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changes are applied. This change is caused by the relationship
between the adjacency matrix and the cost function (12); as
the adjacency terms are updated, but not the weighting factors,
the tuned parameters do not compensate the load changes as
when the communication network is complete.
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Fig. 8. Microgrid Response Against Communication Failure Between DG1

and DG2.

D. Test Scenario 3 - Plug and Play Capability

This test shows the microgrid response when DG3 fails and
it is disconnected (at t ⇡ 49s), and after a synchronization
sequence, it is reconnected to the microgrid (at t ⇡ 75s).
When DG3 is disconnected from the microgrid, its secondary
control is disabled, and after the reconnection, it is enabled
again. Fig. 10 shows a power distribution according to the
DGs connected to the microgrid. Because the adjacency matrix
A(t) depends on the information received by each DG, it is
updated when DG3 is disconnected and reconnected, adjusting
the consensus and the average values in the optimization
problem. Between t ⇡ 75s and t ⇡ 78s, the real and
reactive power contributions of DG3 are not in consensus even
though it is connected to the microgrid. In this period, DG3

is synchronized (�✓3 = 0), and its secondary controller is
disabled; then, according to (4) and (5), only the reactive
power flow through L3 is feasible. When the secondary
controller is enabled on DG3, the power consensus among
the three units is re-established.
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Fig. 9. Consensus Detail - Microgrid Response Against Communication
Failure Between DG1 and DG2.
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Fig. 10. Real Power (top) and Reactive Power (bottom) Behavior - Plug and
Play Test
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Figure ??. As a safety factor, we multiplied the maximum
empirical error observed by 1.1 to obtain � = 1.43.
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Fig. 4. In order to estimate a norm bound � for the approximation error
k@⇡(u, w)�⇧nomk we sampled 10,000 operating points (by changing both
u and w). The red line in the plot show the chosen value of � = 1.43 used
for the LMI test. Since the LMI test is feasible, we can guarantee robust
stability for all ⇡ such that k@⇡(u, w) �⇧nomk  �.

In order to certify the stability of the OAG algorithm for
all possible maps that satisfy (??), we follow the procedure
outlined in Section ??. In particular, we construct the matri-
ces (A, B, C, D) as in (??) and the cone ⇥ as in (??). We
use ⇧ = ⇧nom, and we can solve the single LMI (??) for
⇥ 2 ⇥, with P = I and ⇢ = 0.45 (0.59 s using MOSEK on
2.5 GHz Intel Core i7 processor).

By Proposition ??, the OAG algorithm is robustly stable
with respect to the uncertainty and reaches the unique
online approximate solution (which is, of course, different
for every w). Figure ?? shows a simulation of the OAG
algorithm for problem (??) applied to the IEEE37 bus sys-
tem. The algorithm uses feedback on voltage measurements,
which are computed by solving the AC power flow equations
with MATPOWER at each time-step. The OAG is robustly
stable (as predicted by the solvability of the LMI (??) and
Proposition ??) and is able to significantly reduce over-
voltage.

Fig. 5. Comparison of OAG vs no control for the IEEE37 test feeder. The
disturbance w (uncontrollable power injections and solar radiation) is taken
from real data from Anatolia CA.

VII. CONCLUSIONS

In this paper we studied a gradient-based optimization
algorithm applied in feedback to a physical system. We
characterized the equilibria of the feedback interconnection
and we proposed a framework based on robust control theory
to verify robust stability with respect to model mismatch
and external disturbances. The results were illustrated on a
realistic example from power systems. The first interesting
extension is to use the LMI conditions from this paper to
obtain linear approximations ⇧ which are robustly stable
by design. Future work on will aslo focus on the robust
stability analysis of more complex online algorithms that
make better use of the available model information and
real-time measurements. Further, for the specific case of
power systems, we believe that combining tailored model
uncertainty descriptions and pre-processing to identify (and
remove) redundant constraints from the problem formulation
(see e.g. [?]) will certainly lead to less conservative robust
stability guarantees.
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Control Systems 101

