Frameworks for Real-Time Feedback-Based Optimization

(with Applications in Energy Systems)

John W. Simpson-Porco https://ece.uwaterloo.ca/~jwsimpso/

ECE Seminar, University of Toronto

November 15, 2019

Research in control and optimization of energy systems

Control Systems 101

 Prototypical feedback control problem is tracking and disturbance rejection in the presence of plant uncertainty

Where does the reference *r* come from?

Control Systems 101

 Prototypical feedback control problem is tracking and disturbance rejection in the presence of plant uncertainty

Where does the reference *r* come from?

Feedforward Optimization for Complex Control Systems

Feedforward Optimization for Complex Control Systems

Feedforward: simple, but sensitive to uncertainty

Feedback Optimization for Complex Control Systems

Feedback Optimization for Complex Control Systems

Feedback: improved robustness / disturbance attenuation

• Centralized secondary (integral) control drives $\Delta \omega
ightarrow 0$

• Centralized secondary (integral) control drives $\Delta \omega \rightarrow 0$

• Centralized secondary (integral) control drives $\Delta \omega \rightarrow 0$

$$\begin{array}{ll} \underset{P_i^{\mathrm{s}} \in \{\mathrm{limits}\}}{\min} & \sum_{i=1}^{n} C_i(P_i^{\mathrm{s}}) \\ \mathrm{subject to} & \Delta \omega_i = 0 \\ & (\mathrm{System dynamics}) \end{array}$$

• Centralized secondary (integral) control drives $\Delta \omega \rightarrow 0$

Want: Fast hierarchical resource-allocating control loops

Example #2: Voltage Regulation in PV-Heavy Feeders

Example #2: Voltage Regulation in PV-Heavy Feeders

Example #2: Voltage Regulation in PV-Heavy Feeders

Grid Model: $\vec{v} = \pi(\vec{u}, \vec{w})$

- $\vec{u} = \text{controllable power}$
- $\vec{w} = uncontrollable power$

$$\begin{array}{ll} \underset{u \in \mathcal{U}}{\operatorname{minimize}} & \|u - u^{\operatorname{nom}}\|_2^2 \\ \text{subject to} & v \in [v_{\min}, v_{\max}] \\ & v = \pi(u, w) \end{array}$$

Example #2: Voltage Regulation in PV-Heavy Feeders

Grid Model: $\vec{v} = \pi(\vec{u}, \vec{w})$

- $\vec{u} = \text{controllable power}$
- $\vec{w} = uncontrollable power$

$$\begin{array}{ll} \underset{u \in \mathcal{U}}{\operatorname{minimize}} & \|u - u^{\operatorname{nom}}\|_2^2 \\ \text{subject to} & v \in [v_{\min}, v_{\max}] \\ & v = \pi(u, w) \end{array}$$

• Note: feasible reference \implies exact tracking

• Note: feasible reference \implies exact tracking

• Note: feasible reference \implies exact tracking

• Note: feasible reference \implies exact tracking

LTI w/ Structured(!) Uncert. $\dot{x} = A(\delta)x + B(\delta)u + B_w(\delta)w$ $y = C(\delta)x + D(\delta)u + Q(\delta)w$

Control specification:

$$y^*(w, \delta) = \underset{\bar{y} \in \mathcal{C}(w, \delta)}{\operatorname{argmin}} f_0(\bar{y})$$

Wish list:

Question (1)
 Question (2)
 Que

LTI w/ Structured(!) Uncert. $\dot{x} = A(\delta)x + B(\delta)u + B_w(\delta)w$ $y = C(\delta)x + D(\delta)u + Q(\delta)w$

Control specification:

$$y^*(w, \delta) = \operatorname*{argmin}_{ar{y} \in \mathcal{C}(w, \delta)} f_0(ar{y})$$

Wish list:

Question (1)
 Question (2)
 Que

LTI w/ Structured(!) Uncert. $\dot{x} = A(\delta)x + B(\delta)u + B_w(\delta)w$ $y = C(\delta)x + D(\delta)u + Q(\delta)w$

Control specification:

$$y^{\star}(w, \delta) = \operatorname*{argmin}_{ar{y} \in \mathcal{C}(w, \delta)} f_0(ar{y})$$

Wish list:

Question (1)
 Question (2)
 Que

LTI w/ Structured(!) Uncert. $\dot{x} = A(\delta)x + B(\delta)u + B_w(\delta)w$ $y = C(\delta)x + D(\delta)u + Q(\delta)w$

Control specification:

$$y^{\star}(w, \delta) = \operatorname*{argmin}_{ar{y} \in \mathcal{C}(w, \delta)} f_0(ar{y})$$

Wish list:

- Closed-loop stability
- $2 y(t) \to y^* \quad \underline{\forall w \ \forall \delta \in \delta}$
- $\|y_{T} y^{\star}\|_{\mathscr{L}_{2}} \leq \gamma \|w_{T}\|_{\mathscr{L}_{2}}$

(**) ensures plant and optimization are compatible

Achievable Equilibria

$$0 = A(\delta)\bar{x} + B(\delta)\bar{u} + B_w w \qquad \Longrightarrow \qquad G(\delta) := [C \ D] \ \operatorname{null}([A \ B])$$

$$\bar{y} = C(\delta)\bar{x} + D(\delta)\bar{u} + D_w w \qquad \Longrightarrow \qquad G_{\perp}(\delta) := \text{ s.t. } G_{\perp}(\delta)G(\delta) = 0$$

 $\begin{array}{ll} \underset{\bar{y} \in \mathbb{R}^{\rho}}{\text{minimize}} & f_0(\bar{y}) & (\text{steady-state objective}) \\ \text{subject to} & \bar{y} \in \{\text{achievable equil.}\} & (\star\star) \end{array}$

(**) ensures plant and optimization are compatible

Achievable Equilibria

 $0 = A(\delta)\bar{x} + B(\delta)\bar{u} + B_{w}w \qquad \Longrightarrow \qquad G(\delta) := [C \ D] \ \operatorname{null}([A \ B])$ $\bar{y} = C(\delta)\bar{x} + D(\delta)\bar{u} + D_{w}w \qquad \Longrightarrow \qquad G_{\perp}(\delta) := \text{ s.t. } G_{\perp}(\delta)G(\delta) = 0$

