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Control Systems 101

@ Prototypical feedback control problem is tracking and disturbance
rejection in the presence of plant uncertainty
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Control Systems 101

@ Prototypical feedback control problem is tracking and disturbance
rejection in the presence of plant uncertainty
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Where does the reference r come from? J
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Feedforward Optimization for Complex Control Systems

r =argmin f(2)+g(r)
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Feedforward: simple, but sensitive to uncertainty J
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Feedback Optimization for Complex Control Systems
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Feedback Optimization for Complex Control Systems

&k+1 = f(&k, model, pred., meas.)
_____ . P
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Feedback: improved robustness / disturbance attenuation J
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Example #1: Secondary Frequency Control in Bulk Grid
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\ ROCOF (max rate of change of frequency)

o Centralized secondary (integral) control drives Aw — 0
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Example #1: Secondary Frequency Control in Bulk Grid

f

restoration time

%

inertial
response

primary control

inter-area

frequency nadir oscillations

\ ROCOF (max rate of change of frequency)

o Centralized secondary (integral) control drives Aw — 0

{P}

—>

pload inimi TP
- (Awp | Pt 2oy GUPD)
o
Power ey subject to Aw; =0

System

(System dynamics)

Want: Fast hierarchical resource-allocating control loops J
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Example #2: Voltage Regulation in PV-Heavy Feeders
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Example #2: Voltage Regulation in PV-Heavy Feeders

—

Grid Model: vV = n(d, w)
e 7 = controllable power

e w = uncontrollable power

minimize |u — u™™|3
ued

subject to v € [Vinin, Vinax]
v =m(u,w)
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Example #2: Voltage Regulation in PV-Heavy Feeders

—

Grid Model: vV = n(d, w)
e 7 = controllable power

e w = uncontrollable power

minimize |u — u™™|3
uel

subject to v € [Vinin, Vinax]
v =m(u,w)

Want: Online control, robust w.r.t. grid model 7 )
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Example #3: A Non-Traditional Servo Problem
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Example #3: A Non-Traditional Servo Problem
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minimize ||y — r|lcc + 1 Zm max(0, u; — uj, uj — U,-)2 + ollullh
u \W_/ i=1 \V_J

/

Worst Error Penalty on u

subject to  (System Dynamics)

Sparse action
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Example #3: A Non-Traditional Servo Problem

|w

\

Plant

—:?—* Controller

minimize ||y — r|lcc + 1 Zm max(0, u; — uj, uj — U,-)2 + ollullh
u \W_/ i=1 \V_J

/

Worst Error

subject to  (System Dynamics)

Penalty on u

o Note: feasible reference = exact tracking

Sparse action

Want: Constructive solution to this class of problems J
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Optimal Steady-State Control Problem Statement

(Parametric) Uncertainty
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LTI w/ Structured(!) Uncert.
81 x =A(0)x + B(6)u+ Bu(0)w
— ( 5N) — y =C(8)x + D(0)u+ Q(§)w

(Parametric) Uncertainty

g|  const. Disturb. w | p Control specification:

l y*(w,d) = argmin fy(y) J
A > By €
y€C(w,0)
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Optimal Steady-State Control Problem Statement

(Parametric) Uncertainty

[

q Const. Disturb. w

!

A B,
y Cq | Dgp  Dgu
< G | Dy Dy

Bl

T

> K

Controller

A\

LTI w/ Structured(!) Uncert.
x = A(8)x + B(0)u + By (5)w
y = C(0)x+ D(0)u+ Q(5)w

Control specification:

y*(w,d) = argmin fy(y)
yeC(w,9)

Wish list:

@ Closed-loop stability
Q y(t) > y* YwWoied
Q lyr —y*lle < vlwrlle
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Optimal Steady-State Control Specification
minimize fy(y) (steady-state objective)
yERP

subject to (%)
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minimize fy(y) (steady-state objective)
yeRp
subject to ¥ € {achievable equil .} (%)

(**) ensures plant and optimization are compatible
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Achievable Equilibria
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Optimal Steady-State Control Specification
minimize fy(y) (steady-state objective)
yERP

subject to  G(9) Ly = b(d1, d>) (*x)

(**) ensures plant and optimization are compatible

Achievable Equilibria
0 = A(8)X + B(6)d + Byw G(8) := [C D] null([A B])
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Optimal Steady-State Control Specification

mi;lei%’ize fo(¥) (steady-state objective)
subject to G(d)_Ly = b(d1, d2) (%)
Hy = Lw (engineering equality)
Jy < Mw (engineering inequality)

(**) ensures plant and optimization are compatible

Achievable Equilibria
0 = A(8)X + B(6)d + Byw G(8) := [C D] null([A B])
7= CO)%+D(E)i+Duw  GL(5) = st. GL(5)G(8) =0

Classic result: Robust tracking = range(G(J)) =RP V5. J

This is not necessary in our formulation.