Prototypical feedback control problem is tracking and disturbance
rejection in the presence of plant uncertainty

Controller Plant
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Where does the reference r come from?
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Feedforward Optimization for Complex Control Systems
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Feedforward: simple, but sensitive to uncertainty
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Example #1: Secondary Frequency Control in Bulk Grid

nominal frequency

ROCOF (max rate of change of frequency)

frequency nadir

restoration time

secondary control

inertial 

response
primary control

inter-area 

oscillations

f

Centralized secondary (integral) control drives ∆ω → 0

Power
System

{Ps
i }

P load
i

{∆ωi}
minimize
Ps
i ∈{limits}

∑n

i=1
Ci (P

s
i )

subject to ∆ωi = 0

(System dynamics)

Want: Fast hierarchical resource-allocating control loops
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Example #2: Voltage Regulation in PV-Heavy Feeders

Grid Model: ~v = π(~u, ~w)

• ~u = controllable power

• ~w = uncontrollable power

minimize
u∈U

‖u − unom‖2
2

subject to v ∈ [vmin, vmax]

v = π(u,w)

Want: Online control, robust w.r.t. grid model π
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Example #3: A Non-Traditional Servo Problem

Controller Plant
ur e y

−

w

minimize
u

‖y − r‖∞︸ ︷︷ ︸
Worst Error

+ c1

∑m

i=1
max(0, ui − ui , ui − ui )

2︸ ︷︷ ︸
Penalty on u

+ c2‖u‖1︸ ︷︷ ︸
Sparse action

subject to (System Dynamics)

Note: feasible reference =⇒ exact tracking

Want: Constructive solution to this class of problems
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Optimal Steady-State Control Problem Statement

 A Bp Bu

Cq Dqp Dqu

Cy Dyp Dyu



K

Controller

 δ1

. . .

δN


(Parametric) Uncertainty

Const. Disturb. w

y

u

q p

LTI w/ Structured(!) Uncert.

ẋ = A(δ)x + B(δ)u + Bw (δ)w

y = C (δ)x + D(δ)u + Q(δ)w

Control specification:

y?(w , δ) = argmin
ȳ∈C(w ,δ)

f0(ȳ)

Wish list:

1 Closed-loop stability

2 y(t)→ y? ∀w ∀δ ∈ δ
3 ‖yT − y?‖L2 ≤ γ‖wT‖L2
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Optimal Steady-State Control Specification

minimize
ȳ∈Rp

f0(ȳ) (steady-state objective)

subject to (??)

Hȳ = Lw (engineering equality)

Jȳ ≤ Mw (engineering inequality)

(??) ensures plant and optimization are compatible

Achievable Equilibria

0 = A(δ)x̄ + B(δ)ū + Bww

ȳ = C (δ)x̄ + D(δ)ū + Dww
=⇒ G (δ) := [C D] null([A B])

G⊥(δ) := s.t. G⊥(δ)G (δ) = 0

Classic result: Robust tracking =⇒ range(G (δ)) = Rp ∀δ.

This is not necessary in our formulation.
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f0(ȳ) (steady-state objective)
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Optimal Steady-State Control Specification

minimize
ȳ∈Rp

f0(ȳ) (steady-state objective)

subject to G(δ)⊥ȳ = b(d1, d2) (??)

Hȳ = Lw (engineering equality)

Jȳ ≤ Mw (engineering inequality)

(??) ensures plant and optimization are compatible
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Optimal Steady-State Control Specification

minimize
ȳ∈Rp

f0(ȳ) (objective + ineq. constraint penalty)

subject to G (δ)⊥ȳ = b (??)

Hȳ = Lw (engineering equality)

Equivalent ways of writing stationarity:

0 = ∇f0(y?) + G (δ)T
⊥λ

? + HTµ?

⇐⇒ 0 = G (δ)T
(
∇f0(y?) + HTµ?

