0, then y = y*(w, ¢). J

Driving € to zero (+ internal stability) drives y to y*
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General Architecture for OSS Control

Optimality model reduces OSS control to output regulation
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Control
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General Architecture for OSS Control

Optimality model reduces OSS control to output regulation

______ Yo .
! lw :
1 Y
Integral | 7 | Stabilizing| u P Ym | Optimality
Control "| Controller i ant .| Model
T T T ! :
L £\
____________________________ D

Optimality Model: creates proxy error signal €
Integral Control: integrates €

Stabilizing Controller: stabilizes closed-loop system
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Robustness Issues in Constructing Optimality Models

Can we implement an optimality model that is robust against §?

minimize f(y, w)

yeRP
subject to  y € Y(w,d) = y(w,d) + V(6)
Hy = Lw
Jy < Mw

Optimality condition:
VF(y*,w) + JTv* L (V(6) Nnull(H))

possibly depends on uncertain parameter 9.
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Robustness Issues (cont.)

When can an optimality model encode the gradient KKT condition?

VF(y*,w) + JTv* L (V(8) Nnull(H))
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Robust Feasible Subspace Optimality Model
If Robust Feasible Subspace property holds, then

v =max(v+ Jy — Mw,0) — v
Hy — Lw
To"(VF(y,w)+ JTv)

range( To)
= V(J) Nnull(H)

€ =

is an optimality model for the LTI-Convex OSS Control Problem.
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Robust Feasible Subspace Optimality Model
If Robust Feasible Subspace property holds, then
v =max(v+ Jy — Mw,0) — v

Hy — Lw
To " (VE(y, w) + JTv) = V(8) Nnull(H)

range( To)
€E =

is an optimality model for the LTI-Convex OSS Control Problem.

Comments:

© T, z extracts component of z in subspace V(&) Nnull(H):
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Comments:
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Robust Output Subspace Optimality Model

If furthermore V() itself is independent of 4, then
n=Hy —Lw
v=max(v+Jy — Mw,0) —v range Ry = V(9) J
e= Ry (Vg(y,w)+H u+JT0)

is also an optimality model for the LTI-Convex OSS Control Problem.
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v=max(v+Jy — Mw,0) —v range Ry = V(9) J
e= Ry (Vg(y,w)+H u+JT0)

is also an optimality model for the LTI-Convex OSS Control Problem.
O Can take Ry =/ if V() = RP, which holds if

No transmission zeros

ats=0

A B
¢ D

} has full row rank <=

@ Again, different equivalent formulations of optimization problem give
different optimality models
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Towards an internal model principle . ..

€= [ Hy = Lw } range( To) = V() Nnull(H) J
TUTVf(ya W)

Integral | 7 | Stabilizing | u _ P Ym | Optimality
Control " | Controller >| lant I | Model
¥ X /Y !
1

Interpretation: Exact robust asymptotic optimization
achieved if loop incorporates a model of the optimal set of
the optimization problem
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Stabilizer Design

uom
T T T Tt TR Tt T T T T T 1
: a y
Integral | " |Stabilizing| wu P Ym | Optimality
Control " | Controller g ant . | Model
T x : !
| tTTTTmmmmmees o
U | €

Stabilizer design options:
O full-order dynamic robust controller synthesis
@ low-gain integral control u = —Kn (Davison '76)

© any heuristic, local linearized LQ design, ...

Closed-loop analysis:

@ Time-scale separation, robust control
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Optimal Frequency Regulation Problem

@ Linearized dynamics of network of generators

Aéi = Aw,-,
M;Ads; = — ZJ’,’Zl (26, — A6)) — DiDw; + APy + AP, ;
Ten APy = —APy ;i + APy
Ty iAPy; = —AP,; — Ry Aw; + AP,
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Optimal Frequency Regulation Problem

@ Linearized dynamics of network of generators

Aéi = Aw,-,
M;Ads; = — Z,';l (26, — A6)) — DiDw; + APy + AP, ;
Ten APy = —APy ;i + APy
TeilAPy; = —APg i — Ry Aw; + AP

@ Economically select equilibrium reserve powers AP}”ef subject to
balance of supply and demand (control and disturbances)

. . . n
minimize E ) J,-(P,-ref-i-APfef)
Ap_refeRn =1
1

subject to Zn 1(APu,i + AP =0
=
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Optimal Frequency Regulation Problem

Pref

LRy

Power
System
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Optimal Frequency Regulation Problem