 $\begin{array}{ll} \underset{\bar{y} \in \mathbb{R}^p}{\text{minimize}} & f_0(\bar{y}) & (\text{steady-state objective}) \\ \text{subject to} & \bar{y} \in \{\text{achievable equil.}\} & (\star\star) \end{array}$

(**) ensures plant and optimization are compatible

Achievable Equilibria

 $\begin{array}{ll} \underset{\bar{y} \in \mathbb{R}^{p}}{\text{minimize}} & f_{0}(\bar{y}) & (\text{steady-state objective}) \\ \text{subject to} & \bar{y} \in \{\text{achievable equil.}\} & (\star\star) \end{array}$

(**) ensures plant and optimization are compatible

Achievable Equilibria

$$\begin{array}{ll} 0 = A(\delta)\bar{x} + B(\delta)\bar{u} + B_w w \\ \bar{y} = C(\delta)\bar{x} + D(\delta)\bar{u} + D_w w \end{array} \xrightarrow[]{} & G(\delta) := [C \ D] \ \mathrm{null}([A \ B]) \\ & G_{\perp}(\delta) := \ \mathrm{s.t.} \ G_{\perp}(\delta)G(\delta) = 0 \end{array}$$

$$\begin{array}{ll} \underset{\bar{y} \in \mathbb{R}^p}{\operatorname{minimize}} & f_0(\bar{y}) & (\text{steady-state objective}) \\ \text{subject to} & \boldsymbol{G}(\delta)_{\perp} \bar{y} = \boldsymbol{b}(\boldsymbol{d}_1, \boldsymbol{d}_2) & (\star\star) \end{array}$$

(**) ensures plant and optimization are compatible

Achievable Equilibria

$$\begin{array}{ll} 0 = A(\delta)\bar{x} + B(\delta)\bar{u} + B_w w \\ \bar{y} = C(\delta)\bar{x} + D(\delta)\bar{u} + D_w w \end{array} \implies \begin{array}{l} G(\delta) := [C \ D] \ \mathrm{null}([A \ B]) \\ G_{\perp}(\delta) := \ \mathrm{s.t.} \ G_{\perp}(\delta)G(\delta) = 0 \end{array}$$

 $\begin{array}{ll} \underset{\bar{y} \in \mathbb{R}^{\rho}}{\text{minimize}} & f_{0}(\bar{y}) & (\text{steady-state objective}) \\ \text{subject to} & \boldsymbol{G}(\boldsymbol{\delta})_{\perp} \bar{y} = \boldsymbol{b}(\boldsymbol{d}_{1}, \boldsymbol{d}_{2}) & (\star\star) \\ & H \bar{y} = L w & (\text{engineering equality}) \\ & J \bar{y} \leq M w & (\text{engineering inequality}) \end{array}$

 $(\star\star)$ ensures plant and optimization are compatible

Achievable Equilibria

$$\begin{array}{ll} 0 = A(\delta)\bar{x} + B(\delta)\bar{u} + B_w w \\ \bar{y} = C(\delta)\bar{x} + D(\delta)\bar{u} + D_w w \end{array} \xrightarrow[]{} & G(\delta) := [C \ D] \ \mathrm{null}([A \ B]) \\ & G_{\perp}(\delta) := \ \mathrm{s.t.} \ G_{\perp}(\delta)G(\delta) = 0 \end{array}$$

 $\begin{array}{ll} \underset{\bar{y} \in \mathbb{R}^{\rho}}{\text{minimize}} & f_{0}(\bar{y}) & (\text{objective} + \text{ineq. constraint penalty}) \\ \text{subject to} & G(\delta)_{\perp}\bar{y} = b & (\star\star) \\ & H\bar{y} = Lw & (\text{engineering equality}) \end{array}$

$$\begin{array}{ll} \underset{\bar{y} \in \mathbb{R}^{\rho}}{\text{minimize}} & f_{0}(\bar{y}) & (\text{objective} + \text{ineq. constraint penalty}) \\ \text{subject to} & G(\delta)_{\perp}\bar{y} = b & (\star\star) \\ & H\bar{y} = Lw & (\text{engineering equality}) \end{array}$$

Equivalent ways of writing stationarity:

<

$$0 = \nabla f_0(y^*) + G(\delta)_{\perp}^{\mathsf{T}} \lambda^* + H^{\mathsf{T}} \mu^*$$
$$\iff \quad 0 = G(\delta)^{\mathsf{T}} \left(\nabla f_0(y^*) + H^{\mathsf{T}} \mu^* \right)$$
$$\iff \quad 0 = T(\delta)^{\mathsf{T}} \nabla f_0(y^*)$$

where

$$\operatorname{range} \mathcal{T}(\delta) = \operatorname{null} \begin{bmatrix} \mathcal{G}_{\perp}(\delta) \\ \mathcal{H} \end{bmatrix}$$

An **optimality model** filters the available measurements to *robustly* produce a **proxy error** ϵ for the unknown tracking error $e = y^*(w, \delta) - y$

Steady-state requirement: if the plant and optimality model are both in equilibrium and $\epsilon = 0$, then $y = y^*(w, \delta)$.

An **optimality model** filters the available measurements to *robustly* produce a **proxy error** ϵ for the unknown tracking error $e = y^*(w, \delta) - y$

Steady-state requirement: if the plant and optimality model are both in equilibrium and $\epsilon = 0$, then $y = y^*(w, \delta)$.

An **optimality model** filters the available measurements to *robustly* produce a **proxy error** ϵ for the unknown tracking error $e = y^*(w, \delta) - y$

Steady-state requirement: if the plant and optimality model are both in equilibrium and $\epsilon = 0$, then $y = y^*(w, \delta)$.

