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Problems in power system operations

Power Flow Analvsis

Optimal Power Flow
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Modeling AC power flow

® active power: P = > ViViBjsin(0; — 0;)
N
® reactive power:  Q; = —3> . V;V;Bjcos(0; — 0;)
e
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Modeling AC power flow

® active power: P = > ViViBjsin(0; — 0;)
® reactive power:  Q; = —3> . V;V;Bjcos(0; — 0;)

O n Loads (e) and m Generators (m) N = N UNg
@ Load Model: PQ bus constant P; constant Q;

@ Generator Model: PV bus constant P; constant V;,

Power Flow Equations
Pi = ViV;Bjjsin(0; — 0;), € NL UN,
Zj iBij sin( i) ! L G
P =— V;V;B;j cos(6; — 6;) , i€ N
Q Zj iBij cos( ;) / L

2n + m equations in variables € T"*™ and V| € RZ,.
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Why study solvability of power flow problems?
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Why study solvability of power flow problems?

© Because it is interesting to do so

@ Numerical methods
e understand convergence, divergence, and initialization issues

e State vector: x = (0, V)

o Newton iteration:

Xk+1 _ Xk _ J(Gk, Vk)—lf-(Xk)

3

[Deng et al.]
© Optimal power flow

@ Transient stability
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Intuition on power flow solutions

@ ‘Normally’, exists unique high-voltage soln:

e voltage magnitude V; ~ 1
o phase diff |§; — 0;] < 1

ey

[Josz et al.]
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Intuition on power flow solutions

@ ‘Normally’, exists unique high-voltage soln:

e voltage magnitude V; ~ 1
o phase diff |§; — 0;] < 1

[Josz et al.]
@ Lightly loaded systems: many low-voltage solutions

© Heavily loaded systems: Few
solutions or infeasible
e saddle node bifurcations
e maximum power transfer limit
@ non-convex feasible set in T
(P, Q)-space — =

[Hiskens & Davy]
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Q: 3 “stable high-voltage” solution? unique? properties? J

6/26



Mysteries of power flow

Given data: network topology, impedances, generation & loads

Q: 3 “stable high-voltage” solution? unique? properties?

Partial answers from 45+ years of literature:

Jacobian singularity [Weedy '67]

Multiple dynamically stable solutions [Korsak '72]

Existence conditions [Wu & Kumagai '80, '82]

Active power flow singularity [Araposthatis, Sastry & Varaiya, '81]

Counting # of solutions [Baillieul and Byrnes '82]

Properties of quadratic equations [Makarov, Hill & Hiskens '00]

Optimization approaches [Cafiizares '98], [Dvijotham, Low, Chertkov '15], [Molzahn]

Existence/uniqueness for active power flow [Dorfler, Chertkov & Bullo '12, Delabays,
Coletta, and Jacquod '17, JWSP '17, Jafarpour and Bullo '18]

Existence/uniqueness for reactive power flow [JWSP, Dorfler & Bullo '15]

Existence/uniqueness in distribution networks [Bolognani & Zampieri '16, Nguyen et al.
'17, Wang et al. '17, Bazrafshan et al. '17, ...]

Existence/uniqueness for active power flow [Dérfler, Chertkov & Bullo, PNAS '12]

Existence/uniqueness for reactive power flow [JWSP, Dorfler & Bullo, NatComms '15]

6/26



Mysteries of power flow

Given data: network topology, impedances, generation & loads J

Q: d “stable high-voltage” solution? unique? properties?

Partial answers from 454 years of literature:

Main insight: stiffness vs. loading

© Stiff network + light loading = feasible
@ Weak network + heavy loading = infeasible

Voltage
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Mysteries of power flow

Given data: network topology, impedances, generation & loads J

Q: d “stable high-voltage” solution? unique? properties?

Partial answers from 454 years of literature:

Main insight: stiffness vs. loading

© Stiff network + light loading = feasible
@ Weak network + heavy loading = infeasible

Q: How to quantify network
stiffness vs. loading?