)
⇐⇒ 0 = T (δ)T∇f0(y?)

where

rangeT (δ) = null

[
G⊥(δ)
H

]
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Optimality Models for OSS Control

An optimality model filters the available measurements to robustly
produce a proxy error ε for the unknown tracking error e = y?(w , δ)− y

Plant Optimality Model
u

w

ym ε

ξ = OM state

Steady-state requirement: if the plant and optimality model
are both in equilibrium and ε = 0, then y = y?(w , δ).

“Internal Model” Interpretation: The loop gain
incorporates a model of the optimal solution set
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From OSS Control to Regulator Problem
Optimality model reduces OSS control to regulator/servomechanism problem

Plant
Optimality

Model
Stabilizing
Controller

Integral
Control

ymu

w

η

ε
ξ

uom

Optimality Model: creates proxy error signal ε

Integral Control: integrates ε

Stabilizing Controller: stabilizes closed-loop system

Theorem: (Stability) + (ε→ 0) =⇒ (y(t)→ y?)
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Robustness: When is the uncertainty important?

Recall: With rangeT (δ) = null
[
G⊥(δ)
H

]
, optimality conditions

0 = G (δ)T
(
∇f0(y?) + HTµ?

)
⇐⇒ 0 = T (δ)T (∇f0(y?))

Idea: Use these to (robustly?) construct proxy error signals

1 Robust Full Rank: rank
[
A(δ) B(δ)
C(δ) D(δ)

]
= n + p ∀δ ∈ δ

2 Robust Output Space: ∃G0 s.t. rangeG0 = rangeG (δ) ∀δ ∈ δ
3 Robust Feasible Space: ∃T0 s.t. rangeT0 = null

[
G⊥(δ)
H

]
∀δ ∈ δ

Easy to show: (1) =⇒ (2) =⇒ (3). Conditions checkable via SDPs.
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Construction of Optimality Models
1 Robust Full Rank Optimality Model (akin to classic tracking)

µ̇ = Hy − Lw

ε = ∇f0(y) + HTµ

2 Robust Output Subspace Optimality Model

µ̇ = Hy − Lw

ε = G0
T(∇f0(y) + HTµ)

3 Robust Feasible Subspace Optimality Model

ε =

[
Hy − Lw

T0
T∇f0(y)

]

. . . and many more! Ask me if you’re curious.
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What if robustness conditions fail?
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Big Picture for OSS Control
Optimality model reduces OSS control to regulator/servomechanism problem

Plant
Optimality

Model
Stabilizing
Controller

Integral
Control

ymu

w

η

ε
ξ

uom

Optimality Model: creates proxy error signal ε

Integral Control: integrates ε

Stabilizing Controller: stabilizes closed-loop system
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Existence of stabilizing output feedback controller

Plant
Optimality

Model
Stabilizing
Controller

Integral
Control

ymu

w

η

ε
ξ

uom

To use LTI theory, study case δ = 0 with convex quadratic
objective f0(y) = yTQy + cTy , Q � 0

Cascade is stabilizable/detectable if and only if

1 plant stabilizable/detectable

2 optimization problem has a unique solution

3 equality constraints are not redundant (
[
G⊥
H

]
full row rank)

4 T0 or G0 full column rank

17 / 31



Existence of stabilizing output feedback controller

Plant
Optimality

Model
Stabilizing
Controller

Integral
Control

ymu

w

η

ε
ξ

uom

To use LTI theory, study case δ = 0 with convex quadratic
objective f0(y) = yTQy + cTy , Q � 0

Cascade is stabilizable/detectable if and only if

1 plant stabilizable/detectable

2 optimization problem has a unique solution

3 equality constraints are not redundant (
[
G⊥
H

]
full row rank)

4 T0 or G0 full column rank

17 / 31



Existence of stabilizing output feedback controller

Plant
Optimality

Model
Stabilizing
Controller

Integral
Control

ymu

w

η

ε
ξ

uom

To use LTI theory, study case δ = 0 with convex quadratic
objective f0(y) = yTQy + cTy , Q � 0

Cascade is stabilizable/detectable if and only if

1 plant stabilizable/detectable

2 optimization problem has a unique solution

3 equality constraints are not redundant (
[
G⊥
H

]
full row rank)