An **optimality model** filters the available measurements to *robustly* produce a **proxy error** ϵ for the unknown tracking error $e = y^*(w, \delta) - y$

Steady-state requirement: if the plant and optimality model are both in equilibrium and $\epsilon = 0$, then $y = y^*(w, \delta)$.
Optimality model reduces OSS control to regulator/servomechanism problem

Optimality Model: creates proxy error signal ϵ Integral Control: integrates ϵ Stabilizing Controller: stabilizes closed-loop system

Theorem: (Stability) + ($\epsilon \rightarrow 0$) \implies ($y(t) \rightarrow y^*$)

Optimality model reduces OSS control to regulator/servomechanism problem

Optimality Model: creates proxy error signal ϵ Integral Control: integrates ϵ Stabilizing Controller: stabilizes closed-loop system

Theorem: (Stability) + ($\epsilon \rightarrow 0$) \implies ($y(t) \rightarrow y^*$)

Optimality model reduces OSS control to regulator/servomechanism problem

Optimality Model: creates proxy error signal ϵ Integral Control: integrates ϵ

Stabilizing Controller: stabilizes closed-loop system

Theorem: (Stability) + ($\epsilon \rightarrow 0$) \implies ($y(t) \rightarrow y^*$)

Optimality model reduces OSS control to regulator/servomechanism problem

Optimality Model: creates proxy error signal ϵ Integral Control: integrates ϵ Stabilizing Controller: stabilizes closed-loop system

Theorem: (Stability) + ($\epsilon \rightarrow 0$) \implies ($y(t) \rightarrow y^{\star}$)

Recall: With range $T(\delta) = \operatorname{null} \begin{bmatrix} G_{\perp}(\delta) \\ H \end{bmatrix}$, optimality conditions $0 = G(\delta)^{\mathsf{T}} \left(\nabla f_0(y^*) + H^{\mathsf{T}} \mu^* \right)$ $\iff \quad 0 = T(\delta)^{\mathsf{T}} \nabla f_0(y^*)$

Idea: Use these to (robustly?) construct proxy error signals

- **1** Robust Full Rank: rank $\begin{bmatrix} A(\delta) & B(\delta) \\ C(\delta) & D(\delta) \end{bmatrix} = n + p$ $\forall \delta \in \delta$
- 2 Robust Output Space: $\exists G_0 \text{ s.t. range} G_0 = \operatorname{range} G(\delta)$ $\forall \delta \in \delta$
- **③** Robust Feasible Space: $\exists T_0 \text{ s.t. range } T_0 = \operatorname{null} \begin{bmatrix} G_{\perp}(\delta) \\ H \end{bmatrix} \qquad \forall \delta \in \delta$

Recall: With range $T(\delta) = \operatorname{null} \begin{bmatrix} G_{\perp}(\delta) \\ H \end{bmatrix}$, optimality conditions $0 = G(\delta)^{\mathsf{T}} \left(\nabla f_0(y^*) + H^{\mathsf{T}} \mu^* \right)$ $\iff \quad 0 = T(\delta)^{\mathsf{T}} \nabla f_0(y^*)$

Idea: Use these to (robustly?) construct proxy error signals

- **(**) Robust Full Rank: rank $\begin{bmatrix} A(\delta) & B(\delta) \\ C(\delta) & D(\delta) \end{bmatrix} = n + p$ $\forall \delta \in \delta$
- (2) Robust Output Space: $\exists G_0 \text{ s.t. } \operatorname{range} G_0 = \operatorname{range} G(\delta)$ $\forall \delta \in d$
- **③** Robust Feasible Space: $\exists T_0 \text{ s.t. range } T_0 = \text{null } \begin{bmatrix} G_{\perp}(\delta) \\ H \end{bmatrix} \qquad \forall \delta \in \delta$

Recall: With range $T(\delta) = \operatorname{null} \begin{bmatrix} G_{\perp}(\delta) \\ H \end{bmatrix}$, optimality conditions $0 = G(\delta)^{\mathsf{T}} \left(\nabla f_0(y^*) + H^{\mathsf{T}} \mu^* \right)$ $\iff \quad 0 = T(\delta)^{\mathsf{T}} \nabla f_0(y^*)$

Idea: Use these to (robustly?) construct proxy error signals

1 Robust Full Rank: rank
$$\begin{bmatrix} A(\delta) & B(\delta) \\ C(\delta) & D(\delta) \end{bmatrix} = n + p$$
 $\forall \delta \in \delta$

2 Robust Output Space: $\exists G_0 \text{ s.t. range} G_0 = \operatorname{range} G(\delta)$ $\forall \delta \in a$

 $\textcircled{0} \ \ \, \text{Robust Feasible Space: } \exists T_0 \ \, \text{s.t. } \operatorname{range} T_0 = \operatorname{null} \left[\begin{array}{c} \mathsf{G}_{\bot}(\delta) \\ H \end{array} \right] \qquad \quad \forall \delta \in \delta$

Recall: With range $T(\delta) = \operatorname{null} \begin{bmatrix} G_{\perp}(\delta) \\ H \end{bmatrix}$, optimality conditions $0 = G(\delta)^{\mathsf{T}} \left(\nabla f_0(y^*) + H^{\mathsf{T}} \mu^* \right)$ $\iff \quad 0 = T(\delta)^{\mathsf{T}} \nabla f_0(y^*)$

Idea: Use these to (robustly?) construct proxy error signals

- Robust Full Rank: rank $\begin{bmatrix} A(\delta) & B(\delta) \\ C(\delta) & D(\delta) \end{bmatrix} = n + p$ $\forall \delta \in \delta$
- 2 Robust Output Space: $\exists G_0 \text{ s.t. } \operatorname{range} G_0 = \operatorname{range} G(\delta) \quad \forall \delta \in \delta$

3 Robust Feasible Space: $\exists T_0 \text{ s.t. } \operatorname{range} T_0 = \operatorname{null} \left| \begin{array}{c} G_{\perp}(\delta) \\ H \end{array} \right| \qquad \forall \delta \in$