Voltage
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Solution of Two-Bus System

P = bV Vsin(—n) Valn b Vi, 20
Pg = bV Vy sin(n) AT
QL = bV? — bV, V¢ cos(n) Pz +iQc Py +jiQL

Figure 2.6 Voltage as a function of load active and reactive powers
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Solution of Two-Bus System

. Ve in b V5 /0
p = bV V. sin(n) J G* —— L‘
= bV} — bV, Vg cos S p-oe-
& . Ve cos(n) P +iQc Pr+jQr
© Change Variables
Vi
Lo r__P A QL

Ve T bVZ QYY)
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Solution of Two-Bus System

. Ve in b V5 /0
p = bV V. sin(n) G* e L‘
QL = bV? — bV, Vi cos S P
‘ . L Vi costa) Pc+JjQc Pr+jiQc
© Change Variables
Vi 1% QL
=— MN=-—— A=—=
YT Ve bV2 —Ipv2

@ Square equations, add, and solve quadratic in v?

w5 (155 i)
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Solution of Two-Bus System

. Vain b V5,20
p = bVsVsin(n) J G* ~A L‘
= bV — bV, Vg cos S P
QL f 1 Vg cos(n) o oo T
© Change Variables
V
vi= -t .= —p2 A= 71QL
Ve bV3 —3bV2

@ Square equations, add, and solve quadratic in v?

o= |1 (1S a e es)

© Nec. & Suff. Condition

[ ArP+A< ]
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Solution of Two-Bus System

Ve @ bVZ T TIpy2

7
AP+ A <1

I = vsin(n) v
A = —4v? + 4v cos(n)
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Solution of Two-Bus System

- Vi P QL
I = vsin(n) V= Ve J = bV?2 A= —1pV2
A = —4v? + 4v cos(n) r2Aa<l 4

@ High-voltage solution
vy € [%7 1)
@ Low-voltage solution
1
V- € [07 ﬁ)
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Solution of Two-Bus System

A = —4v? + 4v cos(n)

I = vsin(n) J v

—1bV2

@ High-voltage solution
vy € [%7 1)
@ Low-voltage solution
1
V- € [07 ﬁ)

Uy

<Y
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Solution of Two-Bus System

I = vsin(n) J v::VLé r::b—cé A::%
A = —4v? + 4v cos(n) A2 LA <1
@ High-voltage solution
vi € [3,1) T\\\
@ Low-voltage solution 0 . >
v €0, %) B

Angle: sin(n+) =T /vy
© Small-angle solution
n- €[0,7/4)
@ Large-angle solution
0 € [0,7/2)
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Solution of Two-Bus System

I = vsin(n) vi=2t 1=P A= Qu
A = —4v? + 4v cos(n)

@ High-voltage solution
vy € [%* 1)

@ Low-voltage solution : .
v_ € [0, %) N L

v_ vy

<Y

Angle: sin(n+) =T /vy
© Small-angle solution
n- €[0,7/4)
@ Large-angle solution
0 € [0,7/2)
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Solution of Two-Bus System [V

@ Squaring and adding equations does not generalize to networks.

@ Is there any hope then?
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Solution of Two-Bus System [V

@ Squaring and adding equations does not generalize to networks.

@ Is there any hope then?

A = —4v? + 4vcos(n)

= vsin(n) J

e Use cos(n) = m = A=-4v2+4v\/1-(T/v)?

10/26



Solution of Two-Bus System [V

@ Squaring and adding equations does not generalize to networks.

@ Is there any hope then?

A = —4v? + 4vcos(n)

= vsin(n) J

e Use cos(n) = m = A=-4v2+4v\/1-(T/v)?