9/31



Optimal Steady-State Control Specification

migi%’ize fo(¥) (objective + ineq. constraint penalty)
ye

subject to G(d) y=b  (»x)
Hy = Lw (engineering equality)
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Optimal Steady-State Control Specification

mini%})ize fo(¥) (objective + ineq. constraint penalty)
ye
subject to G(d) y=b  (»x)

Hy = Lw (engineering equality)

Equivalent ways of writing stationarity:
0=Vh(y")+ GO\ + H p*
—  0=0(6)T (Vfo(y*) + HTM*>
=  0=T0)"Vhiy*)
where

range T(8) = null {ﬁf )]
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Optimality Models for OSS Control

An optimality model filters the available measurements to robustly
produce a proxy error € for the unknown tracking error e = y*(w,d) — y

11/31



Optimality Models for OSS Control

An optimality model filters the available measurements to robustly
produce a proxy error € for the unknown tracking error e = y*(w,d) — y

|w

—{ Plant

Ym

A\

Optimality Model

€
——

¢ = OM state

[

Y Y

11/31



Optimality Models for OSS Control

An optimality model filters the available measurements to robustly
produce a proxy error € for the unknown tracking error e = y*(w,d) — y

|w

— Plant Y » Optimality Model L <,
¢ = OM state

[

Y Y

Steady-state requirement: if the plant and optimality model
are both in equilibrium and ¢ = 0, then y = y*(w, d). J
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Optimality Models for OSS Control

An optimality model filters the available measurements to robustly
produce a proxy error € for the unknown tracking error e = y*(w,d) — y

|w

— Plant Y » Optimality Model L <,
¢ = OM state

[

Yy

Steady-state requirement: if the plant and optimality model
are both in equilibrium and ¢ = 0, then y = y*(w, d). J

“Internal Model” Interpretation: The loop gain
incorporates a model of the optimal solution set J
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From OSS Control to Regulator Problem

Optimality model reduces OSS control to regulator/servomechanism problem

Integral
Control

"| Controller

| Stabilizing | u Ym

_| Optimality

A

Model
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From OSS Control to Regulator Problem

Optimality model reduces OSS control to regulator/servomechanism problem

Uom
|- - T T T T T T T T T T TT T T T T TSI T T T TS 1
i I :
Integral | 7 | Stabilizing| v = P Ym | Optimality
Control "| Controller ¥| Flant i | Model
f T T
| o I I
! €
____________________________ 4 6

Optimality Model: creates proxy error signal €
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From OSS Control to Regulator Problem

Optimality model reduces OSS control to regulator/servomechanism problem

Uom
|- - T T T T T T T T T T TT T T T T TSI T T T TS 1
i I :
Integral | 7 | Stabilizing| v = P Ym | Optimality
Control "| Controller ¥| Flant i | Model
f T T
| o I I
! €
____________________________ 4 6

Optimality Model: creates proxy error signal €
Integral Control: integrates €

Stabilizing Controller: stabilizes closed-loop system

Theorem: (Stability) + (¢ —0) = (y(t) = y*)
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Robustness: When is the uncertainty important?

Recall: With range T () = null [GLH(‘”}, optimality conditions

0=G(6)" (Vh(y") +H'w")
—  0=TE)VH()
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Robustness: When is the uncertainty important?

Recall: With range T () = null [GLH(‘”}, optimality conditions

0=G(6)" (Vh(y") +H'w")
—  0=TE)VH()

Idea: Use these to (robustly?) construct proxy error signals J

© Robust Full Rank: rank [é% gg” =n+p Véed
@ Robust Output Space: 3Gy s.t. rangeGy = rangeG(9) Voed
© Robust Feasible Space: 3Ty s.t. range To = null |:GLF55)1| V6 € d

Easy to show: (1) = (2) = (3). Conditions checkable via SDPs.
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Construction of Optimality Models
@ Robust Full Rank Optimality Model (akin to classic tracking)

=Hy —Lw
e=Vihy)+H pu
@ Robust Output Subspace Optimality Model

© Robust Feasible Subspace Optimality Model
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Construction of Optimality Models
@ Robust Full Rank Optimality Model (akin to classic tracking)
=Hy —Lw
e=Vh(y)+H p J
@ Robust Output Subspace Optimality Model

nw=Hy—Lw
e=Go' (Vho(y) + H'p)
© Robust Feasible Subspace Optimality Model

= nvat) J

...and many more! Ask me if you're curious. |
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What if robustness conditions fail?
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Big Picture for OSS Control

Optimality model reduces OSS control to regulator/servomechanism problem

Uom
| 1
i Jw :
Integral | 7 | Stabilizing| v P Ym | Optimality
Control "| Controller i ant i | Model
T ™ e
: o _____ | |
! €
____________________________ 4 6