Recall: With range $T(\delta) = \operatorname{null} \begin{bmatrix} G_{\perp}(\delta) \\ H \end{bmatrix}$, optimality conditions $0 = G(\delta)^{\mathsf{T}} \left(\nabla f_0(y^*) + H^{\mathsf{T}} \mu^* \right)$ $\iff \quad 0 = T(\delta)^{\mathsf{T}} \nabla f_0(y^*)$

Idea: Use these to (robustly?) construct proxy error signals

- Robust Full Rank: rank $\begin{bmatrix} A(\delta) & B(\delta) \\ C(\delta) & D(\delta) \end{bmatrix} = n + p$ $\forall \delta \in \delta$
- **2** Robust Output Space: $\exists G_0 \text{ s.t. } \operatorname{range} G_0 = \operatorname{range} G(\delta) \quad \forall \delta \in \delta$
- **3** Robust Feasible Space: $\exists T_0 \text{ s.t. } \operatorname{range} T_0 = \operatorname{null} \begin{bmatrix} G_{\perp}(\delta) \\ H \end{bmatrix} \quad \forall \delta \in \delta$

Recall: With range $T(\delta) = \operatorname{null} \begin{bmatrix} G_{\perp}(\delta) \\ H \end{bmatrix}$, optimality conditions $0 = G(\delta)^{\mathsf{T}} \left(\nabla f_0(y^*) + H^{\mathsf{T}} \mu^* \right)$ $\iff \quad 0 = T(\delta)^{\mathsf{T}} \nabla f_0(y^*)$

Idea: Use these to (robustly?) construct proxy error signals

- Robust Full Rank: rank $\begin{bmatrix} A(\delta) & B(\delta) \\ C(\delta) & D(\delta) \end{bmatrix} = n + p$ $\forall \delta \in \delta$
- **2** Robust Output Space: $\exists G_0 \text{ s.t. } \operatorname{range} G_0 = \operatorname{range} G(\delta) \quad \forall \delta \in \delta$
- **3** Robust Feasible Space: $\exists T_0 \text{ s.t. } \operatorname{range} T_0 = \operatorname{null} \begin{bmatrix} G_{\perp}(\delta) \\ H \end{bmatrix} \quad \forall \delta \in \delta$

1 Robust Full Rank Optimality Model (akin to classic tracking)

$$\dot{\mu} = Hy - Lw$$

 $\epsilon = \nabla f_0(y) + H^{\mathsf{T}}\mu$

Robust Output Subspace Optimality Model

③ Robust Feasible Subspace Optimality Model

O Robust Full Rank Optimality Model (akin to classic tracking)

$$\dot{\mu} = Hy - Lw$$

 $\epsilon = \nabla f_0(y) + H^{\mathsf{T}}\mu$

Robust Output Subspace Optimality Model

$$\dot{\mu} = Hy - Lw$$

$$\epsilon = \mathbf{G_0}^{\mathsf{T}} (\nabla f_0(y) + H^{\mathsf{T}} \mu)$$

③ Robust Feasible Subspace Optimality Model

O Robust Full Rank Optimality Model (akin to classic tracking)

$$\dot{\mu} = Hy - Lw$$

 $\epsilon = \nabla f_0(y) + H^{\mathsf{T}}\mu$

Robust Output Subspace Optimality Model

$$\dot{\mu} = Hy - Lw$$

$$\epsilon = \mathbf{G_0}^{\mathsf{T}} (\nabla f_0(y) + H^{\mathsf{T}} \mu)$$

③ Robust Feasible Subspace Optimality Model

$$\epsilon = \begin{bmatrix} Hy - Lw \\ T_0^{\mathsf{T}} \nabla f_0(y) \end{bmatrix}$$

O Robust Full Rank Optimality Model (akin to classic tracking)

$$\dot{\mu} = Hy - Lw$$

 $\epsilon = \nabla f_0(y) + H^{\mathsf{T}}\mu$

2 Robust Output Subspace Optimality Model

$$\dot{\mu} = Hy - Lw$$

$$\epsilon = \mathbf{G_0}^{\mathsf{T}} (\nabla f_0(y) + H^{\mathsf{T}} \mu)$$

Solution Subspace Optimality Model

$$\epsilon = \begin{bmatrix} Hy - Lw \\ T_0^{\mathsf{T}} \nabla f_0(y) \end{bmatrix}$$

... and many more! Ask me if you're curious.

What if robustness conditions fail?

Big Picture for OSS Control

Optimality model reduces OSS control to regulator/servomechanism problem

Optimality Model: creates proxy error signal ϵ Integral Control: integrates ϵ Stabilizing Controller: stabilizes closed-loop system

To use LTI theory, study case δ = 0 with convex quadratic objective f₀(y) = y^TQy + c^Ty, Q ≥ 0

- plant stabilizable/detectable
- 2 optimization problem has a unique solution
- (a) equality constraints are not redundant $\left(\begin{bmatrix} G_{\perp} \\ H \end{bmatrix}$ full row rank)
- T_0 or G_0 full column rank

To use LTI theory, study case δ = 0 with convex quadratic objective f₀(y) = y^TQy + c^Ty, Q ≥ 0

- Int stabilizable/detectable
- 2 optimization problem has a unique solution
- If equality constraints are not redundant $\left(\begin{bmatrix} G_{\perp} \\ H \end{bmatrix}$ full row rank)
- T_0 or G_0 full column rank

To use LTI theory, study case δ = 0 with convex quadratic objective f₀(y) = y^TQy + c^Ty, Q ≥ 0

- Int stabilizable/detectable
- optimization problem has a unique solution
- **(**) equality constraints are not redundant $\left(\begin{bmatrix} G_{\perp} \\ H \end{bmatrix}$ full row rank
- If T_0 or G_0 full column rank

To use LTI theory, study case δ = 0 with convex quadratic objective f₀(y) = y^TQy + c^Ty, Q ≥ 0

- Int stabilizable/detectable
- optimization problem has a unique solution
- **(a)** equality constraints are not redundant $\left(\begin{bmatrix} G_{\perp} \\ H \end{bmatrix}$ full row rank)
 - T_0 or G_0 full column rank

To use LTI theory, study case δ = 0 with convex quadratic objective f₀(y) = y^TQy + c^Ty, Q ≥ 0