@ Rearrange to get fixed-point equation

V= f(v) = —%%+ 1 (5)2 J

This generalizes!
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Network Notation |: Branches Between Bus Types

Power Flow Equations

,_Z V;V;Bjjsin(6; — 6;), i€ NLUNg Ne
——Z.V;VJB,'J'COS(G,'—QJ'), iGNL No
J
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Network Notation |: Branches Between Bus Types

Power Flow Equations
ﬂzizwwaﬂma—m, i€ NLUNG Ne
ZV iBjjcos(0; —0;), i€NL Ne

@ Bus partitioning N/ = N U Ng induces branch partitioning

E="%ygstuees,
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Network Notation |: Branches Between Bus Types

Power Flow Equations

p,zzjv,-\/js,jsin(e,-—aj), i€ NLUNG Ne

Q;:—ZJ.V;VJBUCOS(G:'—GJ% i €N Ng

@ Bus partitioning N/ = N U Ng induces branch partitioning

gogtugstugs, a— (A1) - ALIATL O
Ac 0 [ Ag | ag
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Network Notation |: Branches Between Bus Types

Power Flow Equations

p,zz_v,-\/js,,-sin(e,-—ej), i€ NLUNG Ne
ZV /iBjjcos(0; — 0;), €N, Ne

@ Bus partitioning N/ = N U Ng induces branch partitioning

o | a8t
gogltygstygs, Ao ) (A Aoy
As o |ag | Ag

o o -1]o0
0l0o -1 0o }N
“1|-1 0o oo

A=
ol1 o o|f1
olo 1 o]l }.Aﬂg
olo o 1|0
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Network Notation II: Open-Circuit Voltages

( N\
Power Flow Equations

P; = V;V;B;isin(0; — 0;) , reNLU
ZJ_ /iBjj sin( B i€ NLUNG
Ql-z—zj\/,'\/jB,‘jCOS(e,'—Hj), ieNL e

o Generators Ng: V; fixed Na
e Loads \N;: V; free

12/26



Network Notation II: Open-Circuit Voltages

( N\
Power Flow Equations

P; = V;V;B;isin(0; — 0;) , reNLU
ZJ_ /iBjj sin( B i€ NLUNG
Ql-z—Zj\/,'\/jB,‘jCOS(@,‘—Hj)7 ieNL e

o Generators Ng: V; fixed Na
e Loads \N;: V; free

. J

Partitioned Variables
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Network Notation II: Open-Circuit Voltages

( N\
Power Flow Equations

P; = V;V;B;isin(0; — 0;) , reNLU
ZJ_ /iBjj sin( B i€ NLUNG
Ql-z—zj\/,'\/jB,‘jCOS(e,'—Hj), ieNL e

o Generators Ng: V; fixed Na
e Loads \N;: V; free

. J

Partitioned Variables
Vi BrL BLG)
V=[(—], B=
( VG) ( Bei | Bee
Open-circuit voltages

Vi2 -B;'Bic Ve
N———

Generators— Loads
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Network Notation II: Open-Circuit Voltages

7 '
Power Flow Equations

P; — Z_ ViV;Bjsin(0; — 0;), i€ N LUNg

ZV iBjjcos(0; —0;), i€NL Mo
o Generators Ng: V; fixed Na
e Loads \N;: V; free
. J

Partitioned Variables
Vi B BLG>
v=(-2), B= +
( VG) ( Bei | Bee

Open-circuit voltages

Scaled voltages

* A _p-1 X "
VL = BLL BLG VG Vi é VI/V,

Generators— Loads

12/26



Network Notation Ill: Stiffness Matrices

(VL _ (Bi|Bis « _ _p-1
v=(v5): 3_(4’*8(& o) Vi=-BlBicVe
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Network Notation Ill: Stiffness Matrices

7 B BLG) X —1
V: - | B: 5 V :—B B V
<VG> <BGL Bge 8 LL PLteve

@ Need to non-dimensionalize power flow equations

o Stiffness matrices quantify grid strength in units of power
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Network Notation Ill: Stiffness Matrices