Pref

1P

Power
System

Equivalent formulations of steady-state dispatch problem

n
minimize E o Ji(Preh
Pref cRn i=1

subject to Z’,’_l(Pu,; + Pref)y =0

(ROS Property v')

n
minimize E o Ji(Preh
Pref cRn i=1

subject to FAw =0

(RFS Property v)
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OSS Framework Recovers Recent Controllers

@ Distributed-Averaging Integral Control

. n T —
ko = —Boi = 3 2yl =), PI = (VH)Hm) |

20/26



OSS Framework Recovers Recent Controllers

@ Distributed-Averaging Integral Control

. n T —
ko = —Boi = 3 2yl =), PI = (VH)Hm) |

@ AGC / Gather-and-Broadcast Control

7 = average(w;), Pret = (VJ)) " (n) J

20/26



OSS Framework Recovers Recent Controllers

@ Distributed-Averaging Integral Control

. n T —
ko = —Boi = 3 2yl =), PI = (VH)Hm) |

@ AGC / Gather-and-Broadcast Control

7 = average(w;), Pret = (VJ)) " (n) J

© Primal-dual algorithm

fi==Vdi(w)—v, P =
. n
V= Zizl(Pu,i + i)
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Nonlinear OSS Control Problem

Nonlinear systems with time-varying disturbances in continuous or discrete-time

w = s(w)
w
\4
) L] Fe = Bl Gy, ) fu X = v w) ym €= @(€, ym)
n=(n, > >

u = hs(xs; M, &, Ym, €) Ym = hm(x, u, w) : €= he(&, ym)

1

1

I T .

1

________________________________
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Conclusions

New control framework: Optimal Steady-State (OSS) Control

© Robust feedback optimization of dynamic systems

@ Optimality model reduces OSS problem to output reg. problem

Uom
1 1
: 3 i
Integral Stabilizing | u Ym Optimality
Control | | Controller [ | F2" T Model
T T T :
1
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Conclusions
New control framework: Optimal Steady-State (OSS) Control

© Robust feedback optimization of dynamic systems

@ Optimality model reduces OSS problem to output reg. problem

Uom
1 1
: 3 i
Integral | 7 | Stabilizing| wu Ym Optimality
Control | | Controller [ | F2" T Model
T T T :
1

Many pieces of theory wide open ...
@ Sampled-data, decentralized, hierarchical, competitive, ...
@ Performance improvement (e.g., feedforward, anti-windup)
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Is OSS Control just a standard tracking problem?

|w

y*(W7 6) e u

Y

— Controller Plant

We want y to track y*(w,¢), but two problems:
@ unmeasured components of w change y*
@ y* depends on uncertainty § (relevant if Y C RP)

Standard tracking approach infeasible for quickly
varying w(t), or large uncertainties d, or particular
choices of regulated outputs
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Example 1: Necessity of Equilibrium Constraints
Consider the OSS control problem:

Sl el e A SRS
at

© Dynamics:

@ Optimization problem:

. ) 1, o 1,
minimize = = i~
eR g\ 2)’1 2}’2

What happens if we omit the equilibrium constraints?

n="Vely)
u=—Kng



Example 1: Necessity of Equilibrium Constraints (cont.)
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Example 2: Necessity of Robust Feasible Subspace

Consider the OSS control problem:
@ Dynamics:

B R e | Ry M R

@ Optimization problem:

. 1, n 1,
minimize — -
eR 2}/1 2)’2

subject to y € Y(w,6) = y(w,d) + V(9)

|

We can show V/(4) = span { [ﬂ } = V/(¢) dependent on §.



Example 2: Necessity of Robust Feasible Subspace (cont.)

@ We apply our scheme anyway supposing § =0
@ Optimality model + integral control yields. ..

0.8

o
>

S
T

S
o

=)

Regulated Output

Regulated Output

Time (s)
If § = 0.5 in the true plant
= achieve sub-optimal cost of
0.1599.

Time (s)
If & =0 in the true plant
= achieve optimal cost of 0.1538.



OSS Control in the Literature

The OSS controller architecture found throughout the literature on
real-time optimization.

Problem [Nelson and Mallada '18]
Design a feedback controller to drive the system
x(t) = Ax(t) + B(u(t) + w)
Ym(t) = Cx(t) + D(u(t) + w)

to the solution of the optimization problem

minimize f(x).
x€ER"




OSS Control in the Literature (cont.)

u-+ w,ym

Observer

x>

—Vf

Pl




OSS Control in the Literature (cont.)

Optimality Model

,,,,,,,,,,,,,,,,,,,,,,,,

Controller Design
The optimality model is an observer with gradient output

£=(A-LC)%+ (B - LD)(u+ w) + Lym
e=—-VFf(8).

A PI controller serves as internal model and stabilizer

é =¢€, u:K,e,+er.
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