- Int stabilizable/detectable
- optimization problem has a unique solution
- **(a)** equality constraints are not redundant $\left(\begin{bmatrix} G_{\perp} \\ H \end{bmatrix}$ full row rank)
- T_0 or G_0 full column rank

Big Picture for OSS Control

Optimality model reduces OSS control to output regulation

Optimality Model: creates proxy error signal ϵ Integral Control: integrates ϵ Stabilizing Controller: stabilizes closed-loop system

$$\begin{array}{ll} \underset{P_i^{\mathrm{s}} \in \{ \text{limits} \}}{\text{minimize}} & \sum_{i=1}^{n} C_i(P_i^{\mathrm{s}}) \\ \text{subject to} & \Delta \omega_i = 0 \\ & (\text{System dynamics}) \end{array}$$

Structured uncertain dynamic model:

$$\begin{split} \Delta \dot{\theta}_i &= \Delta \omega_i ,\\ \boldsymbol{M}_i \Delta \dot{\omega}_i &= -\sum_{j=1}^n \boldsymbol{T}_{ij} (\Delta \theta_i - \Delta \theta_j) - \boldsymbol{D}_i \Delta \omega_i + \Delta P_{\mathrm{m},i} + \Delta P_{\mathrm{u},i} \\ \boldsymbol{T}_i \Delta \dot{P}_{\mathrm{m},i} &= -\Delta P_{\mathrm{m},i} - \boldsymbol{R}_{\mathrm{d},i}^{-1} \Delta \omega_i + P_i^{\mathrm{s}}. \end{split}$$

Can construct many different optimality models for this problem Reveals **many** possible control architectures!

$$\begin{array}{ll} \underset{P_i^{\mathrm{s}} \in \{\mathrm{limits}\}}{\min} & \sum_{i=1}^{n} C_i(P_i^{\mathrm{s}}) \\ \text{subject to} & \Delta \omega_i = 0 \\ & (\mathrm{System \ dynamics}) \end{array}$$

Structured uncertain dynamic model:

$$\begin{split} \Delta \dot{\theta}_i &= \Delta \omega_i \,, \\ \mathbf{M}_i \Delta \dot{\omega}_i &= -\sum_{j=1}^n \mathbf{T}_{ij} (\Delta \theta_i - \Delta \theta_j) - \mathbf{D}_i \Delta \omega_i + \Delta P_{\mathrm{m},i} + \Delta P_{\mathrm{u},i} \\ \mathbf{T}_i \Delta \dot{P}_{\mathrm{m},i} &= -\Delta P_{\mathrm{m},i} - \mathbf{R}_{\mathrm{d},i}^{-1} \Delta \omega_i + P_i^{\mathrm{s}}. \end{split}$$

Can construct many different optimality models for this problem Reveals **many** possible control architectures!

$$\begin{array}{ll} \underset{P_i^{s} \in \{\text{limits}\}}{\text{minimize}} & \sum_{i=1}^{n} C_i(P_i^{s}) \\ \text{subject to} & \Delta \omega_i = 0 \\ & (\text{System dynamics}) \end{array}$$

Structured uncertain dynamic model:

$$\begin{split} \Delta \dot{\theta}_i &= \Delta \omega_i \,, \\ \mathbf{M}_i \Delta \dot{\omega}_i &= -\sum_{j=1}^n \mathbf{T}_{ij} (\Delta \theta_i - \Delta \theta_j) - \mathbf{D}_i \Delta \omega_i + \Delta P_{\mathrm{m},i} + \Delta P_{\mathrm{u},i} \\ \mathbf{T}_i \Delta \dot{P}_{\mathrm{m},i} &= -\Delta P_{\mathrm{m},i} - \mathbf{R}_{\mathrm{d},i}^{-1} \Delta \omega_i + P_i^{\mathrm{s}}. \end{split}$$

Can construct many different optimality models for this problem \implies Reveals many possible control architectures!

Centralized (generalized AGC) approach:

$$egin{aligned} & au\dot{\eta} = -\sum_{i=1}^n c_i\Delta\omega_i\ &P^{\mathrm{s}}_i = (
abla C_i)^{-1}(\eta) \end{aligned}$$

O Centralized (generalized AGC) approach:

$$egin{aligned} & au\dot{\eta} = -\sum_{i=1}^n c_i\Delta\omega_i \ & P^{\mathrm{s}}_i = (
abla C_i)^{-1}(\eta) \end{aligned}$$

Oistributed consensus-based approach:

$$\tau_i \dot{\eta}_i = -\Delta \omega_i - \sum_{j=1}^n a_{ij} (\eta_i - \eta_j)$$
$$P_i^{\rm s} = (\nabla C_i)^{-1} (\eta_i)$$

- Map π unknown
- Disturbance w unknown
- Output *y* measurable

- Map π unknown
- Disturbance *w* unknown
- Output *y* measurable

- Map π unknown
- Disturbance w unknown
- Output y measurable

$$\begin{array}{ll} \underset{u \in \mathcal{U}}{\text{minimize}} & f(u) + g(y) \\ \text{subject to} & y = \pi(u, w) \end{array}$$

Assumptions:

- $\mathcal U$ is convex & compact
- $w \in \mathcal{W}$ compact
- f,g are cvx, \mathcal{C}^2 , Lipschitz abla
- $\bullet \ \pi \ {\rm is} \ {\mathcal C}^1 \ {\rm in} \ u \ {\rm and} \ {\mathcal C}^0 \ {\rm in} \ w$

 $\begin{array}{ll} \underset{u \in \mathcal{U}}{\operatorname{minimize}} & f(u) + g(y) \\ \text{subject to} & y = \pi(u, w) \end{array} \implies \begin{array}{ll} \underset{u \in \mathcal{U}}{\operatorname{minimize}} & f(u) + g(\pi(u, w)) \end{array}$

Offline Projected Gradient Descent:

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha \left(\nabla f(u_k) + \partial \pi(u_k, w_k)^{\mathsf{T}} \nabla g(\pi(u_k, w_k)) \right) \right\}$$