Optimality Model: creates proxy error signal €
Integral Control: integrates €

Stabilizing Controller: stabilizes closed-loop system
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Existence of stabilizing output feedback controller

uOI]'l
I I
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Control > Controller >| Plant X " Model
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|

A 4 A

@ To use LTI theory, study case § = 0 with convex quadratic
objective f(y) =y "Qy +cTy, Q =0

Cascade is stabilizable/detectable if and only if
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Existence of stabilizing output feedback controller

uOl]'l
I I
: b i
Integral | 7 | Stabilizing| u Ym Optimality
Control > Controller >| Plant X " Model
A 4 A :

@ To use LTI theory, study case § = 0 with convex quadratic
objective f(y) =y "Qy +cTy, Q =0

Cascade is stabilizable/detectable if and only if
O plant stabilizable/detectable

@ optimization problem has a unique solution

GL

© equality constraints are not redundant ([ i

] full row rank)

Q Ty or Gp full column rank

17/31



Big Picture for OSS Control

Optimality model reduces OSS control to output regulation

Uom
| 1
i Jw :
Integral | 7 | Stabilizing| v P Ym | Optimality
Control "| Controller i ant i | Model
T ™ e
: o _____ | |
! €
____________________________ 4 6

Optimality Model: creates proxy error signal €
Integral Control: integrates €

Stabilizing Controller: stabilizes closed-loop system
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Example #1: Secondary Frequency Control in Bulk Grid

load inimi i (P?
P [ oy | FE 2 SO
f Wi .
Power | 15¢ subject to  Aw; =0

System

(System dynamics)
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load inimi i (P?
P [ oy | FE 2 SO
f Wi .
Power | 15¢ subject to  Aw; =0

System

(System dynamics)

Structured uncertain dynamic model:
Aé,’ = Aw,-,
M; Ads; = — Z,Ll T (A0, — AG;) — D;Aw; + APy i + APy
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Example #1: Secondary Frequency Control in Bulk Grid

load inimi i (P?
P [ oy | FE 2 SO
: Wi .
Power | 15¢ subject to  Aw; =0

System

(System dynamics)

Structured uncertain dynamic model:
Aé,’ = Aw,-,
M; Ao = — ijl T;i(A0; — A;) — D;Aw; + APy ; + APy
TiAPn ;= —APn;— Ry} Aw; + P;.

Can construct many different optimality models for this problem
—> Reveals many possible control architectures!
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Example #1: Secondary Frequency Control in Bulk Grid

@ Centralized (generalized AGC) approach:

™
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Example #1: Secondary Frequency Control in Bulk Grid

@ Centralized (generalized AGC) approach:

ri == b }
P = (VG)(n) G

@ Distributed consensus-based approach:

n
it = —Dw; — Y _ ay(n; — 1) o
j=1
P = (V) () =+




Feedback-Based Optimization of Maps

ka e Map 7 unknown

e Disturbance w unknown
Uk Yk
—— w(uk,wx) — e Output y measurable
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Feedback-Based Optimization

of Maps

e Map 7 unknown
e Disturbance w unknown

e Output y measurable

Uy Yk
— (UK, wk) >
(P, qr)| =15
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Feedback-Based Optimization

Uy Yk

7T(Uk, Wk)

(P> ar) |

of Maps

e Map 7 unknown
e Disturbance w unknown

e Output y measurable

f(u) +&(y)

minimize
uel

subject to y = m(u, w)

Assumptions:
@ U is convex & compact
e w € W compact
e f,g are cvx, C?, Lipschitz V
o misClinuandC®inw

21/31



Feedback-Based Optimization of Maps

minimize f(u)+
spize FTeW) mie F(u) + g, w))

subject to y = m(u, w) ueu
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Feedback-Based Optimization of Maps

minimize f(u) +
L (u) +8(y) minimize f(v) + g(7(u, w))
- § ueld

subject to  y = 7(u, w)

Offline Projected Gradient Descent:

ukg+1 = Projy {uk -« (Vf(uk) + O (uk, Wk)TVg(W(uk, Wk)))} J
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Feedback-Based Optimization of Maps

minimize f(u) +
L (u) +8(y) minimize f(v) + g(7(u, w))
- § ueld

subject to  y = 7(u, w)

Offline Projected Gradient Descent:

ukg+1 = Projy {uk -« (Vf(uk) + O (uk, Wk)TVg(W(uk, Wk)))} J

Approximate Offline Projected Gradient Descent:

U1 = Projy, {uk — (Vf(uk) + N"Vg(r(ux, Wk)))} J

Approximate Online Projected Gradient Descent:

k41 = Projy, {Uk -« (Vf(uk) + ”TVg(}'k))} J
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Example #2: Voltage Regulation in PV-Heavy Feeders

Short story: Outperforms volt-var control in cost and is
provably robust to large model variations

OAG Feedback Optimization

C < Aug 29, 2012
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Longer Story: Convergence of Approx. Gradient Descent

Ukr1 = Proju{uk = aFW(uk)}
Fo(ux) = Vi(ug) + I'ITVg(ﬂ(uk, wg)) }
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Theorem from VI Literature: If F, is p-strongly mono-
tone and L-Lipschitz continuous and a < p/L? w.r.t. in-
ner product (x,y)p = x' Py’ with P = 0, then iteration
converges exponentially to a unique equilibrium.