4 T0 or G0 full column rank

17 / 31



Existence of stabilizing output feedback controller

Plant
Optimality

Model
Stabilizing
Controller

Integral
Control

ymu

w

η

ε
ξ

uom

To use LTI theory, study case δ = 0 with convex quadratic
objective f0(y) = yTQy + cTy , Q � 0

Cascade is stabilizable/detectable if and only if

1 plant stabilizable/detectable

2 optimization problem has a unique solution

3 equality constraints are not redundant (
[
G⊥
H

]
full row rank)

4 T0 or G0 full column rank

17 / 31



Existence of stabilizing output feedback controller

Plant
Optimality

Model
Stabilizing
Controller

Integral
Control

ymu

w

η

ε
ξ

uom

To use LTI theory, study case δ = 0 with convex quadratic
objective f0(y) = yTQy + cTy , Q � 0

Cascade is stabilizable/detectable if and only if

1 plant stabilizable/detectable

2 optimization problem has a unique solution

3 equality constraints are not redundant (
[
G⊥
H

]
full row rank)

4 T0 or G0 full column rank

17 / 31



Big Picture for OSS Control
Optimality model reduces OSS control to output regulation

Plant
Optimality

Model
Stabilizing
Controller

Integral
Control

ymu

w

η

ε
ξ

uom

Optimality Model: creates proxy error signal ε

Integral Control: integrates ε

Stabilizing Controller: stabilizes closed-loop system
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Example #1: Secondary Frequency Control in Bulk Grid

Power
System

{Ps
i }

P load
i

{∆ωi}
minimize
Ps
i ∈{limits}

∑n

i=1
Ci (P

s
i )

subject to ∆ωi = 0

(System dynamics)

Structured uncertain dynamic model:

∆θ̇i = ∆ωi ,

Mi ∆ω̇i = −
∑n

j=1
Tij (∆θi −∆θj)−Di ∆ωi + ∆Pm,i + ∆Pu,i

Ti ∆Ṗm,i = −∆Pm,i − R−1
d,i ∆ωi + Ps

i .

Can construct many different optimality models for this problem
=⇒ Reveals many possible control architectures!
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Ti ∆Ṗm,i = −∆Pm,i − R−1
d,i ∆ωi + Ps

i .

Can construct many different optimality models for this problem
=⇒ Reveals many possible control architectures!

19 / 31



Example #1: Secondary Frequency Control in Bulk Grid

1 Centralized (generalized AGC) approach:

τ η̇ = −
∑n

i=1
ci∆ωi

Ps
i = (∇Ci )

−1(η)

2 Distributed consensus-based approach:

τi η̇i = −∆ωi −
n∑

j=1

aij(ηi − ηj)

Ps
i = (∇Ci )

−1(ηi )
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Feedback-Based Optimization of Maps

π(uk ,wk)
uk yk

wk
• Map π unknown

• Disturbance w unknown

• Output y measurable

(pk , qk) vk

Psolar
k

minimize
u∈U

f (u) + g(y)

subject to y = π(u,w)

Assumptions:

U is convex & compact

w ∈ W compact

f , g are cvx, C2, Lipschitz ∇
π is C1 in u and C0 in w
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Feedback-Based Optimization of Maps

minimize
u∈U

f (u) + g(y)

subject to y = π(u,w)
=⇒ minimize

u∈U
f (u) + g(π(u,w))

Offline Projected Gradient Descent:

uk+1 = ProjU
{
uk − α

(
∇f (uk) + ∂π(uk ,wk)T∇g(π(uk ,wk))

)}
Approximate Offline Projected Gradient Descent:

uk+1 = ProjU
{
uk − α

(
∇f (uk) + ΠT∇g(π(uk ,wk))

)}
Approximate Online Projected Gradient Descent:

uk+1 = ProjU
{
uk − α

(
∇f (uk) + ΠT∇g(yk)

)}
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Example #2: Voltage Regulation in PV-Heavy Feeders

Short story: Outperforms volt-var control in cost and is
provably robust to large model variations

(pk , qk) vk

Psolar
k

C
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Longer Story: Convergence of Approx. Gradient Descent

uk+1 = ProjU
{
uk − αFw (uk)

}
Fw (uk) = ∇f (uk) + ΠT∇g(π(uk ,wk))

Theorem from VI Literature: If Fw is ρ-strongly mono-
tone and L-Lipschitz continuous and α < ρ/L2 w.r.t. in-
ner product 〈x , y〉P = xTPy ′ with P � 0, then iteration
converges exponentially to a unique equilibrium.