Vi Bir BLG) . 1
V: - | B: 5 V :—B B V
<VG> <BGL Bge 8 LL PLG TG

@ Need to non-dimensionalize power flow equations

o Stiffness matrices quantify grid strength in units of power

@ Nodal stiffness matrix S£ 1_11 [V(]- Bue - [V] J

@ Branch stiffness matrix D[V Vi Bijl(ijyee J

© Laplacian stiffness matrix L2 ADAT |
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Main Modeling Result

f Fixed-Point Power Flow: Meshed Networks

(0, V) is a power flow solution iff (v, p.) solves the FPPF
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Main Modeling Result

r

.

Fixed-Point Power Flow: Meshed Networks

(0, V) is a power flow solution iff (v, p.) solves the FPPF

v =F(v,p) 2 1, — ;5 QUM M,
+ 35 M ALD A (v, )
0. = CTarcsin(¢(v, pc)) .

where

u(v,pe) =1 — /1 - []y

U(v.pe) = [H(W)] ™ (ATLIP + D7 Cpc) .

with the phase angles AT0 = arcsin(v)) .
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Main Modeling Result

[ Fixed-Point Power Flow: Meshed Networks )
(0, V) is a power flow solution iff (v, p.) solves the FPPF
v =F(v,p) 2 1, — 75 QUMM
+ 35 M ALD A (v, )
0. = CTarcsin(¢(v, pc)) .
where
u(v,pe) 1 /1~ [Uly
(v, pe) = [H(v)]* (ATLIP+ D2 e )
{ with the phase angles AT = arcsin(¢)). )
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New Approximate Power Flow Solution

@ The model says v = f(v, pc), and sin(AT8) = (v, pc).
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New Approximate Power Flow Solution

@ The model says v = f(v, pc), and sin(AT8) = (v, pc).

@ By construction, when P = @Q; = 0, a solution is

V:ln, pC:OC7 AT(9:0|5|.

@ Taylor expand FPPF model around this solution

AT0upprox = ATLTP
1 1
Vapprox == 1p — Zs_lQL + §S_1’A‘LD[ATLTP]ATLTP

Pc,approx = 0
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New Approximate Power Flow Solution

AT Oapprox = ATLTP
1 1
Vapprox = 1n - ZS_IQL + §5_1|A|LD[ATLTP]ATLTP
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New Approximate Power Flow Solution

A0 pprox = ATLTP
1 1
Vapprox =~ 1p — ZS_IQL + gs_llAlLD[ATLTP]ATLTP

— 11 : : :
= —e— MATPOWER

B 108 * FPPF Iteration||
® - +%- Approx. Soln.

el

E 1.06

=

%0 104

=

& 1.02

s

E 1

0.98
0

5 10 15 20 25 30
Bus Number
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Numerical Results |

1

Omax = ||V - Vapprox”oo ) 5avg = EHV - Vapprox”l
‘ ‘ Base Load High Load ‘

Test Case FPPF | dmax Oavg FPPF | dmax

Iters. | (p.u.) | (p.u.) | Ilters. | (p.u.)
New England 39 4 0.006 | 0.004 8 0.086
57 bus system 5 0.011 | 0.003 8 0.118
RTS '96 (3 area) 4 0.003 | 0.001 8 0.084
118 bus system 3 0.001 | 0.000 7 0.054
300 bus system 6 0.022 | 0.004 8 0.059
PEGASE 1,354 5 0.011 | 0.001 8 0.070
Polish 2,383 wp 4 0.003 | 0.000 8 0.078
PEGASE 2,869 5 0.015 | 0.002 8 0.098
PEGASE 9,241 6 0.063 | 0.003 9 0.133