Approximate Offline Projected Gradient Descent:

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha \left(\nabla f(u_k) + \mathbf{\Pi}^{\mathsf{T}} \nabla g(\pi(u_k, w_k)) \right) \right\}$$

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha \left(\nabla f(u_k) + \mathbf{\Pi}^{\mathsf{T}} \nabla g(\mathbf{y}_k) \right) \right\}$$

 $\begin{array}{ll} \underset{u \in \mathcal{U}}{\operatorname{minimize}} & f(u) + g(y) \\ \text{subject to} & y = \pi(u, w) \end{array} \implies \begin{array}{ll} \underset{u \in \mathcal{U}}{\operatorname{minimize}} & f(u) + g(\pi(u, w)) \end{array}$

Offline Projected Gradient Descent:

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha \left(\nabla f(u_k) + \partial \pi(u_k, w_k)^{\mathsf{T}} \nabla g(\pi(u_k, w_k)) \right) \right\}$$

Approximate Offline Projected Gradient Descent:

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha \left(\nabla f(u_k) + \mathbf{\Pi}^{\mathsf{T}} \nabla g(\pi(u_k, w_k)) \right) \right\}$$

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha \left(\nabla f(u_k) + \mathbf{\Pi}^{\mathsf{T}} \nabla g(\mathbf{y}_k) \right) \right\}$$

 $\begin{array}{ll} \underset{u \in \mathcal{U}}{\operatorname{minimize}} & f(u) + g(y) \\ \text{subject to} & y = \pi(u, w) \end{array} \implies \begin{array}{ll} \underset{u \in \mathcal{U}}{\operatorname{minimize}} & f(u) + g(\pi(u, w)) \end{array}$

Offline Projected Gradient Descent:

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha \left(\nabla f(u_k) + \partial \pi(u_k, w_k)^{\mathsf{T}} \nabla g(\pi(u_k, w_k)) \right) \right\}$$

Approximate Offline Projected Gradient Descent:

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha \left(\nabla f(u_k) + \mathbf{\Pi}^{\mathsf{T}} \nabla g(\pi(u_k, w_k)) \right) \right\}$$

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha \left(\nabla f(u_k) + \mathbf{\Pi}^{\mathsf{T}} \nabla g(\mathbf{y}_k) \right) \right\}$$

 $\begin{array}{ll} \underset{u \in \mathcal{U}}{\operatorname{minimize}} & f(u) + g(y) \\ \text{subject to} & y = \pi(u, w) \end{array} \implies \begin{array}{ll} \underset{u \in \mathcal{U}}{\operatorname{minimize}} & f(u) + g(\pi(u, w)) \end{array}$

Offline Projected Gradient Descent:

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha \left(\nabla f(u_k) + \partial \pi(u_k, w_k)^{\mathsf{T}} \nabla g(\pi(u_k, w_k)) \right) \right\}$$

Approximate Offline Projected Gradient Descent:

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha \left(\nabla f(u_k) + \mathbf{\Pi}^{\mathsf{T}} \nabla g(\pi(u_k, w_k)) \right) \right\}$$

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha \left(\nabla f(u_k) + \mathbf{\Pi}^{\mathsf{T}} \nabla g(\mathbf{y}_k) \right) \right\}$$

Example #2: Voltage Regulation in PV-Heavy Feeders

Short story: Outperforms volt-var control in cost and is provably robust to large model variations

Longer Story: Convergence of Approx. Gradient Descent

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha F_w(u_k) \right\}$$
$$F_w(u_k) = \nabla f(u_k) + \Pi^{\mathsf{T}} \nabla g(\pi(u_k, w_k))$$

Theorem from VI Literature: If F_w is ρ -strongly monotone and *L*-Lipschitz continuous and $\alpha < \rho/L^2$ w.r.t. inner product $\langle x, y \rangle_P = x^T P y'$ with $P \succ 0$, then iteration converges **exponentially** to a **unique** equilibrium.

(Put Lipschitz condition to the side, focus on monotone)

Problem: $F_w(u)$ is uncertain.

When is F_w robustly ρ -strongly monotone?
Longer Story: Convergence of Approx. Gradient Descent

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha F_w(u_k) \right\}$$
$$F_w(u_k) = \nabla f(u_k) + \Pi^{\mathsf{T}} \nabla g(\pi(u_k, w_k))$$

Theorem from VI Literature: If F_w is ρ -strongly monotone and *L*-Lipschitz continuous and $\alpha < \rho/L^2$ w.r.t. inner product $\langle x, y \rangle_P = x^T P y'$ with $P \succ 0$, then iteration converges **exponentially** to a **unique** equilibrium.

(Put Lipschitz condition to the side, focus on monotone)

Problem: $F_w(u)$ is uncertain.

When is F_w **robustly** ρ -strongly monotone?

Longer Story: Convergence of Approx. Gradient Descent

$$u_{k+1} = \operatorname{Proj}_{\mathcal{U}} \left\{ u_k - \alpha F_w(u_k) \right\}$$
$$F_w(u_k) = \nabla f(u_k) + \Pi^{\mathsf{T}} \nabla g(\pi(u_k, w_k))$$

Theorem from VI Literature: If F_w is ρ -strongly monotone and *L*-Lipschitz continuous and $\alpha < \rho/L^2$ w.r.t. inner product $\langle x, y \rangle_P = x^T P y'$ with $P \succ 0$, then iteration converges **exponentially** to a **unique** equilibrium.

(Put Lipschitz condition to the side, focus on monotone)

Problem: $F_w(u)$ is uncertain.

When is F_w robustly ρ -strongly monotone?

Longer Story: Monotonicity via the Jacobian

Strong Monotonicity: Given $P \succ 0$, the map F_w is ρ -strongly monotone w.r.t $\langle \cdot, \cdot \rangle_P$ if and only if

 $\partial F_w(u)^{\mathsf{T}} P + P \partial F_w(u) \succ 2\rho P, \quad \forall u \in \mathcal{U}$

where $\partial F_w(u_k) = \nabla^2 f(u_k) + \Pi^T \nabla^2 g(\pi(u_k, w_k)) \partial \pi(u_k, w_k)$

Idea: Overbound the set $\partial F_w(\mathcal{U})$ by a simpler set \mathcal{J} !