Problem: F,(u) is uncertain.

When is F,, robustly p-strongly monotone?
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Longer Story: Monotonicity via the Jacobian

Strong Monotonicity: Given P >~ 0, the map F,, is p—strongly
monotone w.r.t (-,-)p if and only if

OFy(u)TP + POF,(u) = 2pP, Vueld

where OF,, (ux) = V2f(ux) + NTV2g(m(uy, wi ) (uy, w)
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monotone w.r.t (-,-)p if and only if

OF,(u)TP + POF,,(u) = 2pP, Vuel

where OF, (ux) = V2f(uy) + NTV2g(m(ug, wk))Om (ug, w)

Idea: Overbound the set 9F,,(U) by a simpler set J!

Robust Strong Monotonicity: If we have a set J of matrices
such that OF, () C J, then F,(u) is p-strongly monotone if

JTP+ PJ=2pP vjeJ.

When is this test tractable? |
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Longer Story: LFR Uncertainty Modelling

Linear Fractional Representation of Uncertainty
J={A+BA(l -DA)!C : Ae A}

where A C R"*% s a set of matrices and we have a convex
cone O of matrices such that

)
q q
0l >0 wp=ng 0co.
M M‘ p=ad
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Longer Story: LFR Uncertainty Modelling

Linear Fractional Representation of Uncertainty
J={A+BA(l -DA)!C : Ae A}

where A C R"*% s a set of matrices and we have a convex
cone O of matrices such that

)
q q
0l >0 wp=ng 0co.
M M‘ p=ad

Robust Monotonicity via S-Procedure: The set of maps F,,
with 0F, (u) C J is p-strongly monotone if 3P > 0,0 € O s.t.

ATP+PA-20P PB| _[C D' [C D]
BTP 0 (U 0 1=
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Example #2: Voltage Regulation in PV-Heavy Feeders

minimize || (§) — ||2 +7 E max (0,v; — vj,v; — v;)?
(pi,qi)€U; \—,—/ _
curtailment Soft voltage constraint

subject to v = 7(p, q, w) = PowerFlow(p, q, w)
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curtailment Soft voltage constraint

subject to v = 7(p, q, w) = PowerFlow(p, q, w)

@ Replace 97 with any linearization M"°™ of power flow equations
@ Model uncertainty via norm-bound from nominal Jacobian

om(u, w) =M 4 A |A]2 < 7.
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Example #2: Voltage Regulation in PV-Heavy Feeders

minimize PY— (P )12+ Zm max(0.v: — vi. vi — v;)2
(pi>qi)€U; \._H(q) (_°)||2, \7 i=1 0.y, o i)

J/

N Ve
curtailment Soft voltage constraint

subject to v = 7(p, q, w) = PowerFlow(p, q, w)

@ Replace 97 with any linearization M"°™ of power flow equations
@ Model uncertainty via norm-bound from nominal Jacobian

Or(u,w) ="+ A, [|Al < 1.
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Results

1.06 |-

?: 1.04

OAG Feedback Optimization

Aug 29, 2012
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Recent Work: From Analysis to Design

© Synthesize [1 for distributed control
minimize || — ]|
n,e
subject to TMe

ATP+ PA—2pP PB(M)] [C DT@ cC D
B(M'p 0 0 0o I
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Recent Work: From Analysis to Design

© Synthesize [1 for distributed control
minimize || — ]|
ne
subject to TMe

ATP+ PA—2pP PB(M)] [C DT@ cC D
B(M'p 0 0 0o I

@ Output constraints via dualization and Moreau smoothing

minimize f(u) 4+ g(y) + Iy(y)

uel

subject to y = m(u, w)

Zu(u,A) = f(u) + g(m(u, W) + Myr(m(u, w) + p)) = 5A]3
Primal-Dual lteration on “Proximal Augmented Lagrangian”

29/31



Conclusions
Two frameworks for feedback optimization

@ Optimal steady-state control (leverage regulator/servo theory)

@ Gradient-based feedback (leverage opt. theory + robust ctrl)
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Questions

https://ece.uwaterloo.ca/~jwsimpso/
jwsimpson@uwaterloo.ca
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