16/26



Numerical Results Il — Convergence Rates

o |EEE 300 bus system under heavy loading

10°g ‘
"R —o—NR

~ 102 *.\_* 3
) x¢¥* —% FDLF (XB)
]
g . X Hoy —» FPPF
§ 107 F )S(

-6 L
L 10
3
=
o 10-8,
S
=
.S 1010k
+~
=
=
U)O 1012k

10714
5 10 15 20 25 30 35 40 45
Iterations
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Numerical Results Il — Sensitivity to Initialization

@ perturb voltage magnitude initialization randomly
o |EEE 118 bus system, base case

| IC Spread (a) | NR | FDLF | FPPF |

0.05 0.98 | 0.98 | 1.00
0.10 0.53 | 0.53 | 1.00
0.15 0.18 | 0.18 | 1.00
0.2 0.03 | 0.03 | 1.00
0.3 0.00 | 0.00 | 1.00
0.5 0.00 | 0.00 | 1.00
0.7 0.00 | 0.00 | 0.99
0.9 0.00 | 0.00 | 0.99

@ extreme insensitivity to initialization (contraction)
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FPPF Simplifies for Acyclic Networks

[ Fixed-Point Power Flow: Radial Networks

(0, V) is a power flow solution iff v is a fixed point of
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FPPF Simplifies for Acyclic Networks

[ Fixed-Point Power Flow: Radial Networks

(0, V) is a power flow solution iff v is a fixed point of
1 1
F(v) & 1p = 5 STHQUV ™ 1n + 5 STHVIHALD [A(v)] u(v),

where

u(v) £1 -1~ [y
¥(v) = [h(v)] 1D 'p
p=(ATA)IATP

with the phase angles AT = arcsin(¢).
L
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FPPF Simplifies for Acyclic Networks

[ Fixed-Point Power Flow: Radial Networks

(0, V) is a power flow solution iff v is a fixed point of
1 1
f(v) £ 1, - ZS_I[QL][V]_lln + 15_1[V]_1|A|LD [A(v)] u(v),

where

u(v) £1 -1~ [y
¥(v) = [h(v)] 71D 'p
p=(ATA)IATP

with the phase angles AT = arcsin(¢).
\.

On what invariant set is f a contraction? |
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Solvability Results for Different Acyclic Topologies
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Solvability Results for Different Acyclic Topologies

PQ buses have one PV bus neighbor

Sufficient + Necessary
Existence + Uniqueness

PQ buses have many PV bus neighbors

Sufficient 4+ Tight
Existence + Uniqueness

General interconnections

Sufficient
Existence
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Partitioning of Voltage Space
AV2/V5

| gy

A +4r? <1
i Sl S

max [; <1,
(ij)ecee

1 W/

1 A;
vig 2 \/2 (1— > ,/1—(A,-+4r,?))

4
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Partitioning of Voltage Space
AV2/V5

1 :j_I—I
’1)2,+-
max A; +4r% <1
V2, — 4 iGN[_ ! !
max [; <1,
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What About Networks with Losses?

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 3, MAY 2018 2477

Lossy DC Power Flow

John W. Simpson-Porco ~, Member, IEEE

Focus just on active power balance (minus slack bus)

P; = Zj V;V;Bjjsin(6; — 6;) + GiV? + ZJ. ViV Gj

Key ideas for analysis:

@ The case G = 0 is (somewhat) well understood
@ (Solvability with G =0) + ||G/B|| <p = Solution?
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Decoupled Active Power Flow on Radial Networks

( )
Let A, be the (reduced) graph incidence matrix, and define

M= |ATL 7 Prloo (lossless loading margin)
D= ||diag(B,-j)*1A,*1|Ar|diag(G,-j)HOo (r/x ratio)
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Decoupled Active Power Flow on Radial Networks

( )
Let A, be the (reduced) graph incidence matrix, and define

M= |ATL 7 Prloo (lossless loading margin)
p = ||diag(B,-J-)*1A,*1|Ar|diag(G,-j)HOo (r/x ratio)
If r2 4+ 2[p < 1, then

OQ J! soln. 6" satisfying |07 — 07| < arcsin(B-) € [0, 5), where

_I+p P
14 p2 7 14 p2?