Robust Strong Monotonicity: If we have a set \mathcal{J} of matrices such that $\partial F_w(\mathcal{U}) \subseteq \mathcal{J}$, then $F_w(u)$ is ρ -strongly monotone if

 $J^{\mathsf{T}}P + PJ \succ 2\rho P \qquad \forall J \in \mathcal{J}.$

When is this test tractable?

Longer Story: Monotonicity via the Jacobian

Strong Monotonicity: Given $P \succ 0$, the map F_w is ρ -strongly monotone w.r.t $\langle \cdot, \cdot \rangle_P$ if and only if

 $\partial F_w(u)^{\mathsf{T}} P + P \partial F_w(u) \succ 2\rho P, \quad \forall u \in \mathcal{U}$

where $\partial F_w(u_k) = \nabla^2 f(u_k) + \Pi^T \nabla^2 g(\pi(u_k, w_k)) \partial \pi(u_k, w_k)$

Idea: Overbound the set $\partial F_w(\mathcal{U})$ by a simpler set \mathcal{J} !

Robust Strong Monotonicity: If we have a set \mathcal{J} of matrices such that $\partial F_w(\mathcal{U}) \subseteq \mathcal{J}$, then $F_w(u)$ is ρ -strongly monotone if

$$J^{\mathsf{T}}P + PJ \succ 2\rho P \qquad \forall J \in \mathcal{J}.$$

When is this test tractable?

Longer Story: Monotonicity via the Jacobian

Strong Monotonicity: Given $P \succ 0$, the map F_w is ρ -strongly monotone w.r.t $\langle \cdot, \cdot \rangle_P$ if and only if

 $\partial F_w(u)^{\mathsf{T}}P + P\partial F_w(u) \succ 2\rho P, \quad \forall u \in \mathcal{U}$

where $\partial F_w(u_k) = \nabla^2 f(u_k) + \Pi^T \nabla^2 g(\pi(u_k, w_k)) \partial \pi(u_k, w_k)$

Idea: Overbound the set $\partial F_w(\mathcal{U})$ by a simpler set \mathcal{J} !

Robust Strong Monotonicity: If we have a set \mathcal{J} of matrices such that $\partial F_w(\mathcal{U}) \subseteq \mathcal{J}$, then $F_w(u)$ is ρ -strongly monotone if

$$J^{\mathsf{T}}P + PJ \succ 2\rho P \qquad \forall J \in \mathcal{J}.$$

When is this test tractable?

Longer Story: LFR Uncertainty Modelling

Linear Fractional Representation of Uncertainty

$$\mathcal{J} = \{A + B\Delta(I - D\Delta)^{-1}C \; : \; \Delta \in \mathbf{\Delta}\}$$

where $\mathbf{\Delta} \subset \mathbb{R}^{r \times s}$ is a set of matrices and we have a convex cone $\mathbf{\Theta}$ of matrices such that

$$\begin{bmatrix} q \\ p \end{bmatrix}^\mathsf{T} \Theta \begin{bmatrix} q \\ p \end{bmatrix} \ge 0 \qquad orall p = \Delta q, \;\; \Theta \in oldsymbol{\Theta}.$$

Longer Story: LFR Uncertainty Modelling

Linear Fractional Representation of Uncertainty

$$\mathcal{J} = \{A + B\Delta(I - D\Delta)^{-1}C \; : \; \Delta \in \mathbf{\Delta}\}$$

where $\mathbf{\Delta} \subset \mathbb{R}^{r \times s}$ is a set of matrices and we have a convex cone $\mathbf{\Theta}$ of matrices such that

$$egin{bmatrix} q \ p \end{bmatrix}^{\mathsf{T}} \Theta egin{bmatrix} q \ p \end{bmatrix} \geq 0 \qquad orall p = \Delta q, \ \ \Theta \in oldsymbol{\Theta}.$$

Robust Monotonicity via *S*-**Procedure:** The set of maps F_w with $\partial F_w(u) \subseteq \mathcal{J}$ is ρ -strongly monotone if $\exists P \succ 0, \Theta \in \Theta$ s.t.

$$\begin{bmatrix} A^{\mathsf{T}} P + PA - 2\rho P & PB \\ B^{\mathsf{T}} P & 0 \end{bmatrix} - \begin{bmatrix} C & D \\ 0 & I \end{bmatrix}^{\mathsf{T}} \Theta \begin{bmatrix} C & D \\ 0 & I \end{bmatrix} \succeq 0.$$

$$\begin{array}{ll} \underset{(p_i,q_i)\in\mathcal{U}_i}{\text{minimize}} & \underbrace{\|\left(\begin{smallmatrix}p\\q\right)-\left(\begin{smallmatrix}p^\star\\0\end{smallmatrix}\right)\|_2^2}_{\text{curtailment}} + \underbrace{\gamma\sum_{i=1}^m \max(0,\underline{v}_i-v_i,v_i-\overline{v}_i)^2}_{\text{Soft voltage constraint}} \\ \text{subject to} & v = \pi(p,q,w) = \operatorname{PowerFlow}(p,q,w) \end{array}$$