(Put Lipschitz condition to the side, focus on monotone)

Problem: Fw (u) is uncertain.

When is Fw robustly ρ-strongly monotone?
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Longer Story: Monotonicity via the Jacobian

Strong Monotonicity: Given P � 0, the map Fw is ρ−strongly
monotone w.r.t 〈·, ·〉P if and only if

∂Fw (u)TP + P∂Fw (u) � 2ρP, ∀ u ∈ U

where ∂Fw (uk) = ∇2f (uk) + ΠT∇2g(π(uk ,wk))∂π(uk ,wk)

Idea: Overbound the set ∂Fw (U) by a simpler set J !

Robust Strong Monotonicity: If we have a set J of matrices
such that ∂Fw (U) ⊆ J , then Fw (u) is ρ-strongly monotone if

JTP + PJ � 2ρP ∀J ∈ J .

When is this test tractable?
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Longer Story: LFR Uncertainty Modelling

Linear Fractional Representation of Uncertainty

J = {A + B∆(I − D∆)−1C : ∆ ∈ ∆}

where ∆ ⊂ Rr×s is a set of matrices and we have a convex
cone Θ of matrices such that[

q
p

]T

Θ

[
q
p

]
≥ 0 ∀p = ∆q, Θ ∈ Θ.

Robust Monotonicity via S-Procedure: The set of maps Fw
with ∂Fw (u) ⊆ J is ρ-strongly monotone if ∃P � 0,Θ ∈ Θ s.t.[

ATP + PA− 2ρP PB
BTP 0

]
−
[
C D
0 I

]T

Θ

[
C D
0 I

]
� 0.
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Example #2: Voltage Regulation in PV-Heavy Feeders

minimize
(pi ,qi )∈Ui

‖ ( p
q )−

(
p?

0

)
‖2

2︸ ︷︷ ︸
curtailment

+ γ
∑m

i=1
max(0, v i − vi , vi − v i )

2︸ ︷︷ ︸
Soft voltage constraint

subject to v = π(p, q,w) = PowerFlow(p, q,w)

Replace ∂π with any linearization Πnom of power flow equations

Model uncertainty via norm-bound from nominal Jacobian

∂π(u,w) = Πnom + ∆, ‖∆‖2 ≤ γ.
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Results
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Recent Work: From Analysis to Design

1 Synthesize Π for distributed control

minimize
Π,Θ

‖Π− Π̂‖

subject to Π ∈ Π[
ATP + PA− 2ρP PB(Π)

B(Π)TP 0

]
−

[
C D
0 I

]T

Θ

[
C D
0 I

]
� 0.

2 Output constraints via dualization and Moreau smoothing

minimize
u∈U

f (u) + g(y) + IY(y)

subject to y = π(u,w)

Lµ(u, λ) = f (u) + g(π(u,w)) + MµI(π(u,w) + µλ)− µ
2‖λ‖2

2

Primal-Dual Iteration on “Proximal Augmented Lagrangian”
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Conclusions
Two frameworks for feedback optimization

1 Optimal steady-state control (leverage regulator/servo theory)

2 Gradient-based feedback (leverage opt. theory + robust ctrl)

Many directions wide open . . .

1 Decentralized, hierarchical, competitive, . . .

2 Performance improvement (e.g., feedforward, anti-windup)

3 Intersection with latest in opt. for ML
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Questions

https://ece.uwaterloo.ca/~jwsimpso/

jwsimpson@uwaterloo.ca
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