B+ 1-(M242rp) € [0,1].

23/26



Decoupled Active Power Flow on Radial Networks

( Let A, be the (reduced) graph incidence matrix, and define ]
M= |AT L Pl oo (lossless loading margin)
p = ||diag(By) ATt |A|diag(Gy)llo  (r/x ratio)
If r2 4+ 2[p < 1, then
OQ J! soln. 6" satisfying |07 — 07| < arcsin(B-) € [0, 5), where
Bt = lrip;; + l—pr 1—(r2+2rp) € [0,1].
@ 7 soln. ¢ satisfying
arcsin(-) < |0} — 0}| < arcsin(B4.).
q J
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Conclusions

Framework for studying Lossless Power Flow:

@ Fixed-Point Power Flow

@ Approximate solution

A Theory of Solvability for Lossless Power Flow
Equations — Part I: Fixed-Point Power Flow

John W. Simpson-Porco, Member; IEEE
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Conclusions

Framework for studying Lossless Power Flow:

@ Fixed-Point Power Flow

@ Approximate solution

A Theory of Solvability for Lossless Power Flow
Equations — Part I: Fixed-Point Power Flow

John W. Simpson-Porco, Member; IEEE

New conditions for power flow solvability:

© Contractive iteration
© Existence/uniqueness

@ Generalizes known results

A Theory of Solvability for Lossless Power Flow
Equations — Part II: Existence and Uniqueness

John W. Simpson-Porco, Member, IEEE
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Conclusions
Framework for studying Lossless Power Flow:

© Fixed-Point Power Flow A Theory of Solvability for Lossless Power Flow
Equations — Part I: Fixed-Point Power Flow
e Ap prox| m ate sol ut|0n John W. Simpson-Porco, Member, IEEE

New conditions for power flow solvability:

© Contractive iteration

. . A Theory of Solvability for Lossless Power Flow
Q EX|stence/un|q ueness Equations — Part II: Existence and Uniqueness

John W. Simpson-Porco, Member, IEEE

@ Generalizes known results

What'’s next?

© Lossless meshed case unresolved
@ Lossy radial case unresolved
© Lossy meshed (!!) (be afraid)
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Questions

https://ece.uwaterloo.ca/~jwsimpso/
jwsimpson@uwaterloo.ca
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Power flow and grid connectivity

“[Power flow feasibility] is one question which is unresolved in power systems analysis,

but which is of basic theoretical and practical importance .. .is a given network
structurally susceptible to unfeasibility? What type and what value of injections are

most likely to result in unfeasible situations?”

— F. D. Galiana, 1975
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“The power systems theory needs to be pushed further in the direction of exploiting
structural features of the networks . .. realistic power systems models have at least
two different types of node dynamics (generators, loads) and the directional power
flows between them play a major role.”

— D. J. Hill & G. Chen, 2006




Power flow and grid connectivity

“[Power flow feasibility] is one question which is unresolved in power systems analysis,
but which is of basic theoretical and practical importance .. .is a given network
structurally susceptible to unfeasibility? What type and what value of injections are
most likely to result in unfeasible situations?”

— F. D. Galiana, 1975

“The power systems theory needs to be pushed further in the direction of exploiting
structural features of the networks . .. realistic power systems models have at least
two different types of node dynamics (generators, loads) and the directional power
flows between them play a major role.”

— D. J. Hill & G. Chen, 2006

‘Root causes of [the northeastern] blackout: lack of basic understanding of power
systems ... theoretical understanding of nonlinear power system dynamics is
inadequate. [t is time for more theoretical research to develop alternatives to
complement scenario-based simulation paradigm: mathematical theory to understand
the complex dynamic behavior of large-scale interconnected power systems utilizing
modern nonlinear mathematics.”

— Felix F. Wu, 2003
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