Replace ∂π with any linearization Π^{nom} of power flow equations
 Model uncertainty via norm-bound from nominal Jacobian

$$\partial \pi(u, w) = \Pi^{\text{nom}} + \Delta, \qquad \|\Delta\|_2 \le \gamma.$$

$$\underset{(p_i,q_i) \in \mathcal{U}_i}{\text{minimize}} \quad \underbrace{\| \left(\begin{smallmatrix} p \\ q \end{smallmatrix} \right) - \left(\begin{smallmatrix} p^* \\ 0 \end{smallmatrix} \right) \|_2^2}_{\text{curtailment}} + \underbrace{\gamma \sum_{i=1}^m \max(0, \underline{v}_i - v_i, v_i - \overline{v}_i)^2}_{\text{Soft voltage constraint}}$$

$$\text{subject to} \quad v = \pi(p, q, w) = \text{PowerFlow}(p, q, w)$$

Replace ∂π with any linearization Π^{nom} of power flow equations
 Model uncertainty via norm-bound from nominal Jacobian

$$\partial \pi(u, w) = \Pi^{\text{nom}} + \Delta, \qquad \|\Delta\|_2 \le \gamma.$$

$$\begin{array}{ll} \underset{(p_i,q_i)\in\mathcal{U}_i}{\mininitial} & \underbrace{\|\begin{pmatrix} p\\q \end{pmatrix} - \begin{pmatrix} p^*\\0 \end{pmatrix} \|_2^2}_{\text{curtailment}} + \underbrace{\gamma \sum_{i=1}^{m} \max(0, \underline{v}_i - v_i, v_i - \overline{v}_i)^2}_{\text{Soft voltage constraint}} \\ \text{subject to} & v = \pi(p, q, w) = \operatorname{PowerFlow}(p, q, w) \end{array}$$

• Replace $\partial \pi$ with any linearization Π^{nom} of power flow equations

• Model uncertainty via norm-bound from nominal Jacobian

$$\partial \pi(u, w) = \Pi^{\text{nom}} + \Delta, \qquad \|\Delta\|_2 \leq \gamma.$$

$$\underset{(p_i,q_i)\in\mathcal{U}_i}{\text{minimize}} \quad \underbrace{\|\left(\begin{smallmatrix}p\\q\right) - \left(\begin{smallmatrix}p^\star\\0\end{smallmatrix}\right)\|_2^2}_{\text{curtailment}} + \underbrace{\gamma\sum_{i=1}^m \max(0,\underline{v}_i - v_i, v_i - \overline{v}_i)^2}_{\text{Soft voltage constraint}}$$
subject to $v = \pi(p,q,w) = \text{PowerFlow}(p,q,w)$

• Replace $\partial \pi$ with any linearization Π^{nom} of power flow equations

Model uncertainty via norm-bound from nominal Jacobian

$$\partial \pi(u, w) = \Pi^{\text{nom}} + \Delta, \qquad \|\Delta\|_2 \leq \gamma.$$

Results

Recent Work: From Analysis to Design

● Synthesize П for distributed control

$$\begin{array}{ll} \underset{\Pi,\Theta}{\operatorname{minimize}} & \|\Pi - \hat{\Pi}\|\\ \text{subject to} & \Pi \in \Pi\\ & \begin{bmatrix} A^{\mathsf{T}}P + PA - 2\rho P & PB(\Pi)\\ & B(\Pi)^{\mathsf{T}}P & 0 \end{bmatrix} - \begin{bmatrix} C & D\\ 0 & I \end{bmatrix}^{\mathsf{T}} \Theta \begin{bmatrix} C & D\\ 0 & I \end{bmatrix} \succeq 0. \end{array}$$

Output constraints via dualization and Moreau smoothing

$$\begin{array}{ll} \underset{u \in \mathcal{U}}{\text{minimize}} & f(u) + g(y) + \mathbb{I}_{\mathcal{Y}}(y) \\ \\ \text{subject to} & y = \pi(u, w) \end{array}$$

 $\mathscr{L}_{\mu}(u,\lambda) = f(u) + g(\pi(u,w)) + M_{\mu\mathbb{I}}(\pi(u,w) + \mu\lambda) - \frac{\mu}{2} \|\lambda\|_{2}^{2}$

Primal-Dual Iteration on "Proximal Augmented Lagrangian"

Recent Work: From Analysis to Design

● Synthesize П for distributed control

$$\begin{array}{ll} \underset{\Pi,\Theta}{\operatorname{minimize}} & \|\Pi - \hat{\Pi}\| \\ \text{subject to} & \Pi \in \Pi \\ & \begin{bmatrix} A^{\mathsf{T}}P + PA - 2\rho P & PB(\Pi) \\ & B(\Pi)^{\mathsf{T}}P & 0 \end{bmatrix} - \begin{bmatrix} C & D \\ 0 & I \end{bmatrix}^{\mathsf{T}} \Theta \begin{bmatrix} C & D \\ 0 & I \end{bmatrix} \succeq 0. \end{array}$$

② Output constraints via dualization and Moreau smoothing

$$egin{array}{ll} {
m minimize} & f(u)+g(y)+\mathbb{I}_{\mathcal{Y}}(y) \ {
m subject to} & y=\pi(u,w) \end{array}$$

 $\mathscr{L}_{\mu}(u,\lambda) = f(u) + g(\pi(u,w)) + M_{\mu\mathbb{I}}(\pi(u,w) + \mu\lambda) - \frac{\mu}{2} \|\lambda\|_{2}^{2}$

Primal-Dual Iteration on "Proximal Augmented Lagrangian"

Conclusions

Two frameworks for feedback optimization

- Optimal steady-state control (leverage regulator/servo theory)
- **2** Gradient-based feedback (leverage opt. theory + robust ctrl)

Many directions wide open ...

- Decentralized, hierarchical, competitive, ...
- Performance improvement (e.g., feedforward, anti-windup)
- Intersection with latest in opt. for ML

Conclusions

Two frameworks for feedback optimization

- Optimal steady-state control (leverage regulator/servo theory)
- **②** Gradient-based feedback (leverage opt. theory + robust ctrl)

Many directions wide open ...

- Decentralized, hierarchical, competitive, ...
- Performance improvement (e.g., feedforward, anti-windup)
- Intersection with latest in opt. for ML

Conclusions

Two frameworks for feedback optimization

- Optimal steady-state control (leverage regulator/servo theory)
- **②** Gradient-based feedback (leverage opt. theory + robust ctrl)

Many directions wide open ...

- Decentralized, hierarchical, competitive, ...
- Performance improvement (e.g., feedforward, anti-windup)
- Intersection with latest in opt. for ML

Questions

https://ece.uwaterloo.ca/~jwsimpso/ jwsimpson@uwaterloo.ca